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Chapter 1

Introduction

The semiconductor industry is approaching a limit where Moore’s law [1] is becoming in-
creasingly difficult to sustain [2]. Alternative approaches building on the results of quantum
mechanics are required to further enhance the functionality of electronic devices. For example,
recent years have seen a surge in encouraging achievements in the field of quantum compu-
tation. Most notably, the quantum advantage over classical computers for specific problems
was demonstrated using superconducting [3, 4] and photonic [5] quantum computers. Supercon-
ducting qubits are among the most promising platforms to create scalable and programmable
quantum computers capable of solving practical problems. Furthermore, superconducting hy-
brid devices are also proposed to host exotic quasiparticles such as Majorana fermions[6–8] that
may enable fault-tolerant quantum computing [9]. Majorana fermions are expected to arise if
superconducting correlations are induced in the surface states of topological insulators [7].

Graphene has been theoretically predicted as a topological insulator soon after its discov-
ery in 2004 [10]. However, the experimental observation of this exotic phase in graphene has
remained elusive due to its very weak intrinsic spin–orbit coupling (SOC) [11]. On the other
hand, the family of two-dimensional (2D) materials has grown rapidly over the last two decades,
making it possible to tailor the physical porperties of graphene by creating van der Waals het-
erostructures that combine graphene and other 2D materials. For example, by bringing graphene
in close proximity to transition metal dichalcogenides (TMDs) in such heterostructures, a large
SOC can be induced in graphene [12]. This, on the one hand, gave a significant boost to the
field of spintronics. The combination of the large spin diffusion length in graphene [13–15] and
the ability to manipulate spins by electric fields [16–18] are key elements to realize informa-
tion storage and logic devices that utilize the spins of electrons [19]. On the other hand, this
so-called proximity-induced SOC has opened new possibilities to engineer topological phases
in graphene [20–22], leading to the experimental observation of a peculiar band-inverted phase
hosting helical edge states in bilayer graphene [23, 24]. Furthermore, the induced SOC can also
have a strong effect on the correlated states observed in twisted structures [25–27].

In this thesis, I set out to explore the nature and size of induced SOC in graphene/TMD
heterostructures, to boost its strength and to incorporate such heterostructures in supercon-
ducting circuits. I present the fabrication of van der Waals heterostructures based on graphene
and TMDs that allow the investigation of the proximity-induced SOC. Low-temperature trans-
port measurements are used to determine the type and strength of the induced SOC and reveal
a large spin-relaxation anisotropy in these heterostructures[28]. Hydrostatic pressure can be
used to squeeze the layers of van der Waals heterostructures [29]. By reducing the layer dis-
tances, the strength of the induced SOC can be significantly enhanced [30]. The hydrostatic
pressure is applied in a pressure cell where kerosene acts as the pressure mediating medium.
A measurement in this thesis shows that the electronic quality of graphene is preserved by
encapsulating graphene in hexagonal boron nitride (hBN). Furthermore, I also present that the
proximity-induced SOC can be enhanced by hydrostatic pressure in a bilayer graphene/TMD
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heterostructure and the band-inverted phase can be extended as a result [31]. Furthermore, the
effect of SOC on superconductivity in graphene/TMD heterostructures is studied. Josephson
junctions are formed by fabricating superconducting electrodes on the heterostructures. SOC
is expected to manifest as a phase shift in the current–phase relation (CPR) of the Josephson
junctions. For this reason, CPR measurements are presented on graphene/TMD Josephson
junctions. Recently, multiterminal Josephson junctions (MTJJs) were proposed theoretically as
a platform to artificially engineer topologically non-trivial band structures [32]. Therefore, fab-
ricating multiple superconducting terminals provides an alternative to SOC to engineer topolog-
ical phases in Josephson junctions. In this thesis, transport measurements on a graphene-based
MTJJ are presented. The results are compared to simulations based on a resistively shunted
Josephson junction network model. It is shown that self-heating effects have to be considered
in the simulation to reproduce the main features of the measurements [33].

The structure of the thesis is the following. The theoretical concepts necessary for un-
derstanding this thesis are briefly summarized in Chapter 2. Chapter 3 presents the experi-
mental techniques used throughout this work. These include the fabrication of van der Waals
heterostructures and details of the low-temperature transport measurements. In Chapter 4, I
present the key results from the investigation of proximity-induced SOC in single-layer graphene/TMD
heterostructures that were enabled by the devices I fabricated. I also briefly discuss the mea-
surement showing that hBN can efficiently protect graphene from the kerosene environment in
pressure cells, for which I provided the measured device. Furthermore, I summarize the mea-
surements showing that our pressure cell can be used to apply hydrostatic pressure to van der
Waals heterostructures and increase the proximity-induced SOC. Building on these results, in
Chapter 5, I present the investigation of the inverted-gap phase in a bilayer graphene/TMD het-
erostructure under hydrostatic pressure. Chapter 6 details the CPR measurements on Joseph-
son junctions based on graphene/TMD heterostructures. In Chapter 7, I discuss the transport
measurements on graphene-based MTJJs and the simulation method incorporating self-heating
effects. Finally, in Chapter 8, I summarize these findings.
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Chapter 2

Theoretical background

2.1 Graphene and 2D materials

Layered materials consist of 2D atomic or molecular sheets with strong in-plane bonds that
are weakly coupled by van der Waals forces in the out-of-plane direction. This fundamental
property makes it possible to isolate a few or even single-layers from bulk crystals and investi-
gate them in their ultimate thinness limit. Although graphene, the 2D equivalent of graphite,
was the first example discovered in 2004 [34–36], the number of 2D materials has increased
rapidly over the past two decades. Along with this, the functionality of these materials has
also seen a significant broadening. Without claim of completeness, the types of 2D materials
include semimetals, metals, insulators, semiconductors, superconductors, magnetic materials
and topological insulators [37, 38].

From the point of view of this work, the most important 2D materials are graphene, hexago-
nal boron nitride (hBN) and transition metal dichalcogenides (TMDs). As mentioned, graphene
is the first example of 2D materials. It is a semimetal with exceptional electronic qualities [39].
State-of-the-art graphene devices can have charge carrier mobilites of ∼ 106 cm2/Vs, matched
only by 2D electron gas (2DEG) devices. As a result of high device quality, quantum effects
become more easily accessible, demonstrated by the room-temperature observation of the quan-
tum Hall effect [40]. A review of the numerous quantum effects available in graphene can be
found in Reference [41]. A key element to obtain large charge carrier mobilities is the encapsu-
lation of graphene in hBN [42, 43] which is a 2D insulator with a crystal structure very similar
to graphite. The benefits of using hBN as a substrate for graphene devices is discussed in detail
in Section 3.1. Finally, TMDs are layered semiconducting materials with a typical band gap of
1-2 eV. The unit cell of these materials contains one transition metal atom (such as W or Mo)
and two chalcogen atoms (e.g. S, Se or Te). More importantly, these materials have strong
intrinsic spin–orbit coupling which makes them useful for spintronics applications (Section 2.3).

Reducing the dimensionality of such materials opens up several new possibilities. In many
cases, the physical properties of these materials depend heavily on the number of layers and can
be strikingly different from their bulk counterparts. Two key examples, which will be discussed
in more detail later, are the electric field effect (Section 2.4.1) and the tunable band gap in
bilayer graphene (Section 2.2.2). Both of these effects become available by reducing the number
of layers towards the 2D limit and are not accessible in bulk graphite.

We can improve or change the functionality of 2D layered materials not only by reducing
the number of layers but it is also possible by combining different layers in van der Waals
heterostructures as presented in Section 3.1. This method provides unprecedented opportunities
for band structure engineering. For example, it is possible to take a layer of graphene, place it on
top of a TMD layer and the proximity of the TMD layer will induce a large spin–orbit coupling in
graphene while the electronic quality of graphene is mostly preserved. In such heterostructures,
additional tuning knobs can also be used to control the band structure. By reducing the distance
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a0= 1.42 Å

a2
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Figure 2.1: Hexagonal lattice structure of single-layer graphene. The lattice vectors are shown
in yellow. The unit cell contains two atoms, denoted A and B. The distance between nearest-
neighbour atoms is a0 = 1.42 Å, as illustrated by the green arrow.

between the layers, the proximity effect can be enhanced. This can be achieved by applying
pressure to such heterostructures as it is discussed in Chapters 4 and 5. Although not covered in
this work, it is worth mentioning that the electronic properties of van der Waals heterostructures
can also be tuned by applying strain [44–50]. Furthermore, the rotation of the layers can also
have a significant effect on the band structure. The most notable examples are the twisted
graphene heterostructures where flat bands appear when two graphene layers are rotated by a
so-called magic angle [51–58]. The study of twist-angle dependent phenomena is referred to as
twistronics.

2.2 Band structure of graphene

2.2.1 single-layer graphene

Graphene is a two-dimensional allotrope of carbon where atoms are arranged in a hexagonal
lattice as it is shown in Figure 2.1. The unit cell of the honeycomb lattice contains two carbon
atoms, denoted A and B. The lattice vectors a1 and a2 can be expressed in real space using the
inter-atomic distance a0 = 1.42 Å:

a1 =
a0
2

(
3√
3

)
and a2 =

a0
2

(
3

−
√
3

)
(2.1)

A free carbon atom has the electronic configuration of 1s22s22p2 with a total of six electrons.
However, in graphene three of the four valence electrons occupy sp2 hybrid orbitals while the
remaining electron occupies the pz orbital. The sp2 electrons form strong σ-bonds localized in
the plane of the atoms while the pz electrons form delocalized π-bonds. The 1s2 core electrons
do not contribute to chemical bonds.

Although graphene was discovered in 2004, it had already been investigated theoretically in
1947 [59] as a stepping stone to understand the electronic properties of graphite. The electronic
band structure of pz electrons in single-layer graphene (SLG) can be calculated in a tight-binding
approximation [59, 60]. Considering only nearest neighbour hopping, this yields:

E±(q) = ±t

√√√√3 + 2 cos
(√

3qya0

)
+ 4 cos

(
3

2
qxa0

)
cos

(√
3

2
qya0

)
, (2.2)

where q is the wavenumber vector and t = 2.61 eV [61] is the nearest neighbour hopping pa-
rameter. This band structure is shown in Figure 2.2.(a) for the first, hexagon-shaped, Brillouin
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Figure 2.2: a) Band structure of SLG in the first Brillouin zone obtained from tight binding
calculation using only nearest neighbour hopping. The valence and conduction bands touch at
the corners of the hexagonal Brillouin zone. b) Low-energy part of the band structure around
the K valley with t = 2.8 eV as a function of the quasi-momentum k measured from the K
point.

zone. SLG is a semimetal since the valence and conduction bands touch at the so-called Dirac
points in the corners of the Brillouin zone, also referred to as valleys, and the pz electrons fill
the valence band. Two of these valleys are denoted with K and K’ in Figure 2.2.(a). Their
positions in the momentum space can be given by:

K =
2π

3
√
3a0

(√
3
1

)
and K′ =

2π

3
√
3a0

(√
3
−1

)
. (2.3)

In most cases, it is enough to consider only the low-energy sector of the band structure.
This is shown in the vicinity of the K valley in Figure 2.2.(b), highlighting the now-famous
Dirac cone of graphene. The dispersion relation in the valleys is linear and isotropic which
makes it possible to describe the band structure with a linearized Hamiltonian. Considering
two inequivalent valleys and neglecting spin degeneracy, it takes the form of:

H0 = ℏvF (κkxσ̂x − kyσ̂y) , (2.4)

where σ̂i are the Pauli matrices acting on the sublattice space and κ = ±1 stands for the K
and K’ valley and we introduced k = q −K, the quasi-momentum measured from the K and
K’ points. This Hamiltonian is equivalent to the Dirac Hamiltonian that describes massless
relativistic particles with the Fermi velocity vF ≈ 106m/s substituting the speed of light. For
this reason, the K and K’ points are commonly known as Dirac points. In the Dirac points,
the dispersion relation can be given simply by:

E±(k) = ±ℏvF |k|. (2.5)

The positive solution is referred to as conduction band, whereas the negative as valence band.

2.2.2 Bilayer graphene

Two layers of graphene stacked on top of each other is referred to as bilayer graphene
(BLG). In most cases, the crystal structure follows the so-called Bernal stacking, also known as
AB stacking, shown in Figure 2.3. The unit cell contains four atoms, A1 and B1 are situated
on the lower layer, while A2 and B2 sit on the upper layer. The B1 and A2 atoms are aligned
vertically, these are called dimer atoms, while A1 and B2 are referred to as non-dimer atoms.
The distance between the two layers in pristine BLG is d = 3.3 Å.
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γ0

γ1

γ4

γ3

d = 3.3 Å

A1 B1

A2 B2

Figure 2.3: Lattice structure of Bernal-stacked bilayer graphene. The A2 atoms of the upper
layer are located above the B1 atoms of the lower layer. The distance between the layers in
pristine BLG is d = 3.3 Å. The relevant hopping parameters are also indicated by γi and the
corresponding arrows.

Similarly to SLG, it is possible to construct a linearized tight-binding Hamiltonian to de-
scribe the low-energy band structure for BLG, as well. In the basis of the 4 atom unit cell,
(|CA1⟩ , |CB1⟩ , |CA2⟩ , |CB2⟩) the Hamiltonian is written as:

HBLG =


u/2 v0π

† −v4π† v3π
v0π u/2 + ∆′ γ1 −v4π†

−v4π γ1 −u/2 + ∆′ v0π
†

v3π
† −v4π v0π −u/2

 . (2.6)

Here, we use γi, with i = {0, 1, 3, 4} to describe the intra- and interlayer hoppings in BLG,
as illustrated in Figure 2.3. γ0 is the nearest neighbour intralayer hopping, γ1 is the interlayer
hopping between the dimer sites, γ3 describes the hopping between the non-dimer sites and γ4
is the interlayer hopping between the dimer and non-dimer orbitals. vi =

√
3aγi/2ℏ are effective

velocities derived from the hopping parameters, with the lattice constant of the graphene a =
2.46 Å and ∆′ is the dimer on-site energy. π = ℏ(ξkx+iky) and π† = ℏ(ξkx−iky) are momentum
operators measured from the K and K’ valleys with the valley indices ξ = ±1. The parameter
u is the interlayer potential difference modelling the effect of an external electric field. The
values available in the literature for the hopping parameters are γ0 = 2.61 eV, γ1 = 0.361 eV,
γ3 = 0.283 eV, γ4 = 0.138 eV and ∆′ = 0.015 eV [61].

To illustrate some of its key features, we calculate1 the BLG band structure using only
the γ0 and γ1 hopping terms and compare it with the low-energy band structure of SLG in
Figure 2.4. For convenience, the low-energy sector of the SLG band structure is shown again in
Figure 2.4.(a) and the BLG band structure is plotted in 2.4.(b). The most obvious conclusion
from this comparison is that BLG no longer shows linear dispersion but it features quadratic
bands that touch at the Dirac points. Even though the unit cell of BLG contains four atoms,
the bands are four-fold degenerate in both cases, due to the valley and spin degrees of freedom,
since γ1 splits the bands originating from the dimer atoms A2 and B1 from the low-energy
subspace. These are not visible in the energy range shown in Figure 2.4.

As mentioned in Section 2.1, a different number of layers can result in strikingly different
functionalities for 2D materials. A prime example for this is the appearance of an electric field-
tunable band gap in bilayer graphene [62–64]. When an out-of-plane electric field is applied
to BLG, the two layers are placed at different potential energies resulting in an interlayer
asymmetry. In Equation 2.6, this is taken into account by the interlayer potential difference u

1The Python code used for the band structure calculations of BLG was developed by Bálint Szentpéteri.
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Figure 2.4: a,b) Low-energy band structure of SLG and BLG in the K valley as a function of
kx. For the calculation of the BLG band structure only the hopping terms γ0 and γ1 were used.
c) The opening of a band gap in BLG for u = 2meV. The interlayer potential difference can be
controlled by a transverse electric field.

and the effect of a finite u = 2meV is demonstrated in Figure 2.4.(c) where the opening of a band
gap is clearly visible. This feature is inaccesible in SLG where a transverse electric field does not
break the inversion symmetry. The transverse displacement field (D) in the measurements can
be converted to the interlayer potential difference using u = −ed

ϵ0ϵBLG
D, where e is the elementary

charge, ϵ0 is the vacuum permittivity, d = 3.3 Å is the separation of BLG layers and ϵBLG is
the effective out-of-plane dielectric constant of BLG.

2.3 Spin–orbit coupling in graphene

2.3.1 Spin–orbit coupling basics

Spin–orbit coupling (SOC), or spin–orbit interaction (SOI), is the relativistic effect connect-
ing the spin of a particle to its motion. An electron moving at a speed v in an external electric
field E experiences an effective magnetic field B′ in its resting frame of reference that is given
by the Lorentzian transformation:

B′ = − 1

c2
v×E. (2.7)

Writing this into the Zeeman energy term:

HSOC = +gµBS ·
1

c2
v×E =

1

c2
gµBS ·

p

m
×E, (2.8)

where g is the electron g-factor, µB = eℏ/(2me) is the Bohr-magneton, S is the spin angular
momentum and p is the momentum. Let us consider a central atomic potential where:

E = ∇ Ze

4πε0r
=

r

|r|
d

dr

Ze

4πε0|r|
. (2.9)

Using this in Equation 2.8:

HSOC =
1

c2
gµBS ·

p

m
×E ∝ S · (p× r) ∝ S · L, (2.10)

where L = (r × p)/ℏ is the orbital angular momentum. In this case, it is easy to see how the
spin and the orbital angular momenta are connected, hence the name spin–orbit interaction can
be understood.

9



a) b) c)

−1 0 1
−4

−2

0

2

4

E 
(m

eV
)

λ I = 1  meV

−1 0 1
k  (10 /a ) x −3

0

λ VZ = 1  meV

−1 0 1

λ R = 1  meV

↓ spin

↑ spin

Figure 2.5: Effect of spin–orbit coupling on the low-energy band structure of SLG around the
K point. The colorscale illustrates the out-of-plane spin polarization of the bands. a) Intrinsic
SOC with λI = 1meV. The value of λI used here is two orders of magnitude larger than the
12µeV predicted theoretically [11] to better illustrate the opening of the topological gap. In this
case, the bands remain spin and valley degenerate. b) Valley-Zeeman SOC with λV Z = 1meV.
This SOC term leads to a finite spin-splitting of the bands with opposite sign in the two valleys.
c) Rashba SOC with λR = 1meV. The Rashba term leads to the in-plane winding of the spin
with no out-of-plane polarization.

In pristine graphene, symmetry allows only one type of spin–orbit coupling [10, 65]. The
effective low-energy Hamiltonian of this intrinsic spin–orbit coupling term takes the following
form:

HI = κλI σ̂z ŝz. (2.11)

Here λI is the intrinsic spin–orbit strength, κ = ±1 is the usual valley index, while σ̂z and ŝz
are the Pauli matrices acting on the pseudospin and the spin respectively. Combining this with
the orbital contributions from Equation 2.4 the low-energy spectrum takes the following form:

E±(k) = ±
√

ℏ2v2F
(
k2x + k2y

)
+ λ2

I . (2.12)

This intrinsic spin–orbit coupling splits the valence and conduction bands by 2|λI |, however,
the bands remain spin and valley degenerate. This is illustrated in Figure 2.5.(a) for λ = 1meV
for better visibility. It is worth noting that the band gap opened by the intrinsic SOC was
predicted by Kane and Mele [10] to host a quantum spin Hall state with helical edge states.
However, it was found by Gmitra et al [11] that the intrinsic SOC strength λI ≈ 12µeV is very
weak and inaccessible in experiments. On the one hand, this weak SOC allows exceptionally
long spin relaxation times in pristine graphene [13–15]. On the other hand, for many spintronic
applications, it is desired to have a large spin–orbit coupling to enable manipulation of the
electron spins via external electric or magnetic fields. However, other spin–orbit interaction
terms are allowed if the symmetry of our system is reduced, which might have a significant
impact on the low-energy band structure.

2.3.2 Proximity-induced spin–orbit coupling in single-layer graphene

By combining graphene with other 2D materials that have a large intrinsic spin–orbit cou-
pling, it becomes possible to induce a significant SOC in graphene via the proximity-effect [12,
66–69]. Although other methods have also been proposed to enhance SOC in graphene [19,
60, 70], as mentioned in Section 2.1, TMDs are among the most promising candidates to en-
able spintronics applications in graphene devices. While TMDs have a large intrinsic SOC,
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their low electronic quality results in small spin relaxation lengths that poses severe limita-
tions to their applications. It was found both theoretically [67] and experimentally [12, 69] that
graphene/TMD heterostructures make it possible to engineer a large proximity-induced SOC
in graphene while preserving its high electronic quality. Among the family of TMD materi-
als, WS2 [12, 71], MoS2 [71] and WSe2 [28, 71] have all been demonstrated to induce a SOC in
graphene on the order of ∼ 1 − 10 meV that is multiple orders of magnitude larger than the
intrinsic SOC in pristine SLG.

The induced SOC originates from the hybridization of the graphene and TMD substrate
orbitals. The effect of induced SOC on the low-energy band structure can be described by
virtual hopping terms [20, 65, 68]. At low energies, neglecting k-dependent spin–orbit terms,
two relevant SOC terms remain. The Valley-Zeeman term locks spin to valley and introduces
a valley-dependent spin-splitting of the bands and the Rashba SOC that originates from the
broken inversion symmetry of the heterostructure. The effective Hamiltonians that describe
these two SOC terms take the following form [68]:

HV Z =λV Zκσ̂0ŝz,

HR =λR (κσ̂xŝy − σ̂y ŝx) .
(2.13)

Here, λV Z and λR are the valley-Zeeman and Rashba spin–orbit strengths, κ = ±1 is the usual
valley index and σ̂i and ŝi are the sublattice and spin Pauli matrices, respectively.

Using these, the low-energy band structure of SLG around the K valley in the presence of
different SOC terms is illustrated in Figure 2.5. Figure 2.5.(b) shows the spin-splitting of the
bands due to the valley-Zeeman SOC term λV Z = 1meV. The color corresponds to the out-
of-plane spin polarization. It is important to note that this spin-splitting is valley dependent
and is opposite in the K’ valley. Figure 2.5.(c) illustrates the effect of the Rashba SOC with
λR = 1meV. This term introduces a finite effective mass in the low-energy band structure.
Contrary to the valley-Zeeman term, the Rashba term results in an in-plane spin texture where
the spin is perpendicular to the momentum [65, 68].

Finally, two important remarks must be made. First, although the reduced symmetry of
the graphene/TMD heterostructure allows the appearance of additional SOC terms, in real
devices, the strength and type of proximity-induced SOC show great variation due to sample
inhomogeneity. Furthermore, recent theoretical works [72, 73] showed that the strength of in-
duced SOC depends on the relative angle between the graphene and TMD layers. This suggests
that heterostructures assembled without controlling the rotation of layers can yield significantly
different results even if the device qualities are otherwise similar.

