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Response to the questions of Dr. Levente Rozsa

on the dissertation

Magneto–Optical Effects from Band Topology in Kagome Magnets

by Felix Schilberth

Thank you for your thorough and very positive evaluation of my thesis. Below, I
answer the questions you put forward point by point.

(1) In a lattice model, the scalar spin chirality is defined by χ123 = S1 ·(S2 × S3),
which is nonzero if the three local magnetic moments Si span a solid
angle. The projection of this chirality to the plane of the lattice sites
determines the Berry curvature which corresponds to a fictitious magnetic
field b =

∑
i,j,k Si · (Sj × Sk) n̂ijk, where n̂ijk is a normal vector to the

triangle spanned by the three lattice sites i, j, k [1, 2]. In a continuum model,
this emergent magnetic field takes the form

bp =
ℏ
2
ϵpqrm̂ ·

(
∂m̂

∂q
× ∂m̂

∂r

)
(0.1)

where m̂ = m/|m| is the direction of the magnetisation vector and ϵpqr
the total antisymmetric tensor with the spatial coordinates p, q, r [3, 4]. It
is possible to derive topological invariants from this quantity, as e. g. the
skyrmion number can be computed by integrating b over the crystal plane.

(2) There are two aspects which are relevant to address this question. First,
if the electronic structure of the compound is well represented by the ab
initio calculations, the band structure and optical optical spectra do not
require extra tuning parameters. This was the case for e. g. Co3Sn2S2 where
a standard density functional theory approach was sufficient to satisfactorily
reproduce the experimental data with a single particle picture. On the other
hand, for Fe3Sn2, the Hubbard U had to be included to achieve a reasonable
agreement. Although the value used agrees with other experiments, e. g.
angle resolved photoemission spectroscopy, some tuning was necessary. For
HoAgGe, the effects of the 4f electrons need to be considered which also
goes beyond a straightforward ab initio approach but may be overcome
by a sophisticated tight binding model. So different theoretical approaches
could in principle reproduce the same diagonal conductivity spectrum if
tuning is possible.

The second aspect is specific to the magneto–optical methods used. Spectral
weight in the diagonal conductivity σxx(yy,zz) can arise from a combination
of various transitions which makes the assignment of spectral features
difficult. E. g., the step feature in Fig. 5.5(a) of the thesis, which in our
decomposition is a cumulative response from many interband transitions,
was assigned to the response of a Dirac dispersion based on an oscillator
model in a different publication [5]. This ambiguity is a central reason why
in the present work, the main claim on the topological properties of bands
is based on the analysis of the optical Hall conductivity σxy. Following
Eq. 1.32, spectral weight to this quantity can only arise if the bands carry
Berry curvature. So a remarkable resonance in this spectrum as observed in
Co3Sn2S2 requires the presence of a topological band structure feature at the
corresponding energy and with significant joint density of states. Therefore,
although the literature regarding the analysis of such spectra in the context
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Figure 1
Real and imaginary part of a
Lorentzian oscillator in the opti-
cal conductivity σxx. For compar-
ison, the negative derivatives of
the respective quantities are also
shown to highlight the similarity
of the lineshapes.
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of topological materials is not extensive, I believe that the simultaneous
agreement of the calculated spectra with both diagonal and off–diagonal
conductivity makes a strong case towards the topological nature of the
band structure.

(3) The ratio and its preference of the in– or out–of–plane anisotropy can be de-
duced from Ref. 6. In Table 1, the authors list the spin–orbit matrix elements
between the d orbitals as defined by ⟨m,σ|L · S|m′, σ′⟩. In this reference,
m = 1− 5 is used as an index for the orbitals dyz, dxz, dxy, dx2−y2 , d3z2−r2

and σ corresponds to the spin. These elements are determined by applying
the angular momentum and spin operators on the d orbitals in the basis of
spherical harmonics, which introduces the polar and azimuthal angles η and
ϕ listed in the table. To determine the in– or out–of–plane anisotropy, η
should be set to 90◦ or 0◦, respectively. For m = m′, these matrix elements
are always zero. The expectation value obtained by taking the absolute
square will result in the ratios stated in the paragraph of the thesis.

So indeed, it is not straightforward to deduce which combination of orbitals
favours which type of anisotropy. Additionally, since in correlated metals,
the band structure at the Fermi level has hybridized orbitals, this generally
gives a qualitative description. However, in Co3Sn2S2, the nodal line is
dominated by the in–plane dxy, dx2−y2 orbitals, as is shown in the projected
band structure in the supplementary Fig. E5 of Ref. 7.