2.3.3 Proximity-induced spin–orbit coupling in bilayer graphene

The proximity-induced SOC in BLG can be treated with the same theoretical tools as in
SLG. The relevant SOC terms are again the valley-Zeeman and the Rashba-type SOC terms.
Due to historical reasons, the valley-Zeeman term is also referred to as the Ising SOC term
and its strength is denoted by λI . Although this could cause confusion, since it also labelled
the intrinsic SOC in case of SLG, the intrinsic SOC is too small to be experimentally detected
and is therefore simply neglected in the following. On the other hand, the larger unit cell
and the inequivalence of the two layers add more complexity to the problem. For example, the
induced SOC on the two layers can be different if the BLG is encapsulated between two different
materials or due to a different rotation angle of the top and bottom TMDs with respect to the
BLG layers. This is taken into account by considering different SOC strength parameters for
the different layers. In the basis of the 4 atom unit cell, (|CA1⟩ , |CB1⟩ , |CA2⟩ , |CB2⟩)⊗ (|↑⟩ , |↓⟩)
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Figure 2.6: a-c) Calculated band structure around the K-point for different values of the
interlayer potential difference u. Color scale corresponds to the spin polarization of the bands.

the SOC Hamiltonian is written as

HSOC =


ξλb

Isz/2 iλb
Rs

ξ
− 0 0

−iλb
Rs

ξ
+ ξλb

Isz/2 0 0

0 0 ξλt
Isz/2 iλt

Rs
ξ
−

0 0 −iλt
Rs

ξ
+ ξλt

Isz/2

 , (2.14)

where λt
I and λb

I are the Ising-type SOC strengths on the top and bottom layers, respectively,
and the Rashba-type SOC parametrized similarly with λt

R and λb
R [66, 74]. Here, as before, si,

with i = {0, x, y, z}, are the spin Pauli matrices and sξ± = 1
2(sx ± iξsy) with ξ = ±1 being the

valley index.
Combining HSOC with HBLG from Equation 2.6, the low-energy spectrum of BLG in the

presence of arbitrary SOC strengths can be calculated, as it is discussed in detail in Refer-
ence [66]. The relative complexity of this system results in many interesting phenomena. From
a practical point of view, it is worth mentioning that Gmitra et al. predicted that BLG prox-
imitised by WSe2 could be used as a spin transistor [75]. More importantly from the aspect of
this work, Island et al. experimentally showed that a band-inverted phase can arise in BLG
proximitised by WSe2 from both sides if the induced Ising SOC strength for the two layers has
opposite sign [23].

To reveal this band-inverted phase arising from the Ising SOC in BLG, we show the low-
energy band structure of WSe2/BLG/WSe2 in Figure 2.6, calculated using HBLG and HSOC.
The effect of the WSe2 layers in proximity of BLG can be described by the Ising SOC terms λt

I

and λb
I that couple only to the closer-lying layer of BLG and act as a valley-dependent effective

magnetic field. For WSe2 layers aligned to the BLG layers, the induced SOC couplings will
have opposite sign for the top and bottom layers [73, 74, 76]. This is taken into account by the
opposite sign of λt

I and λb
I .

Figure 2.6.a-c show the calculated band structure around the K-point for different values of
the interlayer potential difference u, using the parameter values λt

I = −λb
I = 2meV. First of all,

for |u| > |λt
I | = |λb

I |, we can see the opening of a band gap (Figure 2.6.a), as expected for BLG
in a transverse displacement field. On the other hand, as opposed to pristine BLG, the bands
are spin-split and the direction of this spin-splitting is opposite for the valence and conduction
bands. This is a direct consequence of the opposite sign of λt

I and λb
I as the valence and

conduction bands are localised on different layers due to the large u. The band structure in the
K’-valley is similar, except that the spin-splittings are reversed due to time-reversal symmetry.
For |u| = |λt,b

I | (Figure 2.6.b), the u-induced band gap approximately equals the spin-splitting

induced by the Ising SOC and the bands touch. Finally, for |u| < |λt,b
I | (Figure 2.6.c), a band
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gap re-opens and we observe spin-degenerate bands for u = 0, separated by a gap comparable
in size to the Ising SOC terms

(
∆ ≈

∣∣λt
I − λb

I

∣∣ /2). This gapped phase is distinct from the
band insulating phase at large u in that the valence and conduction bands are no longer layer
polarized, hence it is referred to as the inverted phase (IP). It is worth mentioning that the IP at
|u| <

∣∣λt
I

∣∣ is topologically different from the trivial band insulating phase. Theoretical [21, 22]
and experimental [23, 24] works suggest that the IP hosts helical edge modes.

2.4 Electronic transport in graphene

2.4.1 Electric field effect

It was discovered early-on that graphene exhibits a strong electric field effect [34] that allows
the tuning of charge carrier concentration by external gate voltages. This can be understood in
a simple planar capacitor model which can be applied to many graphene-based Van der Waals
(vdW) heterostructures. A finite voltage difference between the graphene layer and the gate
electrode will induce a charge carrier density proportional to the gate capacitance:

C = ε0εr
A

d
, (2.15)

where ε0 is the vacuum permittivity, εr is the relative permittivity of the dielectric of thickness
d placed between the graphene layer and the gate electrode of area A. From this, the induced
charge carrier density as a function of the gate voltage:

n =
C

eA
Vg =

ε0εr
ed

Vg, (2.16)

where e is the electron charge and Vg is the gate voltage.
In a diffusive Drude picture, conductivity can be written as:

σ = neµ =
ne2τp
m

, (2.17)

where n is the charge carrier density, µ is charge carrier mobility and τp is momentum relaxation
time. In graphene, this equation can be brought to the following form:

σ =
e2vF τp

√
n

ℏ
√
π

, (2.18)

where we used thatm = ℏkF /vF due to the linear dispersion relation and that in two dimensions
k =
√
nπ.

In transport measurements, usually, the conductance G is measured, from which the con-
ductivity can easily be calculated using the geometric factors of the sample. This allows us to
obtain basic information about the quality of the sample by extracting the field-effect mobility:

µ =
l

we

dG

dn
, (2.19)

where l and w are the length and width of the sample, respectively.
It is also worth mentioning that, even though graphene is a semimetal with zero band gap

where electron and hole conduction are both achievable, in a real device it is impossible to set
the chemical potential exactly to the Dirac point, also referred to as charge neutrality point
(CNP), due to ever-present potential fluctuations. This means that below a certain doping
level, the device breaks up into electron and hole regions, commonly referred to as puddles.
Therefore, another way to characterize sample quality is to determine the residual doping n∗,
which is the lowest homogeneous doping level achievable in the sample.
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Considering BLG, the situation becomes slightly more complex. While it is possible to tune
the charge carrier density with a single gate electrode as previously presented, it is evident that
it will also induce a potential difference between the two graphene layers that eventually opens
a gap in the band structure. However, by introducing a second gate electrode to the system, it
is possible to control the charge carrier density and the transverse electric field separately. This
can easily be realized in a planar system where the bilayer graphene is isolated from a top and
a bottom gate electrode by a dielectric as in Reference [77] and [78]. Here, the charge carrier
density and the transverse electric field can be calculated by extending the previous planar
capacitor model. For this we have to solve the following set of equations:

n =
ϵ0ϵb
e
· Vb − Vb0

db
+

ϵ0ϵt
e
· Vt − Vt0

dt
(2.20)

E =
Vb − Vb0

db
− Vt − Vt0

dt
, (2.21)

where the index b (t) labels quantities describing the bottom (top) gate electrode, while Vt0 and
Vb0 account for the shift of the Dirac point due to contaminants in the sample or electric fields
built into the structure. From this, one can express the gate voltages at a given charge carrier
density and electric field:

Vb = Vb0 + n

(
db

αbdb + αtdt

)
+ E

(
αtdbdt

αbdb + αtdt

)
(2.22)

Vt = Vt0 + n

(
dt

αbdb + αtdt

)
− E

(
αbdbdt

αbdb + αtdt

)
, (2.23)

where we introduced the lever arm α = ε0εr/(de) for each gate electrode.

2.4.2 Weak antilocalisation

In diffusive systems, charge carrier trajectories in a conductor can form closed loops due to
a series of scattering events, as it is illustrated in Figure 2.7. In a system with time-reversal
symmetry, such a loop and its time-reversed pair will interfere with each other. Let us denote
the complex quantum mechanical amplitudes of these paths by A+ and A− for a given loop and
its time-reversed path, respectively. Now if we calculate the probability of the particle returning
to its starting point it reads:

Pqm = |A+ +A−|2 = |A+|2 + |A−|2 +A+∗A− +A+A−∗. (2.24)

Since time-reversal symmetry requires that A+ = A− = A, the above expression simply
gives us Pqm = 4A2 = 2Pcl which means that the probability of backscattering in a quantum
mechanical treatment is twice the probability Pcl calculated in a classical picture without tak-
ing into account the interference terms. This phenomenon is called weak localization, which
eventually results in an increase in resistance compared to the classical case.

By applying an external magnetic field perpendicular to the plane of the conductor, time-
reversal symmetry can be broken. Charge carriers moving around the loop in opposite directions
will pick up an Aharonov-Bohm phase ΦAB of opposite sign and the quantum mechanical
amplitudes will be A± = Ae±iΦAB . As a consequence, the interference condition at the starting
point will also depend on the applied magnetic field:

Pqm = 2A2 + 2A2 cos (2eSB/ℏ) , (2.25)

where B is the applied out-of-plane magnetic field and S is the area enclosed by the loops.
Since many loops with different areas contribute to the conductance, the interference terms will
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Figure 2.7: Charge carriers in a diffusive picture can form closed loops after several scattering
events. In case of time-reversal symmetry, a loop and its time-reversed path can interfere
constructively, resulting in an enhanced back-scattering. Figure adapted from Reference [79].

average out at larger magnetic fields. This means that weak localization results in a dip in the
magneto-conductance at zero magnetic field.

On the other hand, in the presence of strong spin–orbit coupling, the spin of the electron
on such a pair of trajectories rotates in opposite direction during the scattering process. Even
though the final spin states are random, on average this will result in a destructive interference
and thus in a decreased resistance compared to the classical case [80]. This phenomenon is called
weak antilocalization (WAL).

In this work, WAL is employed as an experimental tool to obtain the spin-orbit strengths
in SLG as shown in Chapter 4. In the case of single-layer graphene, the quantum correction to
the magneto conductivity ∆σ in the presence of strong SOC is given by:

∆σ(B) = − e2

2πh

[
F

(
τ−1
B

τ−1
ϕ

)
− F

(
τ−1
B

τ−1
ϕ + 2τ−1

asy

)

−2F

(
τ−1
B

τ−1
ϕ + τ−1

asy + τ−1
sym

)]
,

(2.26)

where F (x) = ln(x) + Ψ(1/2 + 1/x), with Ψ(x) being the digamma function, τ−1
B = 4eDB/ℏ,

whereD is the diffusion constant, τϕ is the phase coherence time, τasy is the spin–orbit scattering
time due to SOC terms that are asymmetric upon z/-z inversion (HR) and τsym is the spin–
orbit scattering time due to SOC terms that are symmetric upon z/-z inversion (HI , HV Z).
The total spin–orbit scattering time is given by the sum of the asymmetric and symmetric rate
τ−1
SO = τ−1

asy + τ−1
sym. In general, Equation 2.26 is only valid if the intervalley scattering rate τ−1

iv

is much larger than the dephasing rate τ−1
ϕ and the rates due to spin–orbit scattering τ−1

asy,

τ−1
sym [79].

To relate the spin–orbit scattering times to spin–orbit strengths, different spin relaxation
mechanisms have to be discussed briefly. Theoretical works [81, 82] showed that the intrinsic
and the Rashba SOC relax spins via the Elliot-Yafett mechanism. In this case, scattering events
can result in spin-flips due to the presence of SOC. As a consequence, the spin lifetime scales
linearly with the momentum scattering time:

τs =
τp
α
, (2.27)

where α is a proportionality constant specific to the given type of SOC. For the experimentally
relevant Rashba SOC it is given by:

αR =

(
4λR

EF

)2

, (2.28)

15



where EF is the Fermi energy. Therefore, in principle, Equation 2.27 allows to determine λR from
the asymmetric spin relaxation time τasy obtained from magneto conductance measurements.

On the other hand, the Dyakonov-Perel spin relaxation mechanism [83] originates from spin
precession between scattering events due to the effective spin-orbit field. Contrary to the Eliott-
Yafett mechanism, here, the spin lifetime is inversely proportional to the momentum scattering
time, since scattering randomizes the direction of the spin–orbit field and leads to longer spin
lifetimes. For the Rashba SOC, the spin relaxation time due to the Dyakonov-Perel mechanism
is given by [79]:

τs =

(
ℏ

2λR

)2

τ−1
p . (2.29)

Furthermore, it was shown [84] that the valley-Zeeman SOC can also lead to a spin relaxation
via the Dyakonov-Perel mechanism. However, in this case intervalley scattering is needed to
randomize the spin–orbit field direction and the above expression is modified:

τs =

(
ℏ

2λV Z

)2

τ−1
iv , (2.30)

where τiv is the intervalley scattering time.

2.4.3 Quantum Hall effect

It is well known that charge carriers moving in a magnetic field experience a Lorentz force
according to FL = qv × B. As a consequence, if we apply a perpendicular magnetic field to
a two-dimensional conductor in which a current I is flowing in a given direction, a transverse
electric field will appear perpendicular to the direction of the current and the applied magnetic
field. This phenomenon is called the classical Hall effect, in which the Hall voltage related to
the above electric field can be given by VH = IB/(en) and the Hall resistance is Rxy = B/(ne).

In a quantum mechanical picture, let us consider the problem of a free electron in a magnetic
field with the Hamiltonian:

H(p, r) =
1

2m
[p+ eA(r)]2 , (2.31)

where in Landau gauge the vector potential is A=(0,Bx,0) with B=rotA. By introducing the
cyclotron frequency ωc = eB/m this can be written in the following form:

H(p, r) =
1

2m

[
p2x + (py +mωcx)

2 + p2z
]2

. (2.32)

By solving the Schrödinger equation with this Hamiltonian one can easily find that the x − y
and z directions decouple and the solution to the former part can be described by a simple
harmonic oscillator. The energy eigenvalues will then look like:

EN =
ℏ2k2z
2m

+ ℏωc

(
N +

1

2

)
, (2.33)

where N = 0, 1, 2... and kz is the out-of-plane wavenumber. Therefore, in a two-dimensional
system, e.g. a 2D electron gas, where one can omit the term describing the z-direction due to
confinement, the energy spectrum will consist of equidistant energy levels, commonly known as
Landau levels (LLs).

The appearance of Landau levels has a significant impact on transport properties. In a
finite sample at large magnetic field the longitudinal resistance Rxx becomes zero, while the
Hall resistance Rxy becomes quantized at values of h/(e2ν) with ν = 2, 4, 6, ... being a positive
integer. This can be understood in a simple picture where the confining potential of the sample
causes the LLs to bend upwards (or downwards for holes, see Figure 2.8.a) at the edges of
the sample leading to the formation of edge channels. Charge carriers on these edge channels
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a) b)

Figure 2.8: a) Landau level structure including the chemical potentials of electrodes 1 and 4
of the setup in b): a Hall-bar geometry at filling ν = 6, with current injected in contact 4
and grounded in 1, and voltmeters between two pairs of floating contacts. Due to LL bending,
propagating states (red and orange arrows) are formed at the edges, where the chemical poten-
tials intersect - in this example - the 0th and 1st LLs, as highlighted by red and orange circles.
Because of the Landau gap, edge states are spatially separated by insulating regions. Figure
adapted from Reference [85].

move in one direction and there is no scattering between channels of opposite directions due to
the large spatial separation which results in no backscattering and eventually zero longitudinal
resistance (e.g. between contacts 2 and 3 in Figure 2.8.b).

It is worth noting that this quantum mechanical picture is only valid if the electrons can
move several times around the cyclotron orbital between two elastic scattering events when
ℏωc ≫ ℏ/τe. From this, the relation B ≫ 1/µ can be approximately derived which gives us
a practical tool to estimate charge carrier mobility from the magnetic field strength at which
quantum oscillations in the conductivity are visible. Furthermore, it is also required that the
thermal energy kBT , with kB being the Boltzmann constant, should be negligible compared to
the energy spacing of the LLs.

The LLs in single-layer graphene can be obtained by solving the Dirac equation in a per-
pendicular magnetic field. The energy eigenvalues are the following:

EN = sgn(N)vF
√

2eℏB|N |. (2.34)

From this, it is easy to see that the lowest LL is at zero energy being half filled by electrons and
half filled by holes. Furthermore, the square-root dependence on N results in non-equidistant
level spacing. The transverse conductivity takes the form:

σxy =
4e2

h
(N +

1

2
), (2.35)

where the factor of 4 comes from the valley and spin degeneracy of the conducting channels
(Figure 2.9.(a)). At higher magnetic field values, due to the Zeeman effect and electron-electron
interactions [86, 87], the spin and valley degeneracy can be lifted and quantized conductance at
all integer values of e2/h can be observed.

Since the charge carriers in bilayer graphene are massive, the Landau level spacing is equidis-
tant and described by [88]:

EN = ±ℏωc

√
N(N − 1). (2.36)

From this, it is trivial that the LLs N = 0 and N = 1 both lie at zero energy which leads to an
eight-fold degeneracy, while the other Landau levels are four-fold degenerate. As in single-layer

17



a) b)

Figure 2.9: Schematic of the dependence of the Hall conductivity σxy on carrier density n for
(a) single-layer graphene and (b) bilayer graphene, where φ0 = h/e is the flux quantum and B
is the magnetic field strength. Figure adapted from Reference [89].

graphene, this Landau level is half-filled by holes and half-filled by electrons. For N ∈ Z, the
transverse conductance is given by:

σxy =
4e2

h
N (2.37)

2.5 Superconducting phenomena

Superconductivity was discovered as early as 1911 by H. Kammerlingh Onnes when he
measured the temperature dependence of different materials in liqiud helium environment [90].
It is the peculiar phase of matter that is characterized by perfect conductivity and perfect
diamagnetism (Meissner–Ochsenfeld effect [91]).

The microscopic theory of conventional superconductors was developed by Bardeen, Cooper
and Schrieffer (BCS theory). The basic idea of the theory is that the Fermi-sea of electrons is
unstable against the formation of bound electron pairs in the presence of an attractive interac-
tion. Therefore, the result of an effective attraction due to electron-phonon interaction is the
formation of Cooper pairs — electron pairs with opposite momenta and spins [92]. From a phe-
nomenological aspect, a superconductor is described by a complex order parameter ∆ = |∆|eiφ,
with its absolute value equal to the superconducting gap or, in other words, the binding energy
of the Cooper pairs.

2.5.1 Josephson effect

The Josephson effect occurs in so-called Josephson junctions (JJs) where two superconduct-
ing leads are connected by a weak link. What Josephson predicted in his original work [93] is that
in a superconductor-insulator-superconductor (SIS) tunnel junction a zero voltage supercurrent
IS can flow without voltage drop between the two superconducting electrodes:

Is = Ic sin (φ) , (2.38)

where Ic is the critical current, the maximum supercurrent that the junction can sustain, and φ
is the phase difference of the order parameter in the two leads. This phenomenon is known as
the DC Josephson effect. It is common to refer to Equation 2.38 as the current–phase relation
(CPR). Furthermore, the voltage V over the junction and the time evolution of the phase
difference are also connected by the second Josephson equation:

dφ

dt
=

2eV

ℏ
. (2.39)
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This implies that if a DC voltage is applied to the junction, an AC current of frequency 2eV /ℏ
will flow, also known as the AC Josephson effect. Equations 2.38 and 2.39 are commonly referred
to as the first and second Josephson equations, respectively.

Let us consider a magnetic field B applied perpendicular to the plane of the Josephson
junction (Figure 2.10). This magnetic field induces a relative phase shift between different
supercurrent trajectories which interfere at the contacts and generate an interference pattern
that is related to the Fourier transform of the spatial distribution of the supercurrent in the
sample.

Bz
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W

Y

Xa) b) c)

S

S

I

Figure 2.10: a) Schematics of an SIS Josephson junction. In a Josephson interferometry mea-
surement the critical current is measured as a function of the magnetic field applied perpendicu-
lar to the plane of the sample. b) For homogeneous distribution of the supercurrent density the
resulting pattern is c) the well-known Fraunhofer diffraction pattern. Panels b) and c) adapted
from Reference [94]

To be more quantitative, let us consider an ideal junction with sinusoidal CPR, assuming the
device size in the plane perpendicular to the field is much larger than the magnetic penetration
depth:

js(x) = j(x) sin(φ(x)), (2.40)

where j is the maximum supercurrent density. The relative phase shift between two supercurrent
path depends on their enclosed area. Assuming that the Josephson supercurrent does not screen
the field within the junction, i.e. the Josephson penetration depth is much larger than the JJ,
this means that the superconducting phase at a given position x can be written as:

φ(x) = φ0 +
2πΦ(x)

Φ0
, (2.41)

where φ0 = φ(x = 0) is a reference phase, Φ0 = h/2e is the superconducting flux quantum and
Φ(x) = B · S(x) is the magnetic flux with S(x) = L · x being the area enclosed. From this, the
total supercurrent can be given as:

Js(β, φ0) =

∫ W/2

−W/2
dxj(x) sin(φ0 + βx), (2.42)

where β = 2πBL/Φ0. Using that j can be written as the sum of an odd jo and even je part,
this can be further expressed as:

Js(β, φ0) = sin(φ0)

∫ W/2

−W/2
dxje(x)e

iβx − i cos(φ0)

∫ W/2

−W/2
dxjo(x)e

iβx (2.43)
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Figure 2.11: a) Equivalent circuit for a realistic Josephson junction consisting of (from left to
right) a normal resistance, an ideal JJ and a shunt capacitor. b) Analogy between the phase of
the Josephson junction and the motion of a massive particle in the tilted washboard potential.

Assuming an even current distribution, the maximum supercurrent Jc can be given by the
Fourier transform of je:

Jc(β) =

∫ W/2

−W/2
dxje(x)e

iβx. (2.44)

However, measurements can only reveal the absolute value of Jc, such that:

Ic(β) = |Jc(β)| =

∣∣∣∣∣
∫ W/2

−W/2
dxje(x)e

iβx

∣∣∣∣∣ . (2.45)

By calculating the inverse Fourier transform of Jc, the spatial distribution of the supercur-
rent can be calculated. For this reason, measurement of the Fraunhofer diffraction pattern has
become a common tool in the analysis of Josephson junctions, from the detection of edge cur-
rents [94, 95] to the mapping of the supercurrent distribution in different confinements [96]. For
homogeneous current distribution the Fraunhofer diffraction pattern is obtained, as illustrated
in Figure 2.10.(b,c).

2.5.2 RCSJ model

The Josephson equations describe an ideal JJ. However, to gain insight into the dynamics
of a realistic junction, a more complex model is needed. In the resistively and capacitively
shunted junction (RCSJ) model, the physical junction is built up of an ideal junction, shunted
by a normal resistor and a capacitor, as it is shown in Figure 2.11.(a). Noise (e.g. thermal noise)
can also be included in the model as a fluctuation current source.

Neglecting the noise and using Kirchhoff’s law, the current in the junction can be written
as:

I = IS + IN + IC . (2.46)

Using the Josephson equations this can be further expressed as:

I = Ic sinφ+
1

R

Φ0

2π

dφ

dt
+ C

Φ0

2π

d2φ

dt2
, (2.47)

where R and C are the shunt resistance and capacitance respectively. The usual way to interpret
this equation is to draw an analogy with a particle of mass M moving in a potential U with
damping η, since it can be rewritten in the following form:

M
d2φ

dt2
+ η

dφ

dt
+∇U = 0. (2.48)
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a) b)

Figure 2.12: Current–voltage characteristics of a) an overdamped and b) underdamped Joseph-
son junction. The arrows indicate the direction of the current variation. Figure adapted from
Reference [97].

The mass of the phase particle and the damping can be expressed as:

M =

(
ℏ
2e

)2

C, (2.49)

η =

(
ℏ
2e

)2 1

R
, (2.50)

and the potential can be written in the form:

U = EJ0

[
1− cosφ+

I

Ic
φ

]
, (2.51)

where EJ0 = ℏIc/2e is the Josephson coupling energy and U is referred to as the tilted washboard
potential that is illustrated in Figure 2.11.(b).

In this analogy, two distinct regimes can be discussed. In case of small mass and large
damping (small RC product) the junction is overdamped. Upon increasing the current, and
the tilt of the washboard potential, the junction stays in the zero voltage state until the critical
current is reached since the particle is residing in a potential well and there is no time-evolution
of the phase. However, at larger currents the phase particle moves down the potential well
and the continuous evolution of the phase results in the appearance of a finite voltage on the
junction. When reducing the current from above Ic, the particle gets trapped in a potential
well when Ic is reached and the junction jumps back to the zero-voltage state. This is shown
in Figure 2.12.(a).

In case of an underdamped junction, when the mass is large and the damping is small (large
RC product), the junction will also stay in the zero voltage state until the current reaches Ic.
However, when decreasing the current, the massive particle can move down the potential well
even if there are local minima due to the small damping and therefore the junction will stay
in the finite-voltage state even below Ic and will only jump back to the zero-voltage state at
the so-called retrapping current Ir. As a result, in case of an underdamped junction, the I–V
curves become histeretic, as it is illustrated in Figure 2.12.(b).

One important remark about the zero voltage state is that the phase particle is not stationary
at the bottom of the potential well but it is oscillating at the plasma frequency [97]:

ωp =
√
2eIc/ℏC

[
1− (I/Ic)

2
]1/4

. (2.52)

In this state, the time-averaged dφ/dt and voltage is zero.
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Figure 2.13: Schematic illustration of the macroscopic quantum tunneling and thermal activa-
tion. These processes can result in the escape of the phase particle from the potential well when
I < Ic and switch the Josephson junction into the finite voltage state.

2.5.3 Stochastic switching in Josephson junctions

The RCSJ model provides a framework for modeling realistic JJs. However, it is important
to note that it cannot account for probabilistic events that cause the premature switching of a
JJ such as macroscopic quantum tunneling (MQT) and thermal activation (TA) as illustrated in
Figure 2.13. MQT is the quantum tunneling of the phase particle at low temperatures through
the potential barrier of the tilted washboard potential. If the damping is small, once the phase
particle escapes from the potential well, it can run down the washboard potential, and the JJ
switches to the finite-voltage state. When the current through the JJ is ramped from zero
towards the critical current, the probability distribution of switching at a given current value
Is is given by [98, 99]:

P (Is) = [Γ(Is)/(dI/dt)]

{
1−

∫ Is

0
P (I ′)dI ′

}
, (2.53)

where ΓIs is the escape rate and dI/dt is the current ramp rate. The escape rate in the MQT
regime is given by [100]:

ΓMQT =

[
120π

(
7.2∆U

ℏωp

)1/2 ωp

2π
exp

(
−7.2∆U

ℏωp

(
1 +

0.87

Q

))]
, (2.54)

where Q = ωpRC is the quality factor and ∆U = 2EJ0

[
(1− γ2)1/2 − γ cos−1 γ

]
is the potential

barrier (see Figure 2.13) with EJ0 = ℏIc/2e being the Josephson energy and γ = I/Ic. These
two equations practically state that when thermal effects are negligible, the phase particle will
attempt to escape from the potential well at a rate related to the plasma frequency and the
probability of switching is increasing as the current is increased since the height and the width
of the potential barrier is gradually decreasing as the washboard potential is tilted. MQT was
experimentally detected in both SIS [101] and S-graphene-S (SGS) [102] junctions.

At larger temperatures, the phase particle can get excited out of the potential well by
thermal fluctuations. The escape rate in this thermal activation regime is given by [102]:

ΓTA = at(ωp/2π) exp[−∆U/kBT ], (2.55)

where T is the temperature and at = (1 + 1/4Q2)1/2 − 1/2Q is a damping dependent factor. It
is easy to realize that the escape rate in the thermally activated process increases exponentially
with T and it is usually the dominant switching process in experiments above ∼ 100mK for
typical junctions. More precisely, the cross-over temperature between the MQT and TA regimes
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Figure 2.14: Probability of switching P (I) in the thermal activation regime with dI/dt =
10−3A/s for a) different temperatures T and fixed Ic = 1µA and b) different values of Ic and
fixed T = 500mK. As T is increased, the junction switches at lower and lower current values and
the width of the probability distribution function is increasing. The width of the distribution
also increases with Ic.

is given by Tcr = atℏωp/kB. The probability of switching P (I) is shown for different examples
in the thermally activated regime in Figure 2.14.

It is also important to note that, at even higher temperatures, thermally activated retrapping
can occur. The phase particle can be excited out of the potential well and retrapped conse-
quently multiple times which results in the appearance of a finite time-averaged voltage below
Ic and the narrowing of the SCD with increasing temperature. This phase diffusion regime was
predicted by Monte Carlo simulations in Reference [103] and demonstrated experimentally in
graphene-based JJs [102].

2.5.4 Current–phase relation

The current–phase relation given in Equation 2.38 is valid for SIS tunnel junctions, the
problem originally investigated by Josephson. On the other hand, the weak link does not need
to be an insulating barrier. Andreev reflection [104] allows the transport of Cooper pairs through
a normal-superconductor (NS) interface. In an SNS junction, a series of Andreev reflections
result in the formation of Andreev bound states (ABSs) [105]. For a single conduction channel
in the ballistic, short junction limit where the length of the junction (L) is smaller than the
superconducting coherence length (ξ), the ABS spectrum takes the following form [106]:

E(φ) = ±∆
√

1− τ sin2 (φ/2), (2.56)

where τ is the transmission of the channel. From this, the current carried by the single conduc-
tion channel can be given by:

Is(φ) = −
2e∂E

ℏ∂φ
=

eπ∆

h

τ sin(φ)√
1− τ sin2 (φ/2)

. (2.57)

For practical purposes (see Chapter 6), it is sometimes useful to normalise the Andreev
formula given in Equation 2.57 and use the following form:

Is(φ) = Ic
τ sin(φ)√

1− τ sin2 (φ/2)

/
max
φ

{
τ sin(φ)√

1− τ sin2 (φ/2)

}
. (2.58)

This is shown in Figure 2.15.(b) for different values of τ . In the τ → 0 limit, the Andreev
formula reduces to the sinusoidal CPR predicted by Josephson for SIS junctions. Furthermore,
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Figure 2.15: a) Schematic illustration of an SGS Josephson junction. Two superconducting leads
(yellow) are connected by a short graphene section. The supercurrent flowing in graphene is
determined by the macroscopic phase difference of the two leads via the current–phase relation.
b) Supercurrent Is as a function of the phase difference φ according to the Andreev formula
given in Equation 2.58 for different values of τ . For τ ≪ 1, the CPR is sinusoidal and becomes
skewed as τ increases.

as τ increases, the CPR becomes more and more skewed. It is worth mentioning that the non-
sinusoidal behaviour can also be described by expressing the CPR as a Fourier series [107, 108]:

Is(φ) =
∑
k

(−1)k−1ak sin(kφ). (2.59)

Here, higher frequency terms describe higher order Andreev processes that are increasingly
sensitive to phase decoherence. Nevertheless, the ak coefficients and τ contain the same infor-
mation, the skewness of the CPR.

An important property of CPRs described by both Equations 2.38 and 2.58 is that they yield
Is(φ = 0) = 0. This means that no supercurrent can flow without a finite phase difference.
This property is protected by time-reversal and spatial parity symmetries [109–111]. However,
the presence of SOC and magnetic field can break these symmetries. When these symmetries
are lifted, a finite phase shift φ0 can appear in the CPR. This can simply be included e.g. in
Equation 2.57 by the substitution φ→ φt with φt = φ+φ0. This leads to a finite supercurrent
even when φ = 0, also known as the anomalous Josephson effect. For a ballistic system with
Rashba SOC and in–plane magnetic field, the φ0 phase shift is given by [111]:

φ0 =
4EZαRL

(ℏvF )2
, (2.60)

where EZ is the Zeeman energy, αR is the Rashba coefficient, L is the junction length and vF is
the Fermi velocity. Reference [111] also gives an estimate for the φ0 phase shift in the diffusive
regime:

φ0 =
τpm

∗2EZ(αRL)
3

3ℏ6D
, (2.61)

where τp is the momentum scattering time, m∗ is the effective mass and D is the diffusion
constant. Phase shifts originating from the interplay between in-plane magnetic field and SOC
has been experimentally detected in InAs and InSb Josephson junctions [109–112]. To provide
similar equations that can be applied to graphene requires further theoretical efforts taking into
account the different SOC terms. However, the presence of a φ0 phase shift is connected to the
appearance of the superconducting diode effect [112] (SDE). The SDE refers to the asymmetry
of the critical current in the positive and negative current direction and has been demonstrated
in a variety of Josephson junctions [113–120].

24



Is,2 = Ic,2 f(φ2)Is,1 = Ic,1 f(φ1) B

Figure 2.16: Schematics of a DC SQUID. Two Josephson junctions are connected in parallel
by a superconducting loop (yellow). The phase differences of the two junctions, φ1 and φ2

are connected by the magnetic flux Φ threading the superconducting loop via the relation
φ2 − φ1 = 2πΦ/Φ0, where Φ0 is the magnetic flux quantum.

2.5.5 SQUID

To measure the CPR of a Josephson junction, it is essential to be able to tune the phase
difference across the junction. This is made possible by using a superconducting quantum
interference device [121] (SQUID). A DC SQUID is schematically illustrated in Figure 2.16, it
consists of two JJs embedded in a superconducting loop. It can be shown that in such a
configuration, the phase differences of the two junctions, φ1 and φ2, are connected via the
relation:

2π
Φ

Φ0
= φ2 − φ1, (2.62)

where Φ = B · A is the magnetic flux threading the loop, B is the magnetic field applied per-
pendicular to the plane of the loop, A is the loop area and Φ0 = h/2e is the magnetic flux
quantum. Historically, this property enabled the precise measurement of very small magnetic
fields that lead to practical applications such as scanning SQUID microscopy [122] and mag-
netoencephalography [123]. More importantly for us, it also enables the measurement of the
CPR [124]. This method is discussed in the following.

For simplicity, let us assume sinusoidal CPR of the form Is,1 = Ic,1 sin (φ1) (Is,2 = Ic,2 sin (φ2))
for junction 1 (junction 2). Since the two phase differences are connected by Equation 2.62, the
supercurrent is junction 2 for a given Φ can be expressed as Is,2(φ1,Φ) = Ic,2 sin (2πΦ/Φ0 + φ1).
Using these, the total supercurrent in the SQUID is simply Is(φ1,Φ) = Is,1(φ1) + Is,2(φ1,Φ)
for a given (φ1,Φ) pair. From this, the critical current Ic of the SQUID, the maximum allowed
supercurrent, can be numerically calculated as:

Ic = max
φ1

{Ic,1 sin(φ1) + Ic,2 sin (2πΦ/Φ0 + φ1)} . (2.63)

The resulting critical current as a function of the magnetic flux is shown in Figure 2.17.(a),
calculated numerically for different ratios of Ic,1/Ic,2. In analogy to the CPR of a single JJ,
this is often referred to as the current–flux relation (CϕR). For a symmetric configuration with
Ic,1 = Ic,2, the CϕR can be analytically calculated and is given by:

Ic|Ic,1=Ic,2
= 2Ic,2| cos(πΦ/Φ0)|. (2.64)

In the asymmetric case where Ic,1 ≪ Ic,2, the critical current can be maximised by keeping Is,2
maximal with φ2 = π/2 and only changing Is,1 via φ1. From this, it follows that the CϕR in
the asymmetric configuration contains the CPR of junction 1 offset by Ic,2:

Ic|Ic,1≪Ic,2
= Ic,1 sin(π/2− 2πΦ/Φ0) + Ic,2. (2.65)
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Figure 2.17: a) Numerically calculated critical current–flux relation of a DC SQUID assuming
sinusoidal CPRs for the two junctions. The critical current of the SQUID Ic as a function of
the magnetic flux for different values of Ic,1 in units of Ic,2. Red dashed line shows the function
defined by Equation 2.65 with Ic,1 = 0.1Ic,2 for comparison. b) Phase differences φ1 and φ2 of
the two JJs as a function of Φ for different values of Ic,1. Shades of blue correspond to φ1 and
red to φ2.

This is further confirmed in Figure 2.17.(b) where the phase differences are shown as a
function of Φ for the three Ic,1/Ic,2 ratios used in Figure 2.17.(a). It can be seen that in the
symmetric configuration, φ1 and φ2 change simultaneously with the same absolute rate, while
in the asymmetric configuration, we obtain φ2 ≈ π/2 and φ1 changes roughly linearly with Φ.
Therefore, the asymmetric SQUID allows the measurement of the CPR of the junction with
the smaller critical current if the asymmetry is sufficient. It is important to emphasize that for
intermediate asymmetry, the two phase differences evolve nonlinearly with Φ and the resulting
CϕR is nonsinusoidal, as it is clearly visible in Figure 2.17 for Ic,1/Ic,2 = 0.5.

Although it is challenging to estimate the necessary asymmetry of the critical currents to
measure CPR, the ratio used in experimental works typically ranges from Ic,1/Ic,2 = 0.2 to
0.01 [124–129]. As detailed in Reference [130], the necessary asymmetry depends on the shape
of both CPRs. Generally, more exotic CPRs with sharp features, such as ABS with large τ
or saw-tooth functions, require larger asymmetry to be directly measured. For this reason, it
is important to carefully analyze the measured CϕR and confirm that the true CPR can be
extracted. For the measurements presented in this work, this is detailed in Chapter 6.

2.5.6 Multiterminal Josephson junctions

Multiterminal Josephson junctions (MTJJs) consist of a single scattering region connected
to multiple superconducting terminals. This is illustrated in Figure 2.18. In analogy to a simple
JJ, an MTJJ with N terminals can be described by N − 1 independent phase differences and
the phase difference between a pair of terminals can be tuned by local magnetic fields using
superconducting loops similarly to SQUIDs. These systems gained considerable attention in
recent years after theoretical works showed that the ABS spectrum in the N − 1 dimensional
phase space can host Weyl points and, therefore, provide a platform to simulate the band
structure of topologically non-trivial materials [32, 131–146]. Furthermore, recent experimen-
tal works showed that ABSs can hybridize between multiple terminals [147–150]. Theoretical
predictions [151–156] and experimental works [157–161] also suggest that MTJJs can give rise
to multiplet supercurrents where supercurrent is carried by multiple entangled Cooper pairs.
MTJJs are also ideal systems for realizing the Josephson diode effect since inversion symme-
try breaking can be realized simply by current-biasing in a suitable geometry [162] or by small
magnetic fields [163–165], regardless of the weak-link material and without the need for large
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Figure 2.18: Schematic illustration of a multiterminal Josephson junction. N superconducting
terminals are connected to a single scattering region. Phase differences between pairs of termi-
nals can be tuned by local magnetic fields using superconducting loops.

SOC.
In spite of the numerous exotic phenomena proposed theoretically, many of the experimental

works found that basic transport properties of MTJJs can be described by an RCSJ network, in
which each pair of terminals is connected by an RCSJ element. This relatively simple approach
is able to qualitatively capture features of current-biased measurements, such as the coexis-
tence of normal and supercurrents between different terminals [159, 160, 166–168] and multiplet
resonances [159, 168]. This model, along with its limitations, is investigated in Chapter 7 for
three-terminal MTJJs.

27



28



Chapter 3

Experimental techniques

In this chapter, the experimental techniques used throughout the rest of this work are
presented. First, we discuss the fabrication of electronic devices based on Van der Waals het-
erostructures. This involves the exfoliation of 2D materials, the assembly of heterostructures
and the fabrication of electronic contacts using electron beam lithography. In the second part
of the chapter, the measurement techniques are presented, including the typical equipment for
low-temperature transport measurements. The measurement of stochastic switching events in
Josephson junctions is also discussed.

3.1 Fabrication of Van der Waals heterostructures

3.1.1 Exfoliation of 2D materials

Multiple methods exist for the large scale production of graphene and other 2D materials,
such as electrochemical [169] and shear exfoliation in liquids [170]. Furthermore, high-quality
few-layer crystals can also be synthesized by chemical vapor deposition (CVD) [171]. These
methods are especially promising for the industrial scale production of electronic devices based
on Van der Waals heterostructures. However, to this day, mechanical exfoliation remains the
easiest and most hassle-free solution to produce thin flakes of 2D materials for research purposes.
Mechanical exfoliation is the process of isolating single- or few-layer thick flakes from bulk
crystals by repeated peeling using an adhesive tape [34, 36]. Since the layers in 2D materials are
held together by weak Van der Waals forces, by pressing a bulk crystal against an adhesive tape
multiple times, the tape can be populated with flakes that detach from the remaining bulk part.
After this, the tape is pressed onto a Si substrate covered with SiO2 and, due to the adhesion
between the SiO2 and the flakes of 2D materials, these flakes can be cleaved again and even
thinner flakes can be transferred to the substrate.

The choice of a suitable substrate is of the utmost importance in the search for single-
or few-layer crystals and particularly for graphene. Few-layer graphene is almost completely
transparent. However, it can be identified on the Si/SiO2 substrate by optical microscopy due
to interference effects. The presence of graphene modifies the optical path of the illuminating
light and changes the intensity of reflected light. As detailed in Reference [172], the intensity of
light reflected from a Si/SiO2/graphene structure in case of wavelength λ and normal incidence
can be calculated using Fresnel’s law:

I(n1) =
∣∣∣(r1ei(Φ1+Φ2) + r2e

−i(Φ1−Φ2) + r3e
−i(Φ1+Φ2) + r1r2r3e

i(Φ1−Φ2)
)
×(

ei(Φ1+Φ2) + r1r2e
−i(Φ1−Φ2) + r1r3e

−i(Φ1+Φ2) + r2r3e
i(Φ1−Φ2)

)−1
∣∣∣∣2 , (3.1)
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Figure 3.1: a) Optical contrast of SLG as a function of wavelength λ and oxide thickness dSiO2

calculated from Equation 3.1. b) Optical contrast of SLG (blue) and BLG (red) as a function of
λ for dSiO2 = 285 nm used typically for mechanical exfoliation. In practice, the green channel
intensity of optical images is used to determine the contrast. The relevant wavelength range is
highlighted in green.

with

r1 =
n0 − n1

n0 + n1
, (3.2)

r2 =
n1 − n2

n1 + n2
, (3.3)

r3 =
n2 − n3

n2 + n3
, (3.4)

Φ1 =
2πn1d1

λ
and (3.5)

Φ2 =
2πn2d2

λ
. (3.6)

Here, n0 = 1, n1, n2 and n3 are the refractive indices of air, graphene, SiO2 and Si, respectively.
Furthermore, r1, r2 and r3 are the reflection coefficients from the surface of graphene, SiO2 and
Si, respectively. Si is assumed to be semi-infinite, d1 and d2 are the thicknesses of graphene and
SiO2. The contrast of graphene on SiO2 can be calculated using the reflected intensity in the
presence I(n1 ̸= 1) and absence I(n1 = 1) of graphene as:

C =
I(n1 = 1)− I(n1)

I(n1 = 1)
. (3.7)

Using refractive indices for Si and SiO2 from refractiveindex.info [173] and n1 = 2.6− 1.3i
for graphene [172], the contrast C is shown in Figure 3.1.(a) for SLG with d1 = 0.33 nm as a
function of λ in the visible spectrum and d2 = dSiO2 . From this, it is easy to realize that the
optical contrast of graphene depends greatly on the thickness of SiO2. Furthermore, graphene
gives a reasonably large contrast for a wide range of dSiO2 and, in principle, can be identified
by using appropriate optical filters.

In practice, we use Si wafers with an oxide thickness of dSiO2 ≈ 285± 10 nm and an optical
microscope with white illumination that yields a reasonably good contrast. This not only
allows experienced users to find few-layer graphene flakes, but also to distinguish SLG and
BLG from thicker flakes. As it is shown in Figure 3.1.(b), the highest calculated contrast for
BLG (d1 = 0.66 nm) is almost twice the contrast calculated for SLG (d1 = 0.33 nm) for
dSiO2 = 285 nm. For a quantitative analysis of the contrast, we analyze the green channel
intensity of optical images and calculate the contrast similarly to Equation 3.7. This method
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Figure 3.2: a,b) Green channel data from optical microscopic images of SLG and BLG. Scale
bar is 25 µm. c) Intensity porfiles along the arrows in panels (a) and (b). SLG and BLG can
be clearly distinguished by their optical contrast.

a) b)

Figure 3.3: a,b) Optical microscopic images of hBN and WSe2. Thickness are 25 nm and 15
nm, respectively. Scale bar is 25µm.

yields a typical contrast of ∼ 4 − 7% for SLG and ∼ 10 − 15% for BLG, depending on the
variation of oxide thickness and camera settings. Figures 3.2.(a) and 3.2.(b) show optical images
of an SLG and a BLG flake, respectively. The green channel intensity is shown in a grayscale
representation. Figure 3.2.(c) shows line cuts along the respective arrows in panels (a) and (b).
The two curves yield a contrast of ∼ 4% for SLG and ∼ 11% for BLG.

In addition to graphene, two other 2D materials are important for this work. Firstly, hexag-
onal boron nitride (hBN) is an insulator with a crystal structure similar to graphene. The
role of hBN in graphene-based van der Waals heterostructures is to isolate graphene from the
disordered SiO2 substrate and protect graphene from contamination. SiO2 has significant sur-
face roughness on the atomic scale and contains charged surface states and impurities which
introduce disorder in graphene and limit charge carrier mobility. On the other hand, hBN can
be mechanically exfoliated similarly to graphene, resulting in atomically flat surfaces. Further-
more, the lattice mismatch between graphene and hBN is small, only 1.7%, making hBN an
ideal substrate for graphene. By placing graphene on hBN, a significant improvement in device
quality can be achieved compared to early graphene/SiO2 devices [42]. Encapsulating graphene
between two layers of hBN can improve device quality even further by protecting graphene from
polymer residues during the contact fabrication process [174]. The ideal thickness of hBN flakes
is ∼ 20− 40 nm. Thinner flakes cannot efficiently isolate graphene from its environment, while
too thick layers complicate the fabrication of electric contacts. The thickness of hBN flakes can
be approximately determined by optical microscopy based on the interference color on SiO2. A
25 nm thick hBN flake is shown in Figure 3.3.(a).
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Figure 3.4: Schematic illustration of the stacking process. a) A PDMS/PC structure is brought
in contact with the desired 2D material at T = 80 ◦C. When the PDMS/PC structure is re-
tracted, the flake is picked up from the Si/SiO2 substrate. b,c) Further layers are picked up
sequentially, making use of the van der Waals forces between the flakes. d,e) The assembled
heterostructure is placed on a Si/SiO2 substrate with predefined markers assisting the lithog-
raphy process. The PC layer is delaminated from the PDMS at T = 180 ◦C. f) PC is dissolved
in chloroform, leaving behind the assembled heterostructure.

As discussed in Section 2.3, by placing graphene close to a TMD layer, a large SOC can be
induced via the proximity effect. In this work, we use WSe2 for the investigation of proximity-
induced SOC in graphene. WSe2 can also be mechanically exfoliated and flakes of suitable
thickness (< 20 nm) can be identified by optical microscopy based on their interference color.
An example is shown in Figure 3.3.(b). Although some optical applications require the use
of monolayer WSe2 [67, 175], their exfoliation is generally more challenging and experiments
suggest that thicker flakes are also suitable to induce SOC in graphene.

3.1.2 Assembly of heterostructures

After selecting the suitable exfoliated layers, the heterostructures are assembled using the
dry polymer stacking technique described in Reference [176]. The stacking process is illustrated
in Figure 3.4 for a basic hBN/graphene/hBN heterostructure. First of all, a small polydimethyl-
siloxane (PDMS) cube or hemisphere is placed on a glass microscope slide and coated with a
thin layer of polycarbonate (PC). The glass slide and the exfoliated flake on the Si/SiO2 is
placed in a purpose-built transfer microscope. The layers of the heterostructure are picked up
from their respective substrate sequentially with the PC/PDMS structure making use of the
van der Waals forces between subsequent layers that are stronger than the adhesion to the
substrate (Figure 3.4.(a-c)). The substrate is usually heated up to 80 ◦C to promote adhesion
to the PC layer. During the pick-up process, the flakes remain visible since the PC/PDMS
structure is transparent and the relative position of the flakes can be precisely controlled by the
micromanipulators of the transfer microscope. When the desired layers are all picked up, the
PC/PDMS structure with the assembled heterostructure is pressed onto the surface of another
Si/SiO2 substrate (Figure 3.4.(d)). The substrate is heated up to 180 ◦C, above the glass tran-
sition temperature of PC and the PC layer delaminates from the PDMS. The PDMS is then
retracted, leaving the heterostructure on the substrate covered with the PC film (Figure 3.4.(e)).
Finally, PC is dissolved in chloroform (Figure 3.4.(f)). This stacking process can be extended to
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Figure 3.5: a) Photo of the transfer microscope with the temperature control system. b) Close-
up of the heated sample holder stage and glass slide holder.

practically any 2D materials and number of layers as long as the van der Waals forces between
the layers are strong enough to lift them up from the substrate. It is also worth noting that the
process can be partially automated [177].