(4) Eq. 1.33 shows the special case how to determine the dc anomalous Hall
conductivity from the Kramers–Kronig (KK) relation of the spectrum of
Im σxy. The general KK integrals for the off–diagonal conductivity read

Re σxy(ω) =
2

π
P
∫ ∞

0
dω′ω

′ Im σxy(ω
′)

ω′2 − ω2
(0.2)

Im σxy(ω) = − 2

π
P
∫ ∞

0
dω′ωReσxy(ω

′)

ω′2 − ω2
. (0.3)

Of course, the derivative cannot be used as a substitute for the proper
KK transform, but the statement in question mentions a peculiarity of the
shape of the real and imaginary parts. To illustrate this, I show the optical
conductivity σxx of a Lorentzian oscillator, e. g. an infrared active phonon, in
Fig. 1. Here, the real part is the dissipative response, hence it shows a peak
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at the resonance frequency ω0. In the imaginary part, determined through
the KK relation, the lineshape shows an S–structure at the resonance. Up
to a sign change, the lineshapes of the two KK related spectra therefore
resemble the respective derivative in frequency also shown for comparison.
This rule of thumb also works for other types of resonances and excitations
as may be observed in Fig. 1.21 of the thesis. For the spectra in Fig. 5.3
(or other figures where two KK related quantities are plotted together e. g.
3.2, 3.3 and 5.2), this means that whenever a peak occurs in one of the
spectra, the other should show a slope originating from the S–shape, but
an explicit zero crossing at the peak position is not required by the KK
relations. Since the real and imaginary parts of the KK quantities may
be determined independently, e. g. the rotation and ellipticity during the
magneto–optical Kerr effect measurements, this observation can serve as a
quick check whether the measurements yield a reasonable result.

(5) In the ground state of HoAgGe, the magnetic order is non–collinear, but
still coplanar according to Ref. 8, so the solid angle spanned by any three
spins is zero. Applying a magnetic field along the b axis keeps the spins
in the plane due to the strong Ising nature of the rare earth moment. So
for the present set of data, real–space topology does not seem to play a
role. However, in the Supplementary Material of the above reference, the
magnetisation for field along the c axis is shown which implies a gradual
canting of the moments which opens the possibility for scalar spin chirality.
Unfortunately, no Hall measurements were reported for this configuration,
so I cannot tell whether this creates a topologically non–trivial response.
For the coplanar magnetic structures however, Ref. 9 reports significant
anomalous Hall effect with unusual hysteresis between the plateau phases,
suggesting non–trivial electronic band topology in this compound.

Nevertheless, if real–space topology contributes to the static Hall response,
it is not unreasonable to expect signatures also in the optical spectra, as
e. g. additional contributions to the magneto–optical Kerr effect in the
mid–infrared range were found in the skyrmion lattice phase of Gd2PdSi3
[10]. These results indicate that the generation of topological Hall effect
from real–space Berry curvature is not necessarily limited to the action of
the emergent magnetic field on conduction electrons, as it may also modify
the band structure and influence the magneto–optical response.

(6) In the context of chapter 6, the term “quasi–symmetry” refers to an op-
eration that transforms the lattice of HoAgGe onto itself, but is not a
space–group symmetry. This unusual concept was introduced in Ref. 9 for a
combined operation of a two–fold rotation and a “distortion reversal” of
the kagome lattice. While for the model introduced in this reference, that
operation also leaves the band structure invariant, it does not preserve
the transport response. Hence Neumann’s Principle is violated by this
transformation, which would not be the case for a space–group operation.





References

[1] Y. Taguchi et al., “Magnetic Field Induced Sign Reversal of the Anomalous
Hall Effect in a Pyrochlore Ferromagnet Nd2Mo2O7: Evidence for a Spin
Chirality Mechanism”, Physical Review Letters 90, 257202 (2003).

[2] N. Nagaosa and Y. Tokura, “Emergent electromagnetism in solids”, Physica
Scripta T146, 014020 (2012).

[3] T. Schulz et al., “Emergent electrodynamics of skyrmions in a chiral magnet”,
Nature Physics 8, 301–304 (2012).

[4] G. E. Volovik, “Linear momentum in ferromagnets”, Journal of Physics C:
Solid State Physics 20, L83–L87 (1987).

[5] A. Biswas et al., “Spin-Reorientation-Induced Band Gap in Fe3Sn2: Optical
Signatures of Weyl nodes”, Physical Review Letters 125, 076403 (2020).

[6] H. Takayama, K.-P. Bohnen, and P. Fulde, “Magnetic surface anisotropy of
transition metals”, Phys. Rev. B 14, 2287–2295 (1976).

[7] F. Schilberth et al., “Generation of Weyl points and a nodal line by magne-
tization reorientation in Co3Sn2S2”, arXiv:2408.03575, 1–12 (2024).

[8] K. Zhao et al., “Realization of the kagome spin ice state in a frustrated
intermetallic compound”, Science 367, 1218–1223 (2020).

[9] K. Zhao et al., “Discrete degeneracies distinguished by the anomalous Hall
effect in a metallic kagome ice compound”, Nature Physics 20, 442–449
(2024).

[10] Y. D. Kato et al., “Topological magneto-optical effect from skyrmion lattice”,
Nature Communications 14, 5416 (2023).

5

https://doi.org/10.1103/physrevlett.90.257202
https://doi.org/10.1088/0031-8949/2012/t146/014020
https://doi.org/10.1088/0031-8949/2012/t146/014020
https://doi.org/10.1038/nphys2231
https://doi.org/10.1088/0022-3719/20/7/003
https://doi.org/10.1088/0022-3719/20/7/003
https://doi.org/10.1103/PhysRevLett.125.076403
https://doi.org/10.1103/PhysRevB.14.2287
https://doi.org/10.48550/ARXIV.2408.03575
https://doi.org/10.1126/science.aaw1666
https://doi.org/10.1038/s41567-023-02307-w
https://doi.org/10.1038/s41567-023-02307-w
https://doi.org/10.1038/s41467-023-41203-y

	References