Although the basic concept of the stacking process is robust, details may vary slightly. For
example, different polymers – such as poly(methyl methacrylate) (PMMA), polypropylene car-
bonate (PPC), polyvinyl chloride (PVC) and polyvinyl alcohol (PVA) – are often used instead
of PC with each polymer having slightly different adhesion properties. PDMS acts as a spacer
during the stacking process and provides the necessary flexibility to precisely control the assem-
bly of layers. Due to a tilt angle between the PC/PDMS structure and the substrate, after the
PC is brought in contact with the substrate the contact front (Figure 3.4.(a)) can be controlled
by further lowering the glass slide towards the substrate and deforming the PDMS. As detailed
in Reference [176], above 180 ◦C, contaminants trapped between layers become mobile and can
be cleaned from the heterostructure or accumulated into fewer and larger bubbles when the
contact front passes over the stacked layers. PDMS cubes or hemispheres can both be used
for stacking, however, the contact area for hemispheres is generally smaller and they allow for
easier control of the tilt angle between substrate and PDMS around the heterostructure.

The assembled heterostructure is characterized by atomic force microscopy (AFM) mea-
surements. These allow the measurement of the layer thickness with nanometer precision that
is necessary for further fabrication steps. Furthermore, the bubbles formed by trapped con-
taminants can also be located and electronic devices can be designed in clean regions of the
heterostructure.

3.1.3 Electron beam lithography

a) b) c) d) e)Electron beam

Si/SiO2

PMMA
Metal

+
+
+

+
++

+

Figure 3.6: Steps of contact fabrication with electron-beam lithography. a) Patterning: the
resist layer is selectively exposed by a focused beam of electrons. b) Development: the exposed
parts of the resist are chemically dissolved. c) Reactive ion etching of the heterostructure. The
remaining part of the resist acts as a mask during the etching process. d) Metal is deposited
on the whole substrate. e) Lift-off: the remaining resist is dissolved, taking away the surplus of
metal.

In order to conduct transport measurements on van der Waals heterostructures, electronic
contacts are fabricated using electron-beam lithography (EBL). This process is illustrated in
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Figure 3.6. First, the substrate is spin-coated with a PMMA resist layer and the desired geom-
etry is exposed by a focused electron beam (Figure 3.6.(a)). High-energy electrons break up the
polymer chains of PMMA, and the patterned area can be dissolved with a 1:3 mixture of iso-
propyl alcohol (IPA) and methyl isobutyl ketone (MIBK), called the developer (Figure 3.6.(b)).
The development step uncovers parts of the heterostructure, however, graphene is still fully en-
capsulated in hBN. Therefore, in order to contact graphene, reactive ion etching (RIE) is needed.
RIE is a combination of physical and chemical etching. In our case, ions from a CHF3/O2 plasma
are accelerated towards the substrate, etching away the heterostructure in the patterned area
(Figure 3.6.(c)). After this, metal is deposited onto the substrate and one dimensonal contacts
are formed along the exposed edges of graphene [174] (Figure 3.6.(d)). Contacts can be fab-
ricated of normal metals or superconducting materials. Typically, normal contacts are made
of ∼ 50 − 80 nm Au with ∼ 10 nm Cr or Ti adhesion layer. For superconducting electrodes,
we typically use MoRe or NbTiN deposited by DC sputtering. Finally, the remaining resist is
dissolved in acetone, removing also the surplus of metal from the substrate and metal is left
behind only in the patterned area (Figure 3.6.(e)). Lithography parameters can be found in
AppendixA.

To control the charge carrier density and transverse electric field in graphene, gate electrodes
are used. In some cases, the highly doped Si substrate can act as a global backgate which does
not require additional fabrication steps. However, in many devices, graphite bottom gates
and metallic topgates are used simultaneously. Using such a dual-gated structure enables the
separate tuning of carrier density and electric field, as described in Section 2.4.1. The fabrication
of gate electrodes is also done by EBL, similarly to contacts but without etching. However,
some additional details have to be discussed. For example, graphite bottom gates are usually
positioned such that they are only partially covered by the rest of the heterostructure. This
means that no etching step is required to contact them, which facilitates fabrication. On the
other hand, when a graphite bottom gate is used, special care has to be taken during the
etching of contacts. If the etching time is too long, then the heterostructure is completely
etched through exposing both the graphene and the graphite bottom gate. In this case, if metal
is deposited, it creates an electric short circuit between graphene and graphite. This practically
makes the device useless for transport measurements. These problems can be prevented by
determining the etching rates and layer thicknesses using AFM measurements. To avoid similar
issues with topgates, we deposit an aluminium oxide (AlOx) layer by atomic layer deposition
after the contacts are deposited. AlOx is a high-quality dielectric that uniformly covers the
entire substrate. Topgates are deposited on top of this insulating layer to avoid any short
circuits with the contact electrodes.

The whole fabrication process is further illustrated in Figure 3.7. The heterostructure con-
sists of six layers, these are shown in Figure 3.7.(a-f). These are – from bottom to top – the
following (thickness): graphite (< 5 nm), hBN (40 nm), WSe2 (15 nm), single-layer graphene,
WSe2 (5 nm), hBN (25 nm). The assembled heterostructure is shown in Figure 3.7.(g) with
the outline of each layer shown by dashed lines. The bottom graphite layer is employed as a
gate electrode. A Ti/Au (10/60 nm) electrode is fabricated to establish metallic contact to
this layer (Figure 3.7.(h)), deposited by electron beam evaporation. Superconducting electrodes
are used to form a SQUID and a Josephson junction. These are formed of 50-nm-thick MoRe
deposited by DC sputtering following the reactive ion etching step using CHF3/O2 mixture
(Figure 3.7.(i)). The heterostructure is shaped by another RIE step using SF6/O2 mixture to
remove parts of the heterostructure and confine the flow of electrons. After this, 30 nm of AlOx

is grown by ALD. Finally, Ti/Au (10/60 nm) electrodes are deposited for the top gates. The
finished device is shown in Figure 3.7.(j).
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Figure 3.7: Demonstration of the fabrication process for van der Waals heterostructures. Layers
of the heterostructure from bottom to top: a) graphite, b) hBN, c) WSe2, d) SLG, e) WSe2,
f) hBN. g) Assembled heterostructure with the different layers shown by dashed lines. Colors
correspond to the borders of panels (a-f). h) Ti/Au electrode is deposited by e-beam evaporation
to the graphite layer that acts as a bottom gate. i) Superconducting contacts are deposited
by DC sputtering after a RIE step. j) The heterostructure is shaped by another RIE step and
Ti/Au top gates are deposited on top of 30 nm AlOx. Scale bars, corresponding to the top and
bottom rows, are 25µm.

3.2 Transport measurement of van der Waals heterostructures

3.2.1 Cryogenic measurement systems

In order to conduct electronic transport measurements on the fabricated devices, different
measurement instruments have to be connected to the electrodes fabricated by lithography. This
transition from the nanoscale electronic device to the macroscopic scale is illustrated in Fig-
ure 3.8. The electrodes terminate in few-hundred-µm rectangular bonding pads (Figure 3.8.(b))
that can be wire-bonded to chip carriers (Figure 3.8.(c)) or printed circuit boards (PCBs, Fig-
ure 3.8.(d)). These macroscopic objects can be connected to the measurement instruments using
chip sockets or simple electronic connectors.

The measurement of quantum effects and superconducting phenomena generally requires

a) b) c) d)

Figure 3.8: a) Optical microscopic image of a nanoelectronic device. Scale bar is 25 µm. b)
Zoomed-out image of panel (a). The nanoscale device can be connected to the measurement
instruments via bonding pads that terminate the electrodes. Scale bar is 400 µm. c) The
metallic pads are wire-bonded to a chip carrier which can be connected to the measurement
instruments by a chip socket. d) Alternatively, chips can also be wire-bonded to a printed circuit
board.

35



TRoom

Needle
valve

Tbase = 1.4 K Tbase = 10 mKTbase = 4 K

Still

Mixing chamber

Thermal shieldsOuter vacuum 
chamber

Inner vacuum 
chamber

3He

4He

External
cooler

a) b) c)

TRoom

LHe 4 K

Vacuum

LN2 77 K

Probe

Thermal 
shields

Magnet

LHe 4 K

Vacuum

LN2 77 K

Figure 3.9: Cryogenic systems. a) In a cryostat, devices fixed at the bottom end of a probe can
be immersed in liquid helium. The boiling helium results in a base temperature of Tbase = 4.2K.
b) Cryostats can be equipped with VTIs. Liquid helium can be injected via a needle valve and
gas is continuously evacuated by a pump. The evaporation of helium results in a lower base
temperature Tbase = 1.4K. c) Dilution refrigerators use a mixture of 3He/4He to reach a base
temperature of Tbase = 10mK. Each cryogenic system can be equipped with superconducting
vector magnets.

very low temperatures. For this reason, the measurements are carried out in various cryogenic
measurement systems. The simplest examples are cryostats that are essentially vessels of liquid
4He surrounded by chambers of liquid nitrogen and vacuum for thermal isolation. The boiling
helium inside the cryostat provides a temperature of ∼ 4K at ambient pressure. Devices are
fixed to one end of a probe that is immersed in the liquid helium. Electric wires run through
the probe and connect the device to the measurement instruments at room temperature. The
temperature can be further lowered by using a variable temperature insert (VTI) placed inside
the liquid helium bath of a cryostat. The VTI consists of a gas chamber continuously pumped
via an external vacuum pump and a needle valve through which helium can be injected to
the gas chamber from the helium bath. The injected helium evaporates in the low pressure
chamber, further lowering the temperature to ∼ 1.4K. If an even lower temperature is required,
dilution refrigerators provide the solution. Dilution refrigerators are capable of reaching a base
temperature of ∼ 10mK via a complicated cooling system using 3He/4He mixture. The core
principle behind their operation is that the 3He/4He mixture separates into a pure 3He and a
dilute 3He/4He (4He-rich) phase at very low temperature and the latent heat of mixing these
two phases produces a cooling power.

One benefit of using cryogenic systems is that they can be equipped with superconducting
magnets. These are usually solenoid magnets made of type-II superconductors such as NbTi,
allowing the generation of magnetic fields without the dissipation of heat. Typical vector mag-
nets can produce a magnetic field of up to ∼ 10 T. Vector magnets using multiple solenoids can
produce magnetic fields along multiple axes simultaneously.

Nanoelectronic devices can also be investigated under hydrostatic pressure using pressure
cells. A method compatible with devices featuring van der Waals heterostructures was developed
in our research group by Bálint Fülöp [178]. Devices are wire-bonded to a special PCB that is
fitted inside a pressure cell. The pressure cell is filled with kerosene, which acts as the pressure
mediating medium, and pressure is applied via a hydraulic press. Details of this technique can be
found in References [29, 178]. The pressure cell can also be attached to probes and is compatible
with the cryogenic systems of our lab. An important step in the developement of pressure cell
measurement technique was to show that hBN can protect van der Waals heterostructures from
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the kerosene environment. I fabricated an hBN/SLG/hBN device to test this hypothesis. The
device and the related measurement is discussed in Section 4.2.

3.2.2 Transport measurements
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Figure 3.10: Typical transport measurement schemes. a) Voltage-biased measurement in a
Hall-bar geometry. The lockin output is applied to the device via a voltage divider. The
current through the device is converted to a VI voltage signal and measured by the lock-in. The
Vx longitudinal and Vy transverse voltages are amplified by differential voltage amplifiers and
measured by lock-in amplifiers. Gate voltages are supplied by DC voltage sources. b) Current-
biased measurement of a superconducting device. A small AC voltage is superimposed to a DC
voltage signal with an AC/DC mixer. The voltage drives a current through an Rp pre-resistor
and the device to a grounded electrode. The four-terminal voltage is amplified and measured
by the lock-in amplifier.

Electronic transport measurements in this work generally consist of the measurement of
resistance as a function of external parameters such as charge carrier density, electric and
magnetic fields, temperature, or hydrostatic pressure. For this, two typical setups are used that
are illustrated in Figure 3.10. Devices with normal contacts are usually measured in a Hall-bar
geometry shown in Figure 3.10.(a). This geometry allows the measurement of the four-terminal
or longitudinal resistance and the Hall resistance via the longitudinal and transverse voltages.
In a voltage-biased setup, an AC voltage with a frequency of ∼ 0.1 − 1 kHz from a lock-in
amplifier is applied to a voltage divider. This scales down the applied voltage by a factor of
103−104, usually resulting in a voltage bias of 0.1−1mV on the measured device. The current
flowing through the device is converted to a voltage signal by a current–voltage amplifier and
is measured by the lock-in amplifier. The longitudinal and transverse voltages are amplified by
differential voltage amplifiers and measured by lock-in amplifiers synchronized to the frequency
of the drive signal. Additionally, the charge carrier density and transverse electric field can be
controlled by gate voltages applied from DC voltage sources via pre-resistors (with typically
Rp ≥ 1MΩ) to limit leakage currents towards the measured device.

In case of devices with superconducting electrodes, we are usually interested in the response
to a well-defined current bias (e.g. to measure the critical current of the device). This is
measured in the geometry shown in Figure 3.10.(b). In this case, the AC voltage signal of the
lock-in amplifier is superimposed on a DC voltage by an AC/DC mixer. The resulting voltage
signal is fed to the device via a pre-resistor with a resistance much larger than the device
resistance, typically Rp = 1MΩ. This generates a well-defined DC current bias, modulated by
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a small AC component, flowing towards a grounded electrode. The differential resistance of
the device is obtained from the four-terminal voltage measured by the lock-in amplifier. Since
the electrodes are superconducting, two electrodes are sufficient to apply the current bias and
measure the voltage drop over the device. However, it should be noted that the measured voltage
contains both the device resistance and the contact resistance when the device is in the normal
state. This measurement scheme can be used to measure the I–V curves of superconducting
devices.

3.2.3 Measurement of stochastic switching events
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Figure 3.11: a) Measurement setup using the National Instrument USB 6341 measurement card.
A DC voltage is applied from the output of the measurement card to the measured device via
a Rp pre-resistor. The pre-resistor defines the current-bias that flows towards the grounded
electrode. The resulting voltage drop over the device is amplified and measured on the input
of the measurement card. b) Typical measurement of the switching current distribution of a
superconducting device. A saw-tooth function of bias current is applied from the measurement
card (top panel) and the voltage response is measured (bottom panel). The series of switching
currents can be determined numerically from the measured voltage data as the current bias
values where the measured voltage exceeds a suitably chosen threshold voltage VTh.

The measurement setup shown in Figure 3.10.(b) is often used to measure the I–V curve of
superconducting devices. The lock-in technique allows the detection of critical currents below
100 nA. However, as a result of the low frequency of the lock-in signal and the relatively slow
communication with the measurement computer, to measure maps of I–V curves as a function
of external parameters in this setup can take multiple hours. Furthermore, as discussed in
Section 2.5.3, the switching of a Josephson junction is a stochastic process, described by a
probability distribution function. The measurement of this distribution function involves the
repeated measurement of the switching current, typically 10 000 times. This measurement is
incompatible with lock-in technology, where the measurement of a single I–V curve can take
minutes.

To enable the measurement of the switching current distribution of superconducting devices,
I developed a measurement scheme to obtain several I–V curves in a short time. This setup
is shown in Figure 3.11.(a) and is based on a National Instruments USB 6341 data acquisition
device, hereafter referred to as the measurement card. The measurement card features multiple
analog inputs and outputs. A DC voltage from the measurement card is converted to a current
bias by the Rp pre-resistor and the current flows through the device towards a grounded elec-
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trode. The voltage drop over the device is measured with the measurement card. A significant
speed-up can be achieved with this setup compared to the setup based on lock-in technique
by making use of the internal buffer of the measurement card. The measurement card can be
programmed to apply a pre-defined set of voltages with a maximum sampling rate of 2 · 105 s−1

and simultaneously measure the voltage on its input with the same sample clock frequency.
By applying current bias in the form of a saw-tooth function, this allows the measurement of
multiple I–V curves that are transferred to the computer in a single communication step. In
contrast, when lock-in technique is used, a single current bias value is set and then the lock-in
signal is read out by the computer. Therefore, it takes 2N communication steps to measure
an I–V curve consisting of N data points. On the other hand, using the measurement card,
multiple I–V curves can be measured in a single communication step, resulting in a significant
speed-up of the measurements. Measurement time in this case is limited by the sampling rate
of the device and the time to transfer the large amount of measured data. Even for a single I–V
curve, measurement time can be reduced from minutes to seconds.

Measurement of the switching current distribution consists of repeating current bias sweeps
several times (usually 10 000) and numerically determining the series of switching currents. This
is typically done using a suitably chosen threshold voltage VTh. This method is illustrated in
Figure 3.11.(b). In each period of the saw-tooth function, when the applied current bias is
below the switching current, the measured voltage is zero. When the device switches to the
normal state, the measured voltage rises sharply and the switching current can be numerically
determined as the current bias value where the measured voltage exceeds Vth. Counting the
different switching current values into several narrow bins to create a histogram directly probes
the probability distribution function of the switching current. I also developed the required
measurement and data processing routines based on the QCodes data acquisition framework
and the NI-Daqmx python package.

Although the basic concept of the measurement setup is simple, implementation in a real
measurement system is challenging. Special care has to be taken to eliminate all external factors
that might cause the fluctuation of the measured signal. Among others, ground loops and even
the sensors of the dilution refrigerator can cause noise in the measurements. The elimination
of these is highly specific to the measurement system, therefore, we do not discuss it in detail.
The key elements include the isolation of the measurement instruments from the computer
by optoelectronic isolators, disconnecting all sensors of the dilution refrigerator that are not
necessary for its safe operation, and eliminating ground loops.

a) b) c)

Figure 3.12: a) False-colored electron microscopic image of a superconducting nanobridge de-
vice. The Ta/InAs nanowire (green/brown) is contacted with Ti/Al electrodes (blue). Metallic
sige gates (orange and light blue) are deposited on the substrate, next to the nanobridge. b)
Schematic cross-section of the device under a contact. c) I–V characteristic of the device. A sig-
nificant hysteresis can be observed in the switching and retrapping currents which is attributed
to self-heating in the normal state.

The measurement scheme I developed was first used in the work of Tosson Elalaily [179].
This work investigated the origin of gate-controlled supercurrent (GCS) in superconducting
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Figure 3.13: a) Switching current as a function of side gate voltages. Above a threshold voltage
Vth, Isw drops sharply. b) Leakage current between the gate and the nanobridge. The amplitude
of the leakage current increases significantly above Vth, suggesting the the decrease of Isw is
caused by the Joule heat dissipated by the leakage current.

nanobridges. An electron microscopic image of one of the measured devices is shown in Fig-
ure 3.12.(a). The device consists of a 20-nm-thick Ta superconducting layer deposited on the
surface of an InAs nanowire connecting two Ti/Al contacts. Figure 3.12.(b) shows the cross-
section of the device. A typical I–V curve measured in a dilution refrigerator at Tbase = 35mK
temperature is presented in Figure 3.12.(c). Here, a large hysteresis can be observed as the
switching current Isw is significantly larger than the retrapping current. This is attributed to
the Joule heat dissipated in the normal state that heats up the device and temporarily reduces
the critical current. As the current sweep direction is reversed and the device returns to the
zero voltage state, it cools back to the base temperature, which leads to a significant difference
between the switching and retrapping currents.

Devices also feature metallic side gates deposited next to the nanobridges with a horizontal
spacing in the range from 30 to 120 nm. Figure 3.13.(a) shows the switching current of a
device as a function of the voltage applied to one of its side gates Vsg. Isw is constant below a
threshold gate voltage (|Vsg| < Vth) and drops rapidly as |Vsg| increases. This effect is termed
gate-controlled supercurrent which was observed in different superconducting nanostructures.
As shown in Figure 3.13.(b), the decrease of Isw correlates with the increase of leakage current
from the side gate to the nanobridge. This suggests that heat from the leakage current is
responsible for the decrease of Isw. By investigating the switching current distribution (SCD)
of such devices, it was possible to reveal the physical process responsible for the GCS.

SCDs were obtained by extracting Isw from 10 000 I-V curves and counting the different
values. The obtained histograms are normalized and shown in Figure 3.14. Figure 3.14.(a) shows
the obtained SCDs for different |Vsg| measured with positive and negative gate voltage polarity.
Here, a significant difference can be seen between the two polarities. The measured Isw values
are significantly smaller for negative Vsg (blue) than for positive polarity (red) with equal |Vsg|.
In contrast to this, Figure 3.14.(b) shows SCDs measured at equal dissipated power, calculated
as PG = IleakVsg, for both gate voltage polarities. Here, the measured SCDs are closely matched,
indicating that the decrease of Isw is almost independent of the direction of the leakage current.
These findings can be explained by the injection of high-energy electrons into the substrate
and the generation of phonons during the relaxation process. The process for positive Vsg is
illustrated in Figure 3.14.(c). High-energy electrons leave the nanobridge and undergo a series
of relaxation events. Due to the small energy relaxation length in the insulating substrate, they
loose most of their energy close to the nanobridge. For opposite gate voltages, energy relaxation
takes place closer to the gate electrode but phonons can still propagate towards the nanobridge.
This explains the slight difference in the measured SCDs for opposite gate voltage polarities
with equal PG.
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Figure 3.14: Switching current distributions for a) different |Vsg| and b) different heating power
PG = IleakVsg with positive (red) and negative (blue) gate voltage polarity. c) Illustration of
the physical process responsible for the GCS. For VSG > 0, high-energy electrons are injected
from the nanobridge into the substrate where phonons are generated close to the nanobridge
by a series of relaxation events.
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Chapter 4

Experimental investigation of
spin–orbit coupling in single-layer
graphene

4.1 Introduction

SOC in graphene is a key element for spintronics applications [19] as it allows to control the
spin information via electric fields [16–18]. Furthermore, both the intrinsic [10] and proximity-
induced SOC [20] was predicted to give rise to topological states in graphene. In this chapter,
I summarize the key aspects of References [28] and [29]. I was involved in the discussions on
the measurements and contributed to these two works by fabricating different graphene-based
Van der Waals heterostructures. Reference [28] concerns the experimental characterisation of
proximity-induced SOC in SLG. In this work, four hBN/SLG/WSe2 devices were investigated by
our collaborators and my supervisor at the University of Basel, I fabricated one of them, device C
(using the notations of the article). This device enabled the investigation of spin–orbit scattering
times related to SOC as a function of the momentum relaxation time, as it will be discussed
below. Furthermore, the investigation of proximity-induced SOC in our research group was
significantly boosted by the development of a measurement technique detailed in Reference [29]
that allowed the transport measurement of nanoelectronic devices under hydrostatic pressure.
I contributed to this project by fabricating an hBN/SLG/hBN device that was used to prove
that hBN can be effectively used to protect such heterostructures from the pressure mediating
medium (device A in the corresponding article). I also present here the experimental results
that are beneficial for the understanding of the following chapters.
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Figure 4.1: a) Optical microscopic image of Device A. The outline of the topgate electrode is
illustrated by white dashed line. Scale bar is 1µm. b) Schematic cross-section the device. c)
Two-terminal resistance R2T as a function of VTG topgate and VBG backgate voltages.
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4.2 Characterisation of proximity-induced spin–orbit coupling

As mentioned earlier, in Reference [28], the proximity-induced SOC was investigated in four
hBN/SLG/WSe2 heterostructures (devices A-D). Figure 4.1.(a) shows the optical microscopic
image of device A. All other devices featured similar geometries. As it is also illustrated in
Figure 4.1.(b), single-layer graphene is encapsulated between a WSe2 and an hBN layer. Cr/Au
normal electrodes are fabricated using electron beam lithography and the heterostructure is
etched into a Hall-bar geometry using reactive ion etching. An MgO dielectric layer is deposited
on top of the device to isolate the Ti/Au top gates from the contacts. The outline of the topgate
electrode is illustrated by white dashed line in Figure 4.1.(a). The highly doped Si substrate is
employed as backgate electrode. The two-terminal resistance measured between contacts 1 and
2 of device B as a function of VTG topgate and VBG backgate voltages is shown in Figure 4.1.(c).
Here, the diagonal, high-resistance feature corresponds to the charge neturality point that is
tunable by both VTG and VBG. An additional, vertical line of higher resistance independent of
VTG is also visible. This is due to the dual-gated structure since the topgate electrode covers the
heterostructure only partially, therefore, there is a region that is tuned only by the backgate.
More importantly, the simultaneous application of VTG and VBG allows the independent tuning
of charge carrier density n and transverse electric field, as detailed in Section 2.4.1.

As discussed in Section 2.4.2, the spin–orbit coupling strengths can be extracted from magneto-
conductance measurements. The presence of strong SOC in a diffusive conductor causes the pre-
cession of electron spin between scattering events which leads to weak anti-localization (WAL),
manifesting in a peak in the magneto-conductance at low temperatures. Figure 4.2 shows the
quantum correction to the magneto-conductance of device A as a function of out-of-plane mag-
netic field Bz. Here, the classical magneto-conductance background measured at 30 K is sub-
tracted from the magneto-conductance curve measured at 0.25 K and the resulting curve yields
the correction from WAL. To eliminate the effect of universal conductance fluctuations, an aver-
age is taken over multiple charge carrier densities in the range −2.5×1011 < n < 2.5×1011 cm−2.
It is important to note that, in this device, WAL can only be investigated close to the CNP
where the mean free path is small and the device is diffusive. The resulting curves can be fitted
by the following formula:
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Figure 4.2: Quantum correction to the conductance as a function of out-of-plane magnetic
field Bz. The curve is obtained by subtracting the classical magneto-conductance background
measured at 30 K from the magneto-conductance curve measured at 0.25 K. To eliminate the
effect of universal conductance fluctuations, an average is taken over multiple charge carrier
densities around the CNP. A fit to the measured data is also shown (red solid line) using
Equation 4.1. The obtained fit parameters (in units of ps) are also illustrated.
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, (4.1)

where F (x) = lnx + Ψ(1/2 + 1/x) with Ψ(x) being the digamma function, τ−1
B = 4eDB/ℏ,

whereD is the diffusion constant, τϕ is the phase coherence time and τasy (τsym) is the spin–orbit
scattering time related to SOC terms that are asymmetric (symmetric) upon z/-z inversion [180],
as also discussed in Section 2.4.2. By fitting the curve shown in Figure 4.2 with Equation 4.1,
it can be shown that the symmetric SOC is significantly stronger than the asymmetric SOC,
since τsym ≪ τasy.
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Figure 4.3: The dependence of the symmetric τ−1
sym (top) and asymmetric τ−1

sym (bottom) spin–
orbit scattering rates on the momentum relaxation time τp. The inset shows the two-terminal
conductivity as a function of n. The extracted charge carrier mobilities for the electron (red)
and hole (blue) sides are also illustrated.

Since the analysis shown above can only be performed in the diffusive regime, the high
quality of device A and B limited the available charge carrier density range. On the other hand,
device C enabled measurements at larger carrier densities in the diffusive regime due to its more
modest charge carrier mobility. Since the momentum relaxation time τp can be tuned by the
carrier density, these measurements allowed the investigation of spin–orbit scattering times as a
function of τp, extracted from electric field effect measurement. Figure 4.3 shows the dependence
of the spin–orbit scattering rates τ−1

sym and τ−1
asy on τp, corresponding to different charge carrier

densities. The inset shows the two-terminal conductivity as a function of n. From this, the
charge carrier mobility µ can be determined. Assuming constant µ, τp can be calculated for a
given n, according to the Drude model (see Section 2.4.1). The dependence of τ−1

sym on τp allows
to exclude the intrinsic SOC from the contributing SOC types since, as detailed in Section 2.4.2,
it is expected to relax spins via the Eliott-Yafett mechanism, where the spin relaxation time
scales linearly with τp. However, as it is visible in Figure 4.3, the relaxation rate τ−1

sym increases
with τp which does not support the Eliott-Yafett mechanism.

To briefly summarize, these measurements allowed the estimation of SOC strengths in
SLG/WSe2 heterostructes. As discussed in Section 2.4.2, the spin–orbit scattering times can be
used to calculate the SOC strengths. The main contribution to the symmetric SOC scatter-
ing rate τ−1

sym was found to be the Valley-Zeeman SOC term with an estimated strength from
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λV Z ∼ 0.23 to 2.3meV. Furthermore, the asymmetric SOC scattering rate around the CNP is
determined by the Rashba SOC which was found to be much weaker, around λR ∼ 0.35meV. It
is also important to note that, in this system, the Rashba SOC is responsible for the relaxation of
out-of-plane spins and τ−1

asy represents the out-of-plane spin relaxation rate τ−1
⊥ , while the overall

spin-orbit scattering rate τ−1
SO = τ−1

asy+τ−1
sym represents the in-plane spin relaxation rate τ−1

∥ [84].
Using the extracted spin–orbit scattering times, a lower bound for the spin relaxation anisotropy
τ⊥/τ∥ ∼ 20 can be given. These measurements are also the first experimental demonstrations
of the large spin-relaxation anisotropy in these systems using WAL measurements.
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Figure 4.4: a) Optical microscopic image of an hBN/SLG/hBN heterostructure with Cr/Au
contacts in a two-terminal geometry. Dark regions were etched away defining a straigth channel
with a width of W = 1.7µm and a length of L = 12.7µm. Scale bar is 5µm. b) Two-terminal
conductance of the device as a function of VBG backgate voltage in three different cases: before
exposing the heterostructure to kerosene, in kerosene and under a hydrostatic pressure of 2GPa.

4.3 Boosting proximity spin–orbit coupling with pressure

Having established that a sizable SOC can be induced in graphene by placing it in close
proximity to WSe2, we have focused on tuning this induced SOC via hydrostatic pressure.
To this end, a measurement technique was developed in our research group that allows the
measurement of nanoelectronic devices under hydrostatic pressure [29]. An important step in the
development of the pressure cell measurement technique was to test whether the kerosene which
acts as a pressure mediating medium influences the properties of Van der Waals heterostructures.
Figure 4.4.(a) shows the optical microscopic image of an hBN/SLG/hBN heterostructure with
Cr/Au contacts in a two-terminal geometry I fabricated to enable this measurement. The doped
Si substrate is used as a global backgate. Figure 4.4.(b) shows the two-terminal conductance
of the device as function of VBG backgate voltage in three different scenarios: before placing
it in kerosene, in kerosene environment and after a hydrostatic pressure of 2GPa had been
applied to the heterostructure. As it is easily visible, although the presence of kerosene slightly
shifts the position of the CNP, indicating a small doping effect, it does not affect the overall
quality of the device. To further quantify this, the charge carrier mobility was extracted in all
cases and found to vary less than 10%, reaching 55 000 cm2/Vs and 50 000 cm2/Vs for electrons
and holes, respectively. Furthermore, contact resistances were also found to be independent of
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the applied pressure. In conclusion, these measurements suggested that hBN can be efficiently
used to isolate graphene-based heterostructures from the kerosene environment and that the
electronic quality of such devices is not influenced by the applied hydrostatic pressure.

To showcase the efficiency of tuning the proximity-induced SOC by hydrostatic pressure, in
Reference [30], Bálint Fülöp et al. investigated the magneto-conductance of hBN/SLG/WSe2
devices similar to device A under pressure. Such a WAL measurement is shown in Figure 4.5.(a).
Here, similarly to Figure 4.2, the low-temperature quantum correction to the conductivity is
shown, averaged over multiple densities to eliminate universal conductance fluctuations. It can
be seen that without applied pressure, the device shows weak localization indicative of weak
induced SOC. However, as the pressure is increased, a clear WAL peak appears in the magneto-
conductance as a result of increased SOC as the layers are compressed. The resulting curves
can be once again fit according to Equation 4.1 as shown by blue solid lines in Figure 4.5.(a). In
this case, the Valley-Zeeman SOC term could not be extracted reliably from the fits. However,
the extracted Rashba SOC strength shows an increase from λR ∼ 250µeV to 450µeV for an
applied pressure of 1.8GPa. These measurements showed that the proximity-induced SOC can
be efficiently increased by applying hydrostatic pressure to Van der Waals heterostructures.

a) b)

( )

(
)

(
)

Figure 4.5: a) Quantum correction of the magneto-conductance of an hBN/SLG/WSe2 het-
erostructure for different hydrostatic pressures. A large WAL conductance peak develops, indi-
cating that the proximity-induced SOC is increased by the pressure. Solid blue lines are fits to
Equation 4.1. b) Extracted Rashba SOC strength as a function of pressure.
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Chapter 5

Experimental investigation of
spin–orbit interaction in
WSe2/BLG/WSe2 heterostructures

5.1 Introduction

Using bilayer graphene instead of single-layer graphene provides additional tuning knobs,
such as the tunable band gap that can be opened by a transverse electric field. The additional
layer adds significant complexity also to the proximity-induced SOC. Since the induced SOC
depends strongly on the distance between the graphene and TMD layers, as also shown by the
pressure cell studies discussed in the previous chapter, it is expected that the SOC induced by a
TMD layer will be significantly different for the two layers of BLG. This layer-dependent SOC
was proposed to be used in a spin transistor [75]. Furthermore, theoretical works also predicted
that BLG encapsulated in TMD layers from both sides can host a band-inverted phase (IP) with
helical edge states. The inverted phase was also experimentally demonstrated in Reference [23].
Building on our previous experience with SLG/WSe2 devices, in collaboration with TU Delft,
we investigated the effect of hydrostatic pressure on this inverted phase in WSe2/BLG/WSe2
heterostructures. The samples were fabricated at TU Delft while the pressure cell studies were
conducted in Budapest.

In this chapter, I present transport measurements that demonstrate the formation of the
band-inverted phase in a BLG device encapsulated symmetrically in WSe2 from both sides. By
applying a hydrostatic pressure of 1.65 GPa, I show that this inverted phase can be stabilized.
I determine the strength of induced Ising SOC from thermal activation measurements and show
that it increases by almost a factor of two due to the hydrostatic pressure. Finally, I present
the measurement of Landau level crossings in the quantum Hall regime and show that these
crossings also indicate the increase of proximity-induced SOC with applied pressure. These
results were published in Reference [31].

5.2 Device geometry and measurement setup

The measured sample is shown in Figure 5.1. The dry-transfer technique with PC/PDMS
hemispheres is employed to stack, from top to bottom, hBN (35 nm)/WSe2 (19 nm)/BLG/WSe2
(19 nm)/hBN (60 nm)/graphite. To fabricate electrical contacts to the Hall bar, we use e-beam
lithography patterning followed by a reactive ion etching step using CHF3/O2 mixture and
finally deposit Ti (5nm)/NbTiN (100 nm) by dc sputtering. We deposit Al2O3 (30 nm) using
ALD which acts as the gate dielectric. Finally, the top gate is defined by e-beam lithography
and deposition of Ti (5 nm)/Au (100 nm). The schematic cross-section of the device is shown
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Figure 5.1: a) Optical image of the measured device. The scale bar is 4 µm. b) Schematic
representation of the cross-section of the measured device. Bilayer graphene is symmetrically
encapsulated in WSe2 and hBN.

in Figure 5.1.(b).
Transport measurements were carried out in an Oxford cryostat equipped with a variable

temperature insert (VTI) at a base temperature of 1.4 K (unless otherwise stated). Measure-
ments were performed using lock-in technique with 0.1 mV AC voltage excitation at 1171 Hz
frequency. Measurements presented in the main text were conducted on device S1: the AC volt-
age bias was applied between contacts A and D while the four-terminal voltages were measured
between B and C. The results on similar devices with very similar findings are also shown in
AppendixB.3.

5.3 Experimental observation of the band-inverted phase
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Figure 5.2: a, b) Four-terminal resistance map as a function of charge carrier density n and
displacement field D measured at ambient pressure and an applied pressure of 1.65 GPa, respec-
tively. The alternating low and high resistance regions along the CNL indicate the closing and
re-opening of a band gap in the bilayer graphene. c) Line trace of the four-terminal resistance
along the CNL for ambient pressure (blue) and p = 1.65GPa (red).

As discussed in Section 2.2.2, a transverse displacement field D applied to BLG results in
a potential difference u between the layers. This interlayer potential difference leads to the
opening of a band gap in pristine BLG. As shown in Section 2.3.3, the presence of an Ising
SOC induced by the two WSe2 layers modifies this picture. If |u| is larger than the Ising SOC
strength λI , a band gap opens similarly to pristine BLG. However, as the displacement field is
decreased, the band gap closes for |u| = λI and reopens for |u| < λI as the IP is reached. The
effect of Ising SOC and u on the band structure is further illustrated in AppendixB.1.
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Figure 5.2.(a) shows the resistance measured in a four-terminal geometry as a function of n
and D at ambient pressure at 1.4 K temperature. As expected for BLG, we observe the opening
of a band gap at large displacement fields along the charge neutrality line (CNL) at n = 0,
indicated by an increase of resistance. In accordance with the theoretical model and previous
compressibility measurements [23], we also observe two local minima separated by a resistance
peak at D = 0 in agreement with the closing and re-opening of the band gap signalling the
transition between the band insulator and the IP. This observation is further emphasized in
Figure 5.2.(c), where a line trace (blue) of the resistance is shown as a function of D, measured
along the CNL. It is important to note that during the fabrication process the rotation of WSe2
layers was not controlled. However, from theoretical predictions [73, 74, 76], we only expect to
observe signatures of the IP for a suitable range of rotation angles between the two WSe2 layers
(e.g. ∼180◦). This is further supported by the fact that not all devices fabricated showed the
IP. An example for this case is shown in AppendixB.4 where only the band insulating regime
can be observed in the resistance map.

To boost the induced SOC and stabilize the IP, we applied a hydrostatic pressure of p = 1.65
GPa and repeated the previous measurement. To apply hydrostatic pressure, the sample is
placed in a piston-cylinder pressure cell as discussed in Chapter 3.2 and detailed in Ref. [29],
where kerosene acts as the pressure mediating medium. To change the applied pressure, the
sample is warmed up to room temperature, where the pressure is applied using a hydraulic press
and the sample is cooled down again.

Figure 5.2.(b) shows the n–D map of the resistance after applying the pressure. Although
the basic features of the resistance map are similar, two consequences of applying the pressure
are clearly visible. First, as it is also illustrated in Figure 5.2.(c), the peak resistance in the IP
at D = 0 increased by ∼25%. Secondly, the displacement field required to close the gap of the
IP increased significantly, by about 50%. Both of these observations can be accounted for by
an increase of the Ising SOC term that results in a larger gap at D = 0 and subsequently in a
larger displacement field needed to close the gap. Altough the shift of resistance minima could
be explained by the increase of ϵBLG or the decrease of interlayer separation d, these altogether
are not expected to have greater effect than ∼20% [181, 182]. It is also worth mentioning
that the lever arms also change due to the applied pressure, changing the conversion from gate
voltages to n and D, however, we have corrected for this effect by experimentally determining
them from quantum Hall measurements (see AppendixB.2).
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Figure 5.3: Temperature dependence of the resistance R as a function of D at n = 0 for a)
p = 0 and b) p = 1.65 GPa.
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Figure 5.4: Thermal activation measurements along the charge neutrality line. a) Arrhenius
plot of the resistance at ambient pressure for selected values of D. Solid lines are fits to the
linear parts of the data from which the band gap values were obtained. b) Gap ∆ as a function
of displacement field at ambient pressure (blue) and an applied pressure of 1.65 GPa (red).
Arrows indicate the D values for which the activation data is shown in a).

5.4 Thermal activation measurements

To quantify the increase of SOC gap due to hydrostatic pressure, we performed thermal ac-
tivation measurements along the CNL for several values of D. Raw measurement data obtained
while cooling the device is shown in Figure 5.3 for p = 0 and p = 1.65GPa. Similar maps were
recorded while warming up the device from base temperature (not shown).

Figure 5.4.(a) demonstrates the evolution of resistance as a function of 1/T for selected
values of D at ambient pressure. From this, we extract the band gap using a fit to the high-
temperature, linear part of the data where thermal activation – ln(R) ∝ ∆/2kBT – dominates
over hopping-related effects [183]. Figure 5.4.(b) shows the extracted gap values as a function
of D with and without applied pressure. First of all, a factor of 2 increase is clearly visible in
the gap at D = 0 for p = 1.65GPa, that is consistent with the observed increase of resistance.
Secondly, the higher D needed to reach the gap minima is also confirmed. We also note that
the band gap cannot be fully closed which we attribute to spatial inhomogeneity in the sample.

The experimentally determined band gaps allow us to quantify the SOC parameters. By
adjusting the theoretical model to match the positions of the gap minima and the opening of
the trivial gap for p = 0, we extract λt

I = −λb
I = 2.2 ± 0.4meV. Similarly, we can extract the

SOC parameters at p = 1.65GPa. For these, we obtain λt
I = −λb

I = 5.6 ± 0.6meV. The SOC
parameters extracted from the minima give the same order of magnitude estimate as the gaps at
D = 0 extracted from thermal activation directly. A more detailed discussion on the extraction
and possible errors is given in Section 5.6. We expect that all layer distances (e.g. hBN-hBN,
BLG-WSe2 and d) change due to the applied pressure as it is also reflected in the change of
lever arms. The extracted increase of SOC strength due to the change of BLG-WSe2 distances
is consistent with theoretical predictions in Ref. [30] where almost a factor of 3 increase was
predicted for an applied pressure of 1.8GPa. Importantly, we have found similar results in two
further devices shown in AppendixB.3.

5.5 Displacement field-driven Landau level crossings

The quantum Hall effect in BLG provides us another tool to investigate the Ising SOC
induced by the WSe2 layers. The two-fold degeneracy of valley isospin (ξ = +,−), the first two
orbitals (N = 0, 1) and spin (σ =↑, ↓) give rise to an eight-fold degenerate Landau level (LL) near
zero-energy [88, 184, 185]. This degeneracy is weakly lifted by the interlayer potential difference,
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Figure 5.5: a) Low energy Landau level spectrum at B = 8.5 T obtained from single-particle
continuummodel with λt

I = −λb
I = 2meV. b,c) Four-terminal resistance as a function of n andD

measured at B = 8.5T out-of-plane magnetic field and ambient pressure for p = 0 and 1.65GPa,
respectively. Resistance plateaus correspond to different ν filling factors. Abrupt changes in
resistance at a given ν as a function of D indicate the crossings of LLs. d,g) Measurements of
LL crossings as a function of B for ν = 0 and ν = 1, respectively, for p = 0. Symbols denote
LL crossings shown in (a). e,h) Measurements of LL crossings as a function of B for ν = 0
and ν = 1, respectively, for p = 1.65GPa. f,i) Critical displacement field D∗ corresponding to
LL crossings for ν = 0 and ν = 1 extracted from D − B maps measured at p = 0 (blue) and
p = 1.65 GPa (red).
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Zeeman energy, coupling elements between the BLG layers [186] and the induced Ising SOC [45].
We can obtain the energy spectrum of this set of eight closely-spaced sublevels – labeled by
|ξ,N, σ⟩ – by introducing a perpendicular magnetic field in our continuum model, as detailed
in [186]. This is shown in Figure 5.5.(a) for B = 8.5T as a function of the interlayer potential
(u)1. LLs with different ξ reside on different layers of the BLG, therefore u induces a splitting
between these levels. Secondly, the finite magnetic field causes the Zeeman-splitting of levels
with different σ. Finally, the Ising SOC induces an additional effective Zeeman field associated
to a given layer, further splitting the levels. The key feature that should be noted here is that for
a given filling factor ν, crossings of LLs can be observed and the position of crossing points along
the u axis depend on SOC parameters as well as on the magnetic field. These level crossings
manifest as sudden changes of resistance in our transport measurements, as it is illustrated in
Figure 5.5.(b). Here, the n−D map of the resistance is shown as measured at B = 8.5T with
fully developed resistance plateaus corresponding to the sublevels of ν ∈ [−4, 4]. We note that
the heterostructure was not etched into a Hall-bar shape after the contacts were deposited.
Therefore, current can flow along the pristine edges of the BLG layer. For the quantum Hall
measurements, this results in a non-trivial sample geometry which could result in the mixing of
longitudinal and transverse resistances. For a given filling factor ν, we observe 4−|ν| different D
values where the resistance deviates from the surrounding plateau corresponding to the crossing
of LLs, as expected from the model. The same measurement performed at an applied pressure
of 1.65 GPa is shown in Figure 5.5.(c).

The evolution of LL crossings with B can be observed by performing measurements at fixed
filling factors, as it is shown in Figure 5.5.(d) and 5.5.(g) for ν = 0 and ν = 1, respectively.
During the latter measurement, the carrier density n was tuned such that the filling factor
given by ν = nh/eB was kept constant, i.e. the magnetic field and both gate voltages were
simultaneously swept to keep the filling factor constant. On both panels, we can observe 4− ν
LL crossings that evolve as B is tuned, until they disappear at low magnetic fields where we
can no longer resolve LL plateaus. Similar maps corresponding to p = 1.65GPa are shown in
Figures 5.5.(e) and 5.5.(h). This B-dependent behavior enables us to investigate the effect of
SOC on the LL structure. Figures 5.5.f and 5.5.i show the critical displacement field D∗ values –
where LL crossings can be observed – extracted from Figures 5.5.(d), 5.5.(g), 5.5.(e) and 5.5.(h).
For ν = 0 (Figure 5.5.(f)), the most important observation is that the crossing points do not
extrapolate to zero as B → 0T which is a direct consequence of the induced Ising SOC. It
is also clearly visible that due to the applied pressure, |D∗| is generally increased, especially
at lower B-fields, indicating that the Ising SOC has increased, in agreement with our thermal
activation measurements. For ν = 1 (Figure 5.5.(i)), similar trends can be observed. The two
LL crossings at finite D saturate for small B, while the third crossing remains at D = 0. We
note that the D∗(B) curves for p = 1.65 GPa cannot be scaled down to the p = 0 curves, which
confirms that our observations cannot simply be explained by an increased ϵBLG or decreased
interlayer separation distance, but are the results of enhanced SOC. We also point out that some
lines which extrapolate to D = 0 can also be observed (e.g. Figure 5.5.(g), grey arrow). This
could also be explained by sample inhomogeneity. It is also important to note that our single-
particle model fails to quantitatively predict the B-dependence of the LL crossings indicating
the importance of electron-electron interactions (see AppendixB.1).

5.6 Determination of the SOC parameters

To obtain the SOC strength from thermal activation measurements, we fit the band structure
calculations to the measurements to match the observed band gaps. For this, the transverse
displacement field (D) in our measurements is modeled by introducing an interlayer potential
difference u = − ed

ϵ0ϵBLG
D, where e is the elementary charge, ϵ0 is the vacuum permittivity, d is

1Calculations were performed by Bálint Szentpéteri.
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Figure 5.6: Band gaps determined from thermal activation measurements performed while
warming up (red) and cooling down (blue) the device for a) p = 0 and b) p = 1.65GPa,
respectively. Symmetrized curve with respect to u = 0 is shown in orange (see text for details)
and the band gap calculated from the theoretical model is shown with the solid black line.

the separation of BLG layers and ϵBLG is the effective out-of-plane dielectric constant of BLG.
For ambient pressure, d = 3.3 Å can be taken, similarly to pristine BLG. On the other hand,
the value of ϵBLG available in the literature ranges from 2.6 [187] to 6 [188]. Since in the large
u limit, the band gap induced by the displacement field is independent of the SOC parameters,
by varying ϵBLG, we can effectively ”fit” our model to the experimental data. Figure 5.6.(a)
shows the extended thermal activation data (partially presented in Figure 5.4) measured while
warming up (red symbols) and cooling down (blue symbols) the sample for p = 0. As it is
visible, in the band insulator regimes for u ≪ 0 and u ≫ 0, the data have different slopes.
We take this effect into account by averaging the two measurements and symmetrizing it with
respect to u = 0 (solid orange line). In the next step, we determine ϵBLG by matching the slope
of the high-u part of the data to match the slope of the theoretical model (solid black line),
resulting in ϵBLG ≈ 3.9. Finally, we numerically determine the position umin of the band gap
minimum of the symmetrized curve and take the Ising SOC parameters as λt = −λb = umin.
We estimate the lower and upper bounds of the SOC parameter by fitting the slope of the
theoretical curve to the u ≪ 0 and u ≫ 0 parts of averaged band gaps, respectively, yielding
λt = −λb = 2.2± 0.4meV for p = 0.

In contrast to ambient pressure, at p = 1.65GPa, we expect both d and ϵBLG to change
due to applied pressure. From theoretical predictions [181, 182], we expect a change in the
BLG interlayer distance of ∆d < 5%/GPa. However, to estimate the change in ϵBLG is more
challenging. To be able to extract the SOC strength at p = 1.65GPa, we vary the d/ϵBLG

ratio to match the experimental data to the model using the method described above. This
way, for p = 1.65GPa, we extract λt = −λb = 5.6 ± 0.6meV. The extracted increase in SOC
strength is comparable to theoretical predictions using ab initio calculations[30]. Furthermore,
the SOC parameters extracted from the minima give the same order of magnitude estimate as
the extracted gaps at u = 0. Therefore, it is clear that the relative increase of the positions of
band gap minima in D cannot alone stem from changes in the d/ϵBLG ratio.

To estimate the robustness of our method, we extracted the band gaps from the thermal
activation measurements at p = 1.65GPa using linear fits to different temperature ranges of
the lnR–1/T curves. These are shown in Figure 5.7. for ranges of 40K< T < 70K (blue) and
40K< T < 100K. The error bars on the figure show the error of the fit for given u and fixed
temperature range. From this, we conclude that the uncertainty of the extracted band gaps is
< 20%. More importantly, the uncertainty of the slope of the u≪ 0 and u≫ 0 regimes and the
positions of band gap minima is even less. Since in our analysis, these are the parameters that
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Figure 5.7: a) Band gaps determined from thermal activation measurements performed while
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Figure 5.8: a,b) Measurements of LL crossings as a function of B for ν = +3 and ν = −3,
respectively, for p = 0. c) Positions of the LL crossings extracted from the maps in a) and b)
for ν = +3 (blue) and ν = −3 (red).

determine the extracted SOC strength, this results in an uncertainty of the d/ϵBLG ratio and
the SOC strength of ∼ 10% that is comparable to the uncertainty estimated from the difference
in the slopes of the u≪ 0 and u≫ 0 regimes.

We also have to note that, although we assumed that |λb
I | = |λt

I |, our method of determining
the SOC parameters is only sensitive to the absolute difference of the two parameters since this
quantity defines the closing of the band gap. In other words, the minima of the ∆(u) functions

shown in Figure 5.6 are insensitive to a difference in the absolute values of |λb,t
I | as long as∣∣λt

I − λb
I

∣∣ /2 is constant. However, we can estimate the asymmetry of |λb,t
I | by measuring the

ν = ±3 LL crossings since, within our model, the positions of these crossings in u are separated
by u∗+3 − u∗−3 ≈ |λt

I | − |λb
I |, nearly insensitive to the magnetic field. Measurements of the LL

crossings as a function of D and B for ν = +3 and ν = −3 are shown in Figure 5.8.(a,b),
respectively. Figure 5.8.(c) shows the extracted positions D∗ of the crossings for ν = ±3. As
it is visible, for the most part of our magnetic field range, the positions of the crossings are
indistinguishable. At higher magnetic field we see crossings at u∗±3 ̸= 0, indicating a small
asymmetry of the SOC parameters. From these, we can estimate the upper bound of the
asymmetry as |λt

I | − |λb
I | < 0.4meV for p = 0.
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5.7 Conclusions

In conclusion, we showed that the IP observed in BLG symmetrically encapsulated between
twisted WSe2 layers can be stabilized by applying hydrostatic pressure which enhances the
proximity induced SOC. We presented thermal activation measurements as a means to quantify
the Ising SOC parameters in this system and showed an increase of approximately 150% due
to the applied pressure. In order to gain more information on the twist angle dependence
of the SOC, a more systematic study with several samples with well-controlled twist angles is
needed. The enhancement of Ising SOC with pressure was further confirmed from quantum Hall
measurements. However, to extract SOC strengths from these measurements, more complex
models are needed that also take into account interaction effects. Our study shows that the
hydrostatic pressure is an efficient tuning knob to control the induced Ising SOC, thereby the
topological phase in WSe2/BLG/WSe2.

The IP has a distinct topology from the band insulator phase at large D, and edge states
are expected [22]. The presence of these states should be studied in better defined sample
geometries [189, 190] or using supercurrent interferometry [95, 191]. This has recently been
demonstrated by our collaborators in Reference [24]. Opposed to the weak protection of the
edge states in this system, a strong topological insulator phase is predicted in ABC trilayer
graphene [21, 192]. Furthermore, pressure could also be used in case of magic-angle twisted BLG,
in which topological phase transitions between different Chern insulator states are expected as
a function of SOC strength [47].
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Chapter 6

Current–phase relation
measurements

6.1 Introduction

The CPR is the most fundamental property of a Josephson junction. It provides information
on the process underlying the supercurrent transport in the junction. It is also expected to be
influenced by the SOC in the weak link [106]. As discussed in Section 2.5.4, the presence of
SOC can result in the appearance of a φ0 phase shift of the CPR [109–112] and the supercon-
ducting diode effect that manifests in the asymmetry of the critical current for different current
directions [112–120].

In this chapter, I present the measurement of the CPR of a WSe2/SLG/WSe2 heterostruc-
ture using an asymmetric SQUID design, as discussed in Section 2.5.5. First, I present the
characterization of the SQUID device in the normal state. The high quality of the device is
confirmed by the observation of ballistic Fabry-Perot oscillations. After this, I show the gate-
tunability of the supercurrent and the measurement of the Fraunhofer pattern. Furthermore, I
discuss the measurement of the CPR as a function of gate voltages. From the measured CPR, I
determine the gate-dependence of the critical current and transparency of the device junction,
along with the phase shifts of the CPR. I also show that the Fabry-Perot oscillations can also be
observed in the critical current of the device junction. After this, I investigate the dependence
of the junction parameters on the in-plane magnetic field. Finally, I discuss the limitations of
these measurements regarding the extraction of very small phase shifts. This project was also
carried out in collaboration with TU Delft. The fabrication of the device presented and the
measurements in this chapter were performed in Budapest. Measurements on additional devices
are shown in AppendixC.

6.2 Device geometry and measurement setup

The measured device is shown in Figure 6.1. The Van der Waals heterostructure consists of
six layers. As shown in Figure 6.1(a)-(f), these are – from bottom to top – the following, with
the thickness indicated in brackets: graphite (< 5 nm), hBN (40 nm), WSe2 (15 nm), single-layer
graphene, WSe2 (5 nm), hBN (25 nm). The assembled structure is shown in Figure 6.1(g) with
the outline of each layer shown by dashed lines. The bottom graphite layer is used as a gate
electrode. A Ti/Au (10/60 nm) electrode is fabricated to establish metallic contact to this layer
(Figure 6.1(h)), deposited by electron beam evaporation. The superconducting electrodes are
formed of 50-nm-thick MoRe deposited by DC sputtering following a reactive ion etching step
using CHF3/O2 mixture (Figure 6.1(i)). The heterostructure is shaped by a RIE step using
SF6/O2 mixture and covered by 30 nm of ALD-grown aluminium oxide. Finally, Ti/Au (10/60
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Figure 6.1: a-f) The investigated heterostructure consists of six layers. From bottom to top
these are: a) graphite, b) hBN, c) WSe2, d) single-layer graphene, e) WSe2 and f) hBN. Scale bar
for the top row is 25µm. g) Assembled heterostructure. Scale bar is 25µm. Dashed lines show
the contours of each layer. The colors of dashed lines correspond to the colors of the borders
of panels a-f). h) In the first lithography step, a metallic contact to the bottom graphite gate
electrode is fabricated. i) Secondly, the SC electrodes are deposited. j) The heterostructure
after the final etching step and aluminium oxide growth with the top gates fabricated. (See
main text for fabrication details.) Scale bar is 5µm.

nm) electrodes are deposited for the top gates. The finished device is shown in Figure 6.1(j).

The SQUID consists of two Josephson junctions embedded in a 10µm×10µm loop. To
ensure a large asymmetry in their critical currents, the junctions have different geometries. The
smaller junction is 500 nm×1.4µm and the larger one is 500 nm×4.4µm by design. From here,
we refer to these junctions as the device and reference junctions and to the corrresponding top
gates as device and reference top gates, respectively. The SQUID loop is positioned such that
the graphite bottom gate extends only below the device junction and that the WSe2 layers are
not present in the reference junction. An additional, larger Josephson junction is also fabricated
next to the SQUID loop that serves as a reference and will not be discussed here.

To measure electronic transport through the SQUID, contactB (see Figure 6.1.(j)) is grounded
and a DC current I is applied to contact A via a 1MΩ pre-resistor while the DC voltage drop
V over the SQUID is measured. Charge carrier density in the reference junction is tuned by the
voltage VTG,ref applied to the reference top gate and the device junction is tuned by the volt-
ages VBG and VTG,dev applied to the graphite bottom gate and the device top gate, respectively.
Transport measurements were carried out in a dilution refrigerator with a base temperature of
∼ 40mK.

6.3 Measurements

6.3.1 Normal state resistance

To obtain a general understanding of the graphene-based Josephson junctions embedded
in the SQUID loop, we first investigate the normal state resistance RN = V/I as a function
of gate voltages at a current bias of I = 10µA, well above the critical current of the device.
These measurements are shown in Figure 6.2.(a) and 6.2.(b). Figure 6.2.(a) shows RN as a
function of VTG,dev and VTG,ref . Two distinct features, a horizontal and a vertical line of high
resistance can be observed. These correspond to the charge neutrality points (CNPs) of the
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Figure 6.2: a) Normal state resistance RN as a function of VTG,dev and VTG,ref at VBG = 0V.
The horizontal and vertical lines correspond to the CNP of the device and reference junctions,
respectively. b) RN as a function of VTG,dev and VBG at VTG,ref = 5V. The diagonal, large-
resistance feature correcponds to the CNP of the device junction. The segments with different
resistances can be explained by the formation of p–n junctions originating from the dual-gated
structure (see main text for details).

device and reference junctions, respectively. The most essential conclusion to be drawn from
Figure 6.2.(a) is that the two top gates are essentially independent since the CNPs are only tuned
by their respective top gates. It is also visible that the resistance is larger for hole doping of the
reference junction (VTG,ref < −1.5V) which is a consequence of electron doping of graphene
from the MoRe contacts which results in the formation of p–n junctions near the contacts [193].
Figure 6.2.(b) shows a somewhat more complicated map of RN as a function of VTG,dev and
VBG measured at VTG,ref = 5V. Although the two junctions are connected in parallel and RN

contains a contribution from both the device and the reference junction, by fixing VTG,ref the
changes in the normal state resistance originate from the device junction only. Here, a high-
resistance line corresponding to the CNP of the device junction can also be observed. Here,
however, the CNP depends both on the device top gate and the bottom gate, indicating the
both gates tune the charge carrier density of the device junction. The remaining part of the
resistance map can be divided into four quadrants of different resistances. We attribute the
appearance of these regions to the formation of p–n junctions in the device. This could be
explained by the asymmetry of the device gates. While the graphite bottom gate extends below
the SC contacts, the top gates are fabricated on top of them and the 30-nm-thick aluminium
oxide layer and are inherently less effective near the contacts. Therefore, the doping in the
device junction near the contacts can be different from the central parts and p–n junctions
might form resulting in a larger normal resistance. The doping scenario corresponding to each
quadrant is shown in Figure 6.2.(b).

Since the two junctions constituting the SQUID are connected in parallel by the SC loop,
it is challenging to investigate their individual qualities. Nevertheless, faint oscillations can
be observed in Figure 6.2.(b) which we attribute to Fabry-Perot oscillations. These periodic
oscillations are better visible in Figure 6.3.(a) where a subset of the previous normal resistance
map is shown in the nn’n doping configuration, remeasured at VTG,ref = −1.5V, near the
CNP of the reference junction. We attribute the appearance of Fabry-Perot oscillations also
to the formation of p–n junctions. As illustrated in Figure 6.3.(b), the incoming electrons are
reflected with a finite probability from the p–n junctions forming around the contacts. These
p–n junctions form a cavity that acts as a Fabry-Perot interferometer [194, 195]. By converting
the gate voltages to charge carrier density n (see Section 2.4.1 and AppendixC), the distance
between two neighboring interference fringes yields a cavity length of lc = π/

(√
ni+1 −

√
ni

)
≈
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Figure 6.3: a) RN as a function of VTG,dev and VBG at VTG,ref = −1.5V. Periodic modulation of
the normal resistance can be observed which is attributed to Fabry-Perot oscillations originating
from the formation of different doping regions in the device. b) Illustration of the p–n junctions
leading to the Fabry-Perot oscillations.

400 nm that is consistent with the length of the junction, where ni+1 and n are the carrier
densities where the ith and (i+ 1)th interference fringe is observed. Most notably, the presence
of Fabry-Perot interference means that electronic transport in the device junction is phase
coherent and ballistic, indicating its high quality.

6.3.2 Supercurrent measurements
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Figure 6.4: a) Differential resistance Rdiff as a function of current bias I and reference top gate
voltage VTG,ref measured at VTG,dev = VBG = 0V. b) Raw I − V curves measured at the gate
voltages shown by dashed lines in panel a). Curves are offset for better visibility.

Having obtained the general behaviour of the normal resistance, we turn our attention
towards the basic characterisation of supercurrent in the SQUID. Introduction to SQUIDs is
given in Section 2.5.5. Without any applied magnetic fields, we expect that the total critical
current of the SQUID is equal to the sum of critical currents of the device and reference junctions.
Since the reference junction is intentionally designed to be ∼ 3 times wider than the device
junction, the reference top gate has a significantly larger effect on the total critical current
than the other gates. For this reason, in Figure 6.4.(a), we present the differential resistance
Rdiff = dV/dI as a function of current bias I and VTG,ref measured at VTG,dev = VBG = 0V,
close to the CNP of the device junction. As it is common for similar graphene-based Josephson
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junctions, a largely tunable critical current is observable that is smallest around the CNP
(VTG,ref ≈ −1.5V) of the reference junction and increases towards larger positive and negative
gate voltages. The criticial current for VTG,ref ≪ −1.5V is consistently smaller than what
is observed for VTG,ref ≫ −1.5V. We attribute this also to the formation of p–n junctions
due to negative doping from the MoRe contacts, in agreement with previous observations on
similar devices [193]. This smaller critical current is also consistent with the larger normal
resistance observed in Figure 6.2.(a). Figure 6.4.(b) shows the raw measured voltage V as a
function of the current bias I for selected reference top gate voltages illustrated by dashed lines
in Figure 6.4.(a). These I–V curves demonstrate the underdamped characteristics of the SQUID
since a large hysteresis in the switching and retrapping currents can be observed.

Additional information can be gained about the flow of supercurrent by studying its magnetic
field dependence (see Section 2.5.1). This is presented in Figure 6.5 where Rdiff is shown as
a function of I and out-of-plane magnetic field Bz (see also Figure 6.1.(j) for magnetic field
orientation) measured at VTG,ref = VBG = 0V and VTG,dev = 2V. Due to the geometric
difference between the device and reference junctions, we assume that the main contribution to
the supercurrent originates from the reference junction. Most importantly, a regular Fraunhofer
pattern can be observed which indicates that the ditribution of supercurrent in the reference
junction is homogeneous. The expected periodicity of the Fraunhofer pattern for the reference
junction is Φ0/(4.4µm×500 nm) ≈ 1mT. The observed periodicity is about a factor of two
smaller than expected. We attribute this to flux focusing due to the Meissner effect that
expels the magnetic field from the MoRe contacts and leads to the increase of flux in the
Josephson junctions [196] and results in a smaller periodicity than what is expected merely
from geometric considerations. It is also worth noting that the Fraunhofer pattern is not
centered around Bz = 0. This is a measurement artefact and the consequence of trapped
fluxes in the superconducting vector magnet used to generate the external magnetic field. This
could also explain the discrepancy between the largest critical current values observed in the
magnetic field dependence (Figure 6.5) and the reference top gate dependence measurements
(Figure 6.4.(a)). Even though no external magnetic field is applied during the measurement
presented in Figure 6.4.(a), the presence of a trapped magnetic flux can cause the reduction of
the critical current of the SQUID.
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Figure 6.5: Differential resistance Rdiff as a function of current bias I and out-of-plane magnetic
field Bz measured at VTG,ref = VBG = 0V and VTG,dev = 2V. The magnetic field dependence of
the critical current exhibits a regular Fraunhofer pattern indicative of homogeneous supercurrent
distribution in the reference junction.
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6.3.3 Current–phase relation measurements

As detailed in Section 2.5.5, to measure the current-phase relation of the device junction,
a large asymmetry between the critical currents of the two junctions has to be ensured. For
this reason, we set the reference top gate voltage to VTG,ref = −0.4V which results in a
switching current of ∼ 7µA. Furthermore, to ensure that the CPR is measured around the
net zero magnetic field, an iterative procedure is used to locate the center of the Fraunhofer
pattern by repeatedly measuring the pattern while gradually decreasing the magnetic field
range around its central lobe. This step is necessary to eliminate the effect of any trapped
magnetic flux or hysteresis in the magnetic field. When the magnetic field range is sufficiently
small, the SQUID oscillations become visible. This is illustrated in Figure 6.6.(a) where the
measured switching current Is is shown around the effective zero magnetic field for different
values of VTG,dev and VBG = 5V. The switching current is determined as the current bias value
where the measured voltage becomes larger than a pre-defined threshold voltage of 10µV. In
Figure 6.6.(a), oscillations of Is are clearly visible as a function of Bz with a periodicity of
∼ 24µT. This corresponds to an effective loop area of 86µm2. The obtained value is slightly
smaller than the expected 100µm2 which could also be explained by magnetic flux focusing
of the MoRe leads. Figure 6.6.(a) also illustrates that the amplite of the SQUID oscillation is
efficiently tunable by the device top gate.

To gain separate information about the device and reference junctions from the measured
switching current oscillations, we fit the raw curves using the function:

Is(Bz) = Ic,devf̃(φ(Bz, pB), φ0, τ), (6.1)

where f̃ is the normalised Andreev formula (Equation 2.58) for a single conduction channel
with transmission τ . Here, we assume that the conditions detailed in Section 2.5.5 hold and
the measured current–flux relation (CϕR) curves contain the CPR offset simply by the value
of the reference critical current Ic,ref . To fit the measured curves with the above function, we
subtract Ic,ref and the magnetic field strength is converted to the SC phase difference of the
device junction using φ = −2πBz/pB, where pB is the periodicity of the SQUID oscillations.
Figure 6.6.(b) shows an example for a CPR curve after these transformations as a function of
φ. Here, the φ = 0 reference point is arbitrarily chosen. As it is illustrated in Figure 6.6.(b),
the measured curve can be fitted well by the Andreev formula.
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Figure 6.6: a) Raw measurements of the switching current of the SQUID Is as a function of
Bz (CϕR) around the main lobe of the Fraunhofer pattern for different values of VTG,dev with
VBG = 5V and VTG,ref = −0.4V. b) CPR curve after the subtraction of Ic,ref as a function of
the SC phase difference φ of the device junction.

We measure the CPR as a function of VTG,dev and VBG for VTG,ref = −0.4V and extract
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Ic,dev, Ic,ref , τ and φ0 using the previous fit procedure. Figure 6.7.(a) shows the fit results for
Ic,dev. The obtained gate map shows a clear trend in agreement with the normal resistance map
shown in Figure 6.2.(b) and the four quadrants corresponding to different doping configurations
can be easily identified. Figure 6.7.(b) shows the gate map obtained for Ic,ref . Here, contrary
to our expectations, we observe a dependence of the critical current of the reference junction on
the applied gates. This could be explained by a non-negligible cross-talk between the reference
top gate and the other two gates due to parasitic capacitances. On the other hand, the observed
change in Ic,ref is below 10% and our assumption for large asymmetry in the device and reference
critical currents is justified.
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Figure 6.7: a) Device and b) reference junction critical current, Ic,dev and Ic,ref as a function of
VBG and VTG,dev for VTG,ref = −0.4V. Ic,dev changes in agreement with the normal resistance
shown in Figure 6.2.(b)

Figure 6.8.(a) shows the gate map of τ . As mentioned earlier, we fit the CPR curves with the
Andreev formula for a single conduction channel with transmission τ . Although our graphene
Josephson junctions are wide and may contain hundreds of channels, τ can be interpreted as an
average transmission. Furthermore, since the measured curves can be fitted reasonably well with
the formula, τ can be used as a measure of skewness (see Section 2.5.4). From Figure 6.8.(a), we
can conclude that τ and consequently the skewness of the measured CPR increases drastically
as Ic,dev increases. This can also be seen in Figure 6.6.(a) where the curve measured at VTG,dev =
2V is sinusoidal, whereas the one measured at VTG,dev = −10V exhibits a significant skewness.

Figure 6.8.(b) shows the extracted gate map of the φ0 phase shift. As discussed earlier,
the absolute value of the extracted φ0 is difficult to interpret since it contains a contribution
from the offset of the magnetic field. On the other hand, we expect that any φ0 phase shift
originating from the spin–orbit interaction should depend on the charge carrier density. For
this reason, we choose the φ0 value extracted at VBG = VTG,ref = 0 as a reference point and
in Figure 6.8.(b) plot the difference with respect to this value. Although no change in φ0 is
expected, a clear dependence on the applied gate voltages can be observed. We attribute this
to inductance effects arising from the change in Ic,ref . This is discussed in detail in Section 6.5.

We also repeat this procedure with larger resolution in gate voltages in a smaller range where
Fabry-Perot oscillations are visible in the normal resistance. Figure 6.9.(a) shows the gate map
of Ic,dev. Here, oscillations are clearly visible in agreement with the oscillations present in the
normal resistance map shown in Figure 6.3.(a). On the other hand, Figure 6.9.(b) shows the
gate map of τ where no oscillations are visible. This suggests that the interference pattern is
modulated by the charge carrier density while the transmission of the channels is not influenced.
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Figure 6.8: a) Transmission τ and b) phase shift φ0 of the CPR curves as a function of VBG

and VTG,dev for VTG,ref = −0.4V. φ0 phase shift is shown with respect to the value extracted
for VBG = VTG,dev = 0.
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Figure 6.9: a) Ic,dev and b) τ as a function of VTG,dev and VBG in the gate voltage range where
Fabry–Perot oscillations are visible in the normal resistance. Ic,dev shows clear oscillations while
no clear trend in τ can be observed.

6.4 Effects of in-plane magnetic field

To investigate the effects of in-plane magnetic field on the junction parameters, we apply
a By magnetic field in the direction perpendicular to the direction of current in the Josephson
junctions (see Figure 6.1.j). It must be emphasized that the investigation of such 2D heterostruc-
tures in an in-plane magnetic field is a complicated task. First of all, a small tilt angle between
the horizontal axis of the magnetic field and the device plane is always present. Therefore,
an out-of-plane magnetic field component will appear when the By magnetic field is applied.
This out-of-plane component results in an additional shift of the Fraunhofer pattern and can be
compensated. On the other hand, the in-plane magnetic field bends around the SC electrodes
due to the Meissner effect. Depending on device geometry and orientation, this can result in
local out-of-plane magnetic field components that cannot be compensated and lead to the rapid
decay of critical current as By is increased [196]. Furthermore, out-of-plane corrugations of the
graphene sheet can also lead to local, random out-of-plane magnetic field components [197].
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Figure 6.10: a-d) Ic,dev as a function of VTG,dev and VBG for an in-plane magnetic field of
By = 0, 50, 100 and 150mT.

We repeat the previous measurements for By = 50, 100 and 150mT and extract the same
junction parameters: Ic,dev, Ic,ref , τ and φ0. To compensate for the decrease of Ic,ref and ensure
that we remain in the true CPR measurement regime, we tune VTG,ref individually for each
in-plane magnetic field value and set a suitably large critical current.

More importantly, Figure 6.10 shows the evolution of the gate map of Ic,dev for different By.
The four quadrants corresponding to the different doping configurations discussed earlier can
be easily observed for all By. Furthermore, as By is increased to 150mT, Ic,dev decreases by
a factor of 2. Even though this decreasing trend is in agreement with our expectations, the
relative decrease in Ic,dev is smaller than the change in Ic,ref . This could be attributed to the
different geometry of the two junctions. Similar trends can be observed in the gate map of τ
(Figure 6.11). For By = 0, a clear evolution of τ is visible in agreement with the gate maps
of Ic,dev, as discussed in the previous section. This gate dependence can also be observed for
By = 50mT. However, for larger By, as Ic,dev decreases the extracted τ is also generally smaller
and the resulting gate maps become noisy since the error of the fit increases as τ decreases. A
similar decrease of τ was observed for Al/InAs Josephson junctions [198].

−5 0 5
V  (V) BG

−10

0

10

V
 (V

) 
TG

de
v 

,

B =0 mT y

−5 0 5
V  (V) BG

50 mT

−5 0 5
V  (V) BG

100 mT

−5 0 5
V  (V) BG

150 mT

0.2 0.4 0.6
τ

a) b) c) d)

Figure 6.11: a-d) τ as a function of VTG,dev and VBG for By = 0, 50, 100 and 150mT.

Figure 6.12 shows the extracted gate maps of φ0 for different values of By. As earlier, the
phase shift obtained for VBG = VTG,ref = 0 is subtracted from the gate map for each By. For
By = 0, 50 and 100mT, the observed gate dependence of φ0 can be explained by inductance
effects due to the variations in Ic,ref . However, for By = 150mT, we observe relatively large

67



phase shifts around the charge neutrality line which cannot be attributed to these inductance
effects. The appearance of these phase shifts around small charge carrier densities could be a
consequence of diffusive conduction. No such phase shifts are visible for larger charge carrier
densities.
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Figure 6.12: a-d) φ0 phase shift as a function of VTG,dev and VBG for By = 0, 50, 100 and
150mT. For each By in-plane magnetic field, the relative phase shift is shown with respect to
the value extracted for VBG = VTG,ref = 0.

6.5 Limitiations of current-phase relation measurements
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Figure 6.13: a) CϕR of sample B for Ic,ref = 1, 3, 5 and 7µA with Ic,dev = 1µA. b) Numerical
calculations of the CϕR with the critical currents obtained from panel a) and τdev = τref = 0.7.

To help the interpretation of the experimental results presented in the previous section, it is
necessary to discuss the limitations of these CPR measurements. First of all, as mentioned in
Section 2.5.5, to measure the true CPR of the device junction, a large asymmetry between Ic,dev
and Ic,ref has to be ensured. Although it is commonly argued that an Ic,ref/Ic,dev ratio of 10 is
sufficient, the necessary asymmetry depends on both the device and reference CPRs [130] and
also on the loop inductance [199]. To illustrate this, Figure 6.13 shows the CϕR, the switching
current Is of sample B (see AppendixC for sample details) as a function of Bz for different
values of Ic,ref with Ic,dev ≈ 1µA. The curve with Ic,ref ≈ 1µA (dark blue) corresponds to
the symmetric SQUID configuration and the curve with Ic,ref ≈ 7µA (yellow) is supposed
to be in the true CPR regime. This is further supported by numerical calculations of the
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CϕR presented in Figure 6.13.(b) where the switching current Is is shown as a function of
the externally applied flux ϕa. The junction critical currents used for the calculations were
obtained from Figure 6.13.(a) while conservative values of τdev = τref = 0.7 were used for the
junction transparencies. Although the qualitative trends and the transition from the symmetric
to the asymmetric configuration is captured well, some differences between measurement and
simulation can be observed. First of all, the calculations suggest that an asymmetry of ∼ 7
(yellow curve) is sufficient to measure the device CPR. On the other hand, the measurements
show sharp features not present in the calculated curves (see arrows in Figure 6.13). Secondly,
the measured curves for different Ic,ref appear shifted compared to each other. Although the
latter could be explained by an increase in τref , we argue that both phenomena are caused by
the finite inductance of the MoRe loop.

To investigate these inductance effects, it is helpful to introduce the notion of circulating
current. The DC current bias I applied to the SQUID loop is split between the two junctions
according to their CPRs and the applied magnetic flux:

I = Idev + Iref = Ic,devf(φdev) + Ic,reff(φref ). (6.2)

As illustrated in Figure 6.14, Idev and Iref can be decomposed into a sum of a transport com-
ponent It and a circulating component Icirc. It flows in the same direction in both arms while
Icirc is the current flowing around the SQUID loop. The latter, Icirc becomes relevant if the
loop has a finite inductance L. In this case, the circulating current induces a magnetic flux
LIcirc opposing the externally applied flux. As a result, the condition for the phase differences
is modified:

φref − φdev =
2π

Φ0
(ϕa − LIcirc) . (6.3)

If the loop inductance is large then the flux inside the loop can become a multivalued function
of the applied flux [200] due to this screening effect. More importantly, for moderate values of
the loop inductance, the conditions for a true CPR measurement become modified.

I = Idev + Iref = 2 It

Idev = Ic,devf(fdev) =
= It − Icirc

Iref = Ic,reff(fref) =
= It + IcircIcirc

Bz

Figure 6.14: Schematic illustration of an asymmetric SQUID device under current bias I. The
currents flowing in the arms of the device and reference junctions can be decomposed into the
sum of a transport and a circulating component.

To estimate the effect of loop inductance L on our CPRmeasurements, we determine its value
for sample A. To obtain L, we measure the CϕR at a fixed VBG = VTG,dev = 5V for different
VTG,ref , similarly to Figure 6.13. Some of these curves are shown in Figure 6.15.(a). As it also
illustrated by arrows and the corresponding marks on the horizontal axis, the position of the
CϕR curves clearly shift as Ic,ref is increased which is a consequence of the finite loop inductance.
It is also important to note that the CPRs measured at different Ic,ref are qualitatively similar
which confirms that the asymmetry of the critical currents is sufficient to measure the true
CPR of the device junction. To determine the value of the loop inductance, we extract Ic,ref
from the measured CϕRs and calculate the average circulating current for a given CϕR curve
as Icirc = Ic,ref/2. Using this, the loop inductance L can be obtained from a simple linear fit,
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since the phase shift is given by φ0 = 2πLIcirc/Φ0, assuming that the variation of Icirc with
Bz is small. This analysis yields L ≈ 130 pH which is close to the value obtained for similar
devices [127].
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Figure 6.15: a) CϕR curves measured for diffent VTG,ref at VBG = VTG,dev = 5V. b) Phase
shift φ0 of the CϕR curves as a function of the current circulating in the SQUID loop Icirc. The
phase shift is proportional to the loop inductance. A linear fit yields L ≈ 130 pH.

Using the obtained value of L, we can investigate the effect of loop inductance on the
measured CϕRs. Figure 6.16.(a) shows the numerically calculated CϕR for L = 0 and the
experimentally determined value of L = 130 pH (see AppendixC for details of the calculation).
The junction parameters are chosen based on our measurements: Ic,dev = 0.7µA, Ic,ref = 7µA
and τdev = τref = 0.7. As it is clearly visible, the curves are shifted compared to each other
as a consequence of the finite inductance, in agreement with our previous observations. More
importantly, the loop inductance also modifies the shape of the CϕR curve, visibly increasing
its skewness. In more extreme cases, this can lead to the appearance of sharp features such
as those visible in Figure 6.13.(a). This is also further illustrated in Figure 6.16.(b) where the
calculated phases of the device and reference junctions – φdev and φref – are plotted as a
function of the applied magnetic flux ϕa. In the L = 0 case (pale blue and red markers), the
calculated phases are consistent with our expectations for a true CPR measurement such that
φref is approximately constant and φdev changes linearly with ϕa. On the other hand, for
L = 130 pH, a clear deviation from the expected behaviour can be observed and the two phases
change simultaneously around an applied flux of ∼ 0.1Φ0 (arrows in Figure 6.16.(b)). This
simultaneous winding of the two phases is a consequence of the screening of magnetic flux due
to the current circulating in the SQUID loop. Since the circulating current and the screening
depends on the applied magnetic flux, a magnetic field-dependent phase shift appears and the
measured CϕR becomes more skewed. From these, we can conclude that inductance effects are
not necessarily negligible and the interpretation of the fit parameters τ and φ0 requires a more
careful analysis.

From the previous arguments, it is easy to see that any change in Ic,ref causes a shift of
the measured CϕR curve. As it is visible in Figure 6.7, even though the gates of the device and
reference junctions are in principle well separated, a small change in Ic,ref is visible in the gate
maps. The phase shift due to this change in Ic,ref can easily be compensated using the previously
determined value of L = 130 pH. Figure 6.17 shows the gate maps of the extracted phase shift
for different By in-plane magnetic fields with the phase shifts due to the inductance subtracted.
This compensation has a clearly visible effect on the gate map for By = 0. However, it is
essentially negligible for larger By as the magnitude of the change in Ic,ref becomes smaller.
It is also important to note that in some cases the device and reference junctions share a
common bottom gate (see e.g. sample B in AppendixC). In this case, during the measurement
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of gate maps, Ic,ref has to be kept constant by continuously compensating the effect of the
common bottom gate with the reference top gate which makes the measurement significantly
more challenging.
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Figure 6.16: a) Numerically calculated current–phase relation with the parameters τdev = τref =
0.7, Ic,ref = 7µA and Ic,dev = 0.7µA for L = 0 and 130 pH. b) φdev device and φref reference
junction phases as a function of the applied magnetic flux ϕa for L = 0 and 130 pH.
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Figure 6.17: a-d) φ0 phase shift with the change due to the variations of Ic,ref subtracted as a
function of VTG,dev and VBG for By = 0, 50, 100 and 150mT. For each By in-plane magnetic
field, the relative phase shift is shown with respect to the value extracted for VBG = VTG,ref = 0.

The effect of loop inductance on the fit parameter τ is more subtle. In Figure 6.16.(a), it is
visible that the finite inductance introduces an additional skewness. Therefore, we expect that,
at least for large Ic,dev, the extracted τ is overestimated. To investigate this, we numerically
calculate the CϕR with Ic,ref = 7µA and τref = 0.7 taking into account a finite loop inductance
of L = 130 pH for different Ic,dev and τdev in the range of our measurements and fit the resulting
curves applying the fit procedure used for the analysis of the measured CϕR curves. Although
in extreme cases, due to inductance effects [199] or an insufficient asymmetry [130], it is possible
that the magnitude of the oscillation is smaller than Ic,dev, we find that Ic,dev and Ic,ref can
be confidently extracted from the simulated CϕRs for our parameter range. Furthermore,
Figure 6.18.(a) shows the extracted relative phase shift φ0 which illustrates that the additional
skewness of the CϕR curves results in an effective phase shift for large Ic,dev and τdev which
increases the uncertainty of the extracted values of φ0. On the other hand, this effective phase
shift is smaller than the observed variations of φ0 presented in Figure 6.17.
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Figure 6.18.(b) shows the extracted transparency τfit for different values of Ic,dev and τdev.
It is clearly visible that the finite inductance has a significant effect on τfit causing it to deviate
from the input parameter τdev, especially for small values of τdev. For example, a fitted trans-
parency of ∼ 0.6 can be achived by using τdev = 0.2, if Ic,dev is sufficiently large. This is due to
the fact that the additional skewness is caused by the change in Icirc with Bz which results in
a change of the screening of magnetic flux with Bz and is governed by the change in Idev since
Iref is approximately constant. This effect obviously increases with Ic,dev. However, it is also
visible that the effect of inductance is less significant if the input τdev is larger. From these ob-
servations we can conclude that the increase in τdev observed for By = 0 (Figure 6.12) cannot be
explained solely by inductive effects and the transparency increases as the charge carrier density
is tuned away from the charge neutrality line. This is consistent with previous observations for
ballistic graphene Josephson junctions [127]. On the other hand, the extracted values for τdev
are overestimated because of the apparent skewing of the measured CϕRs originating from the
screening of the applied magnetic flux due to a finite loop inductance.
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Figure 6.18: a) Relative phase shift φ0 caused by the increased skewness due to loop inductance.
φ0 is obtained by performing the fit procedure used for the measured CϕR curves for calculated
CϕRs with different Ic,dev and τdev, taking into account a finite L = 130 pH. b) Transparency τfit
obtained from the fit procedure. The deviation of τfit from the input parameter τdev is caused
by the increased skewness of the measured CϕR due to the inductive screening of magnetic flux.

6.6 Conclusions

In conclusion, we have shown that the CPR of a JJ based on aWSe2/SLG/WSe2 heterostruc-
ture can be measured using an asymmetric SQUID design. The high quality of the device was
confirmed by the observation of Fabry-Perot oscillations in both the normal resistance and the
superconducting critical current. We showed that the measured CPR becomes highly skewed for
high doping of the graphene, indicative of large junction transparency. It was also shown that,
due to the formation of p–n junctions that are also responsible for the Fabry-Perot oscillations,
the skewness of the CPR decreases in the bipolar regime. We also investigated the phase shifts
of the CPR in in-plane magnetic fields. By increasing the magnetic field, I showed phase shifts
that cannot be explained by imperfect sample orientation or inductive effects. In connection
with these measurements, I demonstrated the practical limitations of the measurement of phase
shifts.

To connect such small phase shifts to the proximity-induced SOC requires further theoretical
and experimental work. From a theoretical point of view, the expected phase shifts should be
calculated in both the ballistic and diffusive regimes, using the experimentally obtained SOC
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parameters. On the experimental side, more precise fabrication is desired as the alignment of
the WSe2 layers can significantly influence the induced SOC. Furthermore, the measurement
of the superconducting diode effect could provide an additional tool to investigate the effect of
SOC on the CPR.
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Chapter 7

Multiterminal Josephson junctions

7.1 Introduction

MTJJs consisting of a single scattering region connected to multiple superconducting ter-
minals attracted significant attention in recent years. Theoretical works showed that MTJJs
may enable multiplet supercurrents [151–156], and the Andreev bound state (ABS) spectra of
MTJJs can exhibit non-trivial topology and simulate the band structure of Weyl semimet-
als [32, 131–146]. Although some of the theoretically proposed key features remain unobserved,
recent experimental advances led to the observation of hybridized ABSs [147–150], broken spin
degeneracy and ground state parity transitions [201], signatures of quartet supercurrents [157–
161], the Josephson diode effect [162–165] and topological phase transitions [202], highlighting
the versatility of MTJJ devices.

On the other hand, several experimental works found that the transport characteristics of
MTJJs can be reasonably well modeled by a network of resistively and capacitively shunted
Josephson junctions (RCSJ), in which each pair of terminals is connected by an RCSJ ele-
ment. This relatively simple approach is able to qualitatively capture features of current-biased
measurements, such as the coexistence of normal and supercurrents between different termi-
nals [159, 160, 166–168] and multiplet resonances [159, 168]. In spite of some agreement be-
tween simulations and measurements, these models in general fail to quantitatively capture
the observations when normal and supercurrents coexist in the scattering region. This lack of
agreement can be attributed to heating effects due to the presence of normal currents [166] that
influence the supercurrent flowing in other parts of the device. Furthermore, the observation of
more exotic phenomena, such as multiplet supercurrents [159, 168] and quantized transconduc-
tance [32, 131], also rely on the presence of finite voltages between some of the terminals that
necessarily imply the existence of normal currents and heating effects. Due to the large super-
conducting gap ∆ of the terminals which prevents the outflow of hot electrons, these heating
effects can significantly modify the superconducting properties of MTJJs. Moreover, heating
effects can have an impact on the switching dynamics of single Josephson junctions [101, 102]
which could be enhanced in the case of MTJJs, due to the complex geometry and the non-trivial
current distribution.

In this chapter, I present the experimental investigation of a three-terminal graphene Joseph-
son junction1 and compare the current-biased measurements to an RCSJ network model which
allows to identify the limitations of these models. Next, I present an improved simulation
method2, incorporating heating effects due to the presence of normal currents which results in a
significantly better agreement with the measurements. Furthermore, I investigate the switching
dynamics of our device and observe a non-trivial behaviour of the switching current distribution
(SCD) at low temperatures that is governed by phase diffusion. This behaviour is modified by

1The device was fabricated by Pápai Tamás and myself.
2The simulation method was developed together with Gergő Fülöp.
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the heating effects due to normal currents and I–V curves develop overdamped characteristics.
Finally, I investigate the charge carrier density dependence of the measured and simulated re-
sistance maps which gives us further insight into the possible cooling mechanisms by which the
dissipated heat escapes from the device.

7.2 Device geometry and measurement setup
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Figure 7.1: a) Optical microscopic image of the device with the schematic illustration of the
measurement geometry. ElectrodeD failed to contact the graphene, resulting in a three-terminal
device. b) Zoomed-in optical image of the measured MTJJ device. Darker regions are etched
away, defining a cross-shaped area in the center, connecting the terminals. Scale bar is 2 µm.
c) Differential resistance of junction 1 dV1/dIU as a function of current bias IU and backgate
voltage VBG for IR = 0.

The measured device is shown in Figure 7.1.(a). The dry-transfer technique with PC/PDMS
stamps was employed to stack hBN (20 nm, top)/SLG/hBN (35 nm, bottom). To fabricate
electrical contacts, we used electron beam lithography patterning followed by a reactive ion
etching step using CHF3/O2 mixture and finally deposited MoRe (50 nm) by dc sputtering. As it
is visible on the optical microscopic image in Figure 7.1.(a), four MoRe contacts were fabricated,
however, one of the contacts failed to contact the graphene layer, resulting in a three-terminal
device. The separation of neighbouring contacts is around 150 nm. The heterostructure around
the cross-shaped region was etched away using reactive ion etching with SF6/O2 mixture.

Transport measurements were carried out in a Leiden dilution refrigerator at a base tem-
perature of 40 mK (unless otherwise stated). Measurements were performed using a NI USB
6341 measurement card. In each measurement, contact A was grounded and the DC current
biases IR and IU were applied via 1 MΩ preresistors to contact B and C, respectively. Differ-
ential voltages – V1, V2 and V3 – between the three different pairs of terminals are measured.
The charge carrier density n in graphene can be tuned via the voltage applied to the doped
Si substrate that acts as a global backgate, while a 300 nm thick SiO2 layer forms the gate
dielectric. Figure 7.1.(c) shows the differential resitance V1 measured between contacts A and B
as a function of the backgate voltage VBG and IU showing a highly tunable critical current with
VBG as it is common for graphene devices. The critical current can be tuned to zero near the
CNP and we observe a significantly smaller critical current for negative VBG which we attribute
to doping from the MoRe contacts and formation of a p-n junction at the MoRe interface [193].

7.3 Characterization of supercurrent in a multiterminal device

Figure 7.2.(a) shows the schematic representation of our device. As detailed in the previous
section, the cross-shaped hBN/SLG/hBN heterostructure is connected to three MoRe supercon-
ducting electrodes. Figure 7.2.(b) (7.2.(c)) shows the differential resistance dV1/dIU (dV2/dIU )
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Figure 7.2: a) Schematic representation of the multiterminal Josephson junction. Current biases
IU and IR are applied via two separate contacts and the third contact is grounded. Voltages
Vi are measured between the three pairs of contacts. b,c) Differential resistance dV1/dIU and
dV3/dIU as a function of the current biases. In panel b), white arrows illustrate the position
of T -dependent measurement of I −V curves (Figure 7.4.(d)) and colored arrows correspond to
bias values where SCD measurements were performed (Figure 7.4.b). White star symbol shows
the extended region where a finite voltage develops between all terminals simultaneously. White
arrows in panel c) point to resonant features attributed to MAR. d) RSJ network model of our
device. e,f) Simulated differential resistance maps analogous to panels b) and c), respectively.
I∗R corresponds to the single current bias value of IR where all three junctions switch to normal
state simultaneously as IU is ramped.

– obtained from the measured V1 (V2) voltage by numerical differentiation with respect to the
current bias IU – as a function of IU and IR at a backgate voltage of VBG = 10V. Two main
features can be identified in such a differential resistance map, similarly to previous experi-
ments [159, 160, 162, 163, 166, 167, 203, 204]. First, in the center, around small current bias
values an extended superconducting region of zero resistance can be observed. Second, super-
conducting arms (labeled by 1, 2 and 3 in Figure 7.2.(b)) are spreading out from this central
superconducting region in multiple directions. Comparing differential resistance maps obtained
from the measurements of V1 (Figure 7.2.(b)), V2 (AppendixD.1) and V3 (Figure 7.2.(c)), it is
easy to realise that the central superconducting region is present in all cases indicating that the
whole sample is superconducting and supercurrent can flow between all of the terminals. On the
other hand, each of the superconducting arms correspond to supercurrent flowing between only
two terminals, resulting in zero resistance in only one of the differential resistance maps while
a finite voltage develops between the remaining pairs of terminals (e.g. the SC arm labeled by
1 shows zero resistance in Figure 7.2.(b) and a finite voltage develops in Figure 7.2.(c)). This
indicates that both normal and supercurrents can flow in the sample simultaneously.

7.3.1 RSJ simulation

Previous works [160, 166, 167, 204] showed that MTJJs can be described to a large extent by
a network of RCSJ elements (see Section 2.5.2). Here, we neglect capacitive effects and model
our three-terminal JJ with three resistively shunted junctions (RSJs), one between any pair of
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contacts, as shown in Figure 7.2.(d). First, we present the results of this model and highlight its
limitations in comparison with our measurements. Later, we show that the agreement between
measurement and simulation can be improved by including self-heating effects in the model. As
detailed in AppendixD.2, the differential equations of this network model can be constructed
from the Josephson equations and Kirchhoff’s laws. The necessary input parameters of the
model are the resistances (Ri with i ∈ {1, 2, 3}) and the critical currents (Ic,i) of the individual
junctions. Ri can be obtained from the measured differential resistances in the normal state,
at large bias currents. For these, we obtain R1 = 420Ω, R2 = 1355Ω and R3 = 815Ω.
Furthermore, assuming that our junctions are in the short junction limit and using Ic,iRi ∝ ∆,
it is possible to extract Ic,i from the measured differential resistance maps as well. For these, we
get Ic,1 = 545 nA, Ic,2 = 170 nA and Ic,3 = 280 nA, respectively. (See AppendixD.2 for details
on the extraction of parameters.)

By numerically solving the set of differential equations for the network of Josephson junctions
and resistors, we obtain differential resistance maps as shown in Figs. 7.2.(e) and 7.2.(f). The
model is capable of capturing the most prominent features of the measured differential resistance
map: (i) the central superconducting region and (ii) the superconducting arms, corresponding
to the coexistence of normal current and supercurrent. In the context of this model, the SC
arms can be further discussed. The total current between any pair of terminals (I1, I2 and
I3) is determined by the Kirchhoff and Josephson equations for a given IU and IR. It can be
shown that for arbitrary IR, a single value of IU exists for each junction for which the total
junction current Ii = 0 (see AppendixD.2). The ratio of IU/IR for which Ii = 0 is determined
solely by the normal resistances and is independent of IU and IR. Therefore, we expect to
observe superconductivity in the vicinity of lines with slopes defined by the normal resistances.
We also note that, in this particular geometry, due to Kirchhoff’s law which states that the
sum of voltages in a closed loop has to be zero, a single junction cannot switch to the normal
state alone, a voltage drop has to appear on either two or all three junctions simultaneously.
Therefore, outside the central SC region, the SC arms correspond to a configuration where only
a single junction is superconducting and the other two reside in the normal state.

On the other hand, several missing features can also be identified in the simulated resistance
maps. The most prominent example is the decay of superconductivity that can be observed
in the measurements along the superconducting arms. While the width of these arms in the
simulated maps is constant towards higher current bias values, in the measurements a clear
narrowing of the zero-resistance regions can be observed. Furthermore, in the measured re-
sistance maps an extended region exists where all three junctions switch to the normal state
simultaneously (e.g. marked by star symbol in Figure 7.2.(b)), whereas in the simulated maps,
this simultaneous switching of all three junctions can only be observed for a single bias value
I∗R (marked also by vertical dashed line in Figure 7.2.(e)). Finally, multiple resonant features
(e.g. marked by white arrows in Figure 7.2.(c)) are visible in the measurements parallel to the
superconducting arms that are attributed to multiple Andreev reflections (MAR) [203] which
cannot be accounted for by our simple model.

7.4 Self-heating effects

The narrowing of the superconducting arms is attributed to Joule heating from the dissi-
pative normal currents in the scattering region [166]. Due to the large superconducting gap
of the MoRe that prevents hot electron diffusion towards the leads, the electron system can
only dissipate heat via electron-phonon coupling. In this case, the dissipated power towards
the substrate is given by Pe−ph = Σ(T δ

e − T δ) [205], where Σ is the electron-phonon coupling
constant, Te and T are the electron and phonon bath temperatures, respectively. Following
along the lines of Ref. [166], we determine Σ from the temperature dependence of Ic,1 along
the corresponding SC arm. For this, we measure the switching current Is,1 for junction 1 by
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Figure 7.3: Critical current of junction 1 Ic,1 along the corresponding superconducting arm
as a function of a) heating power PJ and b) electronic temperature Te calculated assuming
only phonon cooling. c) Simulated differential resistance map taking into account the elevated
electronic temperature due to normal current flowing in the device. d) Simulated map of Te as
a function of current biases.

sweeping IU at different values of IR and bath temperatures. Is,1 is then defined as the value
of IU where V1 crosses a certain threshold voltage (20 µV) corresponding to the switching from
the SC to the normal state. As mentioned earlier, in this current-biasing scheme, IU and IR do
not directly correspond to the junction currents I1, I2 or I3. However, since along the SC arm
supercurrent only flows in junction 1, it is possible to calculate the junction’s critical current Ic,1
from Is,1 (see AppendixD.2). Moreover, as it is detailed later, the switching current of a Joseph-
son junction is prone to fluctuations due to thermal effects. To eliminate these fluctuations, we
take the average of 10 000 measurements to determine the average switching current Is,1. Next,
we calculate the power PJ dissipated in the normal regions from Joule heating as PJ = IUV2.
Since junction 1 is superconducting, IR does not contribute to Joule heating. Figure 7.3.(a)
shows the measured critical current Ic,1 as a function of PJ for different T bath temperatures.
As it can be seen from the figure, the increased heating power leads to the decrease of the
switching current, similarly to the increased bath temperature. Our assumption is that Te is
homogeneous in the device and the critical current value is defined by Te independently from
whether it originates from bath heating or current dissipation. We then determine the value of
Σ for which Ic,1 as a function of the calculated equilibrium electron temperature Te scales onto
a single curve. As it is discussed later, by assuming δ = 4, we obtain Σ = 25 pW/K4. This is
shown in Figure 7.3.(b), where all the curves fall on top of each other. Although it is challenging
to determine the exact active area of our device, we estimate that Σ scaled by the graphene’s
area yields ∼ 100W/m2K4. This is an order of magnitude larger than the value obtained in
reference [166] (∼ 10W/m2K3) and significantly larger than the value obtained for large-area,
nonencapsulated graphene devices [205] (< 50mW/m2K4). The authors of reference [166] also
speculate that electron-phonon coupling can be enhanced by the presence of the hBN substrate
and by scattering at the edges of the graphene layer. Since our device area is about an order of
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magnitude smaller than the device studied in reference [166], scattering at the edges could be
even more significant and could explain the larger value obtained for Σ scaled by the graphene’s
area.

To take the effects of self-heating into account in our simulations, we perform a fixed-
point iteration based on the RSJ model introduced previously. First, we perform the previous
simulation with the experimentally determined Ri and Ic,i parameters for all IU and IR. We then
calculate the Joule heat dissipated in the whole network as PJ =

∑
i V

2
i /Ri. From PJ , we can

obtain the equilibrium electron temperature Te using the electron-phonon coupling model for all
IU and IR bias currents. Finally, we take into account the elevated temperature using an Ic(Te)
function which we reconstruct from the temperature dependent measurements shown previously
in Figure 7.3.(a,b) and from the temperature dependence of the central superconducting region
(see AppendixD.2 for more details). We then iterate this process to achieve a self-consistent
solution, using the modified Ic,i values in our RSJ model which now also depend on the applied
IU and IR current biases.

Figure 7.3.(c) shows the simulated dV1/dIU map obtained in our model with self-heating.
Compared to Figure 7.2.(d), several improvements can be observed. First of all, the narrowing
of the SC arms is qualitatively reproduced. The remaining quantitative difference could be ex-
plained by the incorrect reconstruction of the Ic(Te) function or an inhomogeneous temperature
profile. Secondly, the improved simulation method is capable of producing an extended edge on
the contour of the central SC region where all three junctions switch to the normal state simul-
taneously. It is also worth noting that the simulated resistance map is inversion symmetric in
contrast to the measurements where the sweep direction of the bias currents results in a slightly
asymmetric central SC region. Finally, Figure 7.3.(d) shows the map of Te, illustrating that
the heating outside the central SC region is significant, increasing the equilibrium temperature
to a few Kelvins, an order of magnitude above the bath temperature, in agreement with our
measurements shown in Figure 7.3.(b).

7.5 Switching dynamics

In the following, we further investigate the interplay between the three junctions in the
regions where all junctions switch to the normal state simultaneously around I∗R (also shown
in Figure 7.3.(c)). Figure 7.4.(a) shows the current in each junction as a function of IU for
IR = 0.1µA≲ I∗R (orange arrow in Figure 7.3.(c)) obtained from our simulation with self-
heating (dashed lines). Although, Ii cannot be obtained from our measurements, we can also
calculate the current in each junction as long as all junctions are superconducting by numerically
minimizing the Josephson energy (symbols). Here, the Josephson energy for junction i is given
by EJ,i = ℏIc,i/2e sinφi, where φi is the phase difference of junction i. For a given IU , IR and
φ1, the other two phase differences φ2 and φ3 can be calculated. Therefore, by minimizing∑

iEJ,i with respect to φ1, φi and, as a result, Ii can be determined. As it is visible in
Figure 7.4.(a), this method is consistent with our simulation. The dotted horizontal lines show
the critical current of the respective junctions. As it is visible also in Figure 7.2.(e), junction 1
is far below its critical current when junction 2 and 3 reach their respective critical currents.
Therefore, without taking self-heating into account, we only expect junction 2 and 3 to switch
together. However, when heating is included (Figure 7.3.(c) and measurements on Figure 7.2.(b)
and 7.2.(c)), all three junctions switch at the same IU . From these, we can infer that junction
2 and 3 switch together and junction 1 switches immediately afterwards due to heating from
the other junctions. On the other hand, for IR ∼ I∗R, all three junctions reach their critical
currents simultaneously and heating should play no role in the switching process, while for
IR ≳ I∗R (gray arrow in Fig 7.3.c), junction 1 and 2 switch together and junction 3 switches
due to heating. Based on the previous arguments, we emphasize that the observation of this
correlated switching of all three junctions in an extended region along the border of the central
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Figure 7.4: a) Current distribution between the three junctions in the central superconduct-
ing region obtained from the RSJ model (dashed lines) and from numerically minimising the
Josephson energy of the whole network (symbols) for IR = 0.1µA. Dotted lines show the crit-
ical current of each junction. b) SCD for junction 1 measured at different IR in the central
superconducting region obtained from 10 000 measurements. c) Temperature dependence of the
SCD at IR = 0.1µA. The narrowing of the SCD with increasing temperature is consistent with
phase diffusion. d) Averaged I-V curves obtained from 10 000 individual measurements in the
central SC region (IR = 0.1µA) and in the SC arm of junction 1 (IR = −0.2µA) for different
temperatures. Inset: standard deviation σ of the SCD as a function of T for IR = 0.1µA.

SC region is strong evidence for self-heating effects.

To gain insight into the dynamics of these correlated switchings, it is essential to investi-
gate not only the average switching current but also its distribution. Figure 7.4.(b) shows the
switching current distribution (SCD) obtained from the measurement of V1 for different IR at 40
mK base temperature. The investigated values of IR are also indicated on top of Figure 7.2.(b)
by coloured arrows. Each distribution is obtained by sweeping IU and detecting the switching
current using the previously defined threshold voltage. This process is repeated 10 000 times
and a distribution of switching current values is obtained. Interestingly, we observe that the
width of the SCD is greatly tunable by IR (Figure 7.4.(b)). We find that the standard deviation
σ of the SCD, which describes the width of the distribution, increases by a factor of 2. This
broadening of the SCD could be explained by the different junctions that switch simultaneously
at different IR. As junction 1 takes over the role of junction 3 with increasing IR, the sum of
the critical currents of the two junctions that switch simultaneously increases which could lead
to a wider distribution. It is also important to note that during the measurement of the SCD
of junction 1, we simultaneously recorded the SCD of junction 2 obtained from the appearance
of a finite V2 and find that the distributions are identical and the switching events of the two
junctions are indistinguishable within the time-scales of our measurement (see AppendixD.5).
This suggests that the thermalisation of the device is faster than our data acquisition.

To further investigate the escape dynamics of our device, we measure the temperature
dependence of the SCD along the contour of the central SC region. This is shown in Figure 7.4.(c)
for IR = 0.1µA and a similar trend is observed for all investigated values of IR inside the
central SC region. It is clearly visible that the SCD gets narrower with increasing T which is
in stark contrast to the thermally activated behaviour as the SCD is expected to broaden with
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temperature. This is further confirmed by calculating σ as a function of bath temperature for
IR = 0.1µA that is shown in the inset of Figure 7.4.(d). Here, a ∼ 40% decrease of σ is visible
in the investigated temperature range. The observed narrowing of the SCD with increasing
T is a consequence of phase diffusion due to thermally activated escape and retrapping and
is consistent with previous observations in moderately damped Josephson junctions [103] and
planar Josephson junctions [206]. However, it is important to note that we observe the narrowing
of the SCD in the whole available temperature range and do not find the broadening of the SCD
due to thermally activated escape even for the lowest temperatures. This suggests that phase
diffusion is significant even at base temperature.

We performed similar measurements along the SC arm of junction 1. Here, we find a dif-
ferent behaviour and we cannot resolve a clear SCD. Figure 7.4.(d) shows the averaged I-V
curves of the 10 000 individual measurements for IR = −0.2µA and IR = 0.1µA (white ar-
rows in Figure 7.2.(b)) for different temperatures. In the central SC region, for IR = 0.1µA,
a sharp transition between the SC and normal states can be seen. In this case, the curvature
of the averaged I-V curves results from averaging curves with fluctuating switching currents.
On the other hand, for IR = −0.2µA, along the SC arm of junction 1, a smooth transition is
observed indicating that a finite voltage develops below the switching current. This is also con-
sistent with the theoretical expectations for moderately damped Josephson junctions at higher
temperatures [103]. As T increases, the thermally activated retrapping results in a significant
damping and the junctions become overdamped. This is further confirmed by the T -dependence
of the curves. For IR = 0.1µA, as T is increased, the switching current decreases (also visible
in Figure 7.4.(c)). However, for IR = −0.2µA, along the SC arm of junction 1, the effect of
increasing T is negligible, the increase of T rather makes the transition between the SC and
normal states smoother, as it is expected for overdamped junctions. It is also consistent with
the self-heating picture, since increasing the bath temperature has less effect on the electronic
temperature when a large heating power is already present due to the normal currents in the
device. Therefore, we conclude that the switching of our multiterminal device is determined
by phase diffusion at lower temperatures along the contour of the central SC region and show
overdamped characteristics along the SC arm of junction 1 due to the increased temperature.

7.6 Charge carrier density dependence

Finally, we investigate the dependence of the differential resistance maps on the applied
backgate voltage VBG. As mentioned earlier, the exponent of the electron-phonon cooling power
formula δ can be 3 or 4, depending on electronic mean free path lmfp and temperature [205]. At
the relatively low temperatures accessed in our measurements, δ = 4 describes phonon cooling
in clean devices where lmfp is large, while δ = 3 corresponds to phonon cooling modified by
impurity scattering in devices with small lmfp. Furthermore, the expression for Σ is also different
in the two limits. In the clean limit Σ = π2D2|EF |k4B/15ρMℏ5v3F s3, where D is the deformation
potential of graphene which describes the electron-phonon coupling strength, ρM is the mass
density of graphene, vF = 106m/s is the Fermi velocity, EF = ℏvF

√
πn is the Fermi energy and

s = 2 × 104m/s is the speed of sound in graphene. It can easily be shown that in the clean
limit Σ ∝

√
n, while in the dirty limit the expression is modified and Σ becomes independent

of n [205]. Figure 7.5 shows the measured and simulated resistance maps for different VBG and
δ = 4. We scale Σ according to the

√
n-dependence and n is calculated according to a planar

capacitor model based on the hBN and SiO2 dielectrics (see AppendixD.3). From Figure 7.5, it
is visible that the qualitative trend is reproduced well. Here, we assumed δ = 4, but note that a
reasonably good agreement can also be achieved by taking δ = 3 and a constant Σ = 30 pW/K3

(see Appendix D.3). Although the overall qualitative agreement between measurement and
simulation is good, some differences can still be observed. Most notably, some of the SC arms
persist up to larger current bias values in the measurements, especially noticeable for VBG = 2V.
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Figure 7.5: Backgate dependence of the measured (top) and simulated (bottom) differential
resistance maps. Simulations were performed with δ = 4 and Σ = 25pW/K4 for VBG = 10V
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√
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phonon coupling.

This could be explained by the appearance of additional cooling paths. As Te is increased up to
a few Kelvins, kBTe becomes comparable to ∆, allowing quasiparticles to diffuse into the MoRe
leads. Furthermore, we assumed that Te is homogeneous in the whole device which does not
necessarily hold for large heating powers. The inhomogeneity of Te could significantly modify
the ratio of normal and SC segments of the scattering region and, as a result, the estimated
input parameters of our model would become increasingly inaccurate with increasing heating
powers.

7.7 Superconducting diode effect

Previous works showed that MTJJs are a suitable platform to realise the Josephson diode
effect [162, 163, 165] where the amplitude of the critical current depends on the direction of the
current flow. Figure 7.6 shows the differential resistance as a function of out-of-plane magnetic
field B and IR for IU = 0. The differential resistance is measured between contacts A and B
using lock-in technique at 177 Hz frequency using 10 nA AC current bias applied via a 1 MΩ
preresistor. During the measurement, IR is ramped from −1µA to 1µA for fixed B. As it is
visible in Figure 7.6, the maximum switching and retrapping currents are observed for different
B (orange and white dashed lines, respectively) which is a signature of the Josephson diode
effect, where the switching current depends on the direction of the current sweep.

83



−20 0 20
B (mT)

−1

0

1

I
 (

A)
 

R 
μ

0

1

2

 R
 (k

) 
Ω
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IU = 0. Orange and white dashed lines show the maximum of the switching and retrapping
currents, respectively.

7.8 Conclusions

In conclusion, we have measured three-terminal graphene Josephson junctions and investi-
gated the heating effects and junction dynamics in this multiterminal system. We have shown
that a significant improvement can be achieved over existing RCSJ models for MTJJs by in-
corporating heating effects into the simulation method. By considering only Joule heating from
the normal currents in the device and electron-phonon coupling as cooling mechanism, we were
able to obtain the narrowing of the SC arms that is commonly observed in experiments and the
simultaneous switching of all junctions. By measuring the charge carrier density dependence
of the differential resistance maps, we could infer the limitations of our model, and suggest
that, for significantly increased electronic temperatures, new cooling mechanisms might become
available. We propose that by including additional cooling terms, such as the outflow of hot
electrons via the SC terminals, our model could be further improved. Furthermore, from the
investigation of the SCD, we concluded that the switching from the central SC region to the
normal state is governed by phase diffusion even at very low temperatures. As the temper-
ature is increased due to self-heating, this phase diffusion modifies the characteristics of the
device, resulting in smooth I-V curves resembling overdamped Josephson junctions. Building
on these results, future experiments could focus on the phase-biasing of MTJJs and inductance
measurements using RF techniques in the SC state, where self-heating effects are absent.
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Chapter 8

Summary

Here, the key results from this thesis are briefly summarized. I investigated nanoelectronic
devices based on van der Waals heterostructures built up of graphene, hBN and WSe2. The
motivation behind this work is that graphene is expected to host a quantum spin Hall state if
an appropriate spin–orbit coupling is present. Furthermore, if superconducting correlations are
induced in such a state, it could lead to the realization of topological superconducting states.
Therefore, the objectives of our work was twofold. On the one hand, we set out to investigate
the SOC induced in graphene when placed in close proximity to WSe2. On the other hand, we
investigated graphene-based superconducting devices.

In Chapter 4, I discussed the experimental investigation of proximity-induced SOC in single-
layer graphene devices. Our collaboration with the Nanoelectronics group at the University of
Basel in Switzerland resulted in measurements on SLG/WSe2 heterostructures that allowed us to
determine the strength and type of the proximity-induced SOC. The transport measurements
showed a large spin-relaxation anisotropy originating from the induced valley-Zeeman SOC
term. The device I fabricated allowed the measurement of the relevant spin-relaxation times
as a function of the momentum-relaxation time that made it possible to reveal the Dyakonov-
Perel mechanism as the dominant cause of spin-relaxation. Building on these results, our
research group showed that the proximity-induced SOC can be enhanced by applying hydrostatic
pressure in a pressure cell to these van der Waals heterostructures that reduces the interlayer
distances. A major step in the development of the pressure cell measurement technique was
to show that hBN can protect the electronic quality of graphene from the pressure mediating
medium. For this purpose, I provided a hBN/SLG/hBN device that was used to demonstrate
that hBN can efficiently isolate graphene from the kerosene inside the pressure cell.

The next step in the investigation of hydrostatic pressure on the proximity-induced SOC in
graphene-based van der Waals heterostructures involved WSe2/BLG/WSe2 devices discussed
in Chapter 5. In a collaboration with the Technical University of Delft, we were provided with
a sample that showed a peculiar band-inverted phase originating from the proximity-induced
Ising-type SOC. By transport measurements, I showed that this inverted phase can be stabilized
by enhancing the SOC with hydrostatic pressure. The strength of SOC was determined by
thermal activation measurements. I also showed that the measurement of Landau level crossings
in the quantum Hall regime can also be utilized to show the increase of SOC.

Another aspect of our collaboration with TU Delft was to examine the interplay of proximity-
induced SOC and superconductivity in graphene/WSe2 heterostructures, as detailed in Chap-
ter 6. For this reason, I assembled heterostructures with different combinations of graphene,
WSe2 and hBN and fabricated SQUIDs on these structures using MoRe electrodes. Similar
devices were also fabricated at TU Delft. I performed current–phase relation measurements on
these devices as phase shifts are expected to appear in the CPR, if SOC and an in-plane mag-
netic field are present. I showed that the CPR of a WSe2/SLG/WSe2 device becomes highly
skewed at large dopings, indicating the large transparency of the conduction channels. Further-
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more, I detected ballistic Fabry-Perot oscillations in the normal resistance of the device and
demonstrated that these oscillations are also observable in the CPR measurements. Finally, I
measured the phase shifts of the CPR in in-plane magnetic fields and explored the limitations
of such measurements.

Finally, in Chapter 7, I presented transport measurements on a multiterminal Josephson
junction. I fabricated a three-terminal Josephson junction on an hBN/SLG/hBN heterostruc-
ture. I showed that normal and supercurrents can coexist in such a device and that this behavior
can be described by a network of resistively shunted Josephson junctions. I also showed that the
agreement between measurement and simulation can be significantly increased if self-heating
effects originating from the normal currents are taken into account. I investigated the switching
dynamics of this multiterminal system by measuring its switching current distribution. These
measurements showed that the switching process is governed by phase diffusion even at low
temperatures where the entire device is superconducting. On the other hand, if normal cur-
rents are also present, the switching dynamics change and the I–V curves develop overdamped
characteristics.

The field of 2D materials is rapidly evolving. This thesis captures only a small fraction
of the research directions of the past decade. In the meantime, many new and exciting phe-
nomena were uncovered that pave the way for future experiments. As it is also evident from
our measurements, having a precise control over the rotation angle of layers in van der Waals
heterostructures is inevitable to regulate proximity-induced SOC in graphene. Advances in
twistronics also showed that graphene is a promising platform to study correlated electron
phases that can host, among others, exotic superconducting and correlated insulator phases.
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Thesis points

1. I created van der Waals heterostructures based on single-layer graphene, hexagonal boron
nitride (hBN), and tungsten diselenide (WSe2) to induce spin—orbit coupling in graphene.
One of these devices allowed for the investigation of the spin relaxation times related to
the spin—orbit coupling induced by WSe2 in graphene as a function of momentum re-
laxation time, which enabled the identification of the relevant spin relaxation mechanism
and the large spin-relaxation anisotropy. I also fabricated a heterostructure consisting of
single-layer graphene and hBN, to test if hBN can protect graphene from kerosene used
in a pressure cell. Furthermore, using low-temperature transport measurements, I showed
that the band-inverted phase formed in bilayer graphene due to double-sided WSe2 en-
capsulation can be stabilized using hydrostatic pressure. By activation measurements, I
determined the magnitude of the induced spin-orbit coupling with and without hydro-
static pressure. I also confirmed the increase of the spin—orbit coupling strength due to
hydrostatic pressure by measuring Landau level crossing points. [T1, T2, T3]

2. I fabricated superconducting quantum interference devices (SQUIDs) from Josephson
junctions based on heterostructures containing single-layer and bilayer graphene, hBN,
and WSe2, which allowed me to perform current-phase relation (CPR) measurements.
In the case of a Josephson junction containing a WSe2/single-layer graphene/WSe2 het-
erostructure, I showed by CPR measurements that resistance oscillations caused by bal-
listic Fabry-Perot (FP) interference are also detectable in the superconducting critical
current. Furthermore, I demonstrated with these measurements that the skewness of the
CPR is enhanced at high doping, indicating high transparency of the conduction channels.
Moreover, I have shown that the p-n junctions formed in the junction that also led to the
formation of the FP oscillations, led to decreased skewness in the bipolar regime. Addition-
ally, I investigated the phase shifts of the current—phase relation in an in-plane magnetic
field. By increasing the magnetic field, I showed phase shifts that cannot be explained by
imperfect sample orientation or inductive effects. In connection with these measurements,
I demonstrated the practical limitations of the measurement of phase shifts. [T4]

3. I fabricated three-terminal Josephson junctions based on graphene and hBN and per-
formed low-temperature transport measurements on a device. I showed that the behavior
of these samples can be described in the measurements by a network model containing
three resistively shunted Josephson junctions. In connection with the model, I showed that
a more accurate agreement with measurements can be achieved if self-heating effects due
to normal currents are also taken into account using electron-phonon coupling. I investi-
gated the behavior of the switching current distribution of the three-terminal Josephson
junction. Using this, I showed that its switching dynamics are governed by phase diffusion
when the entire sample is in the superconducting state. Furthermore, I showed that if
supercurrents and normal currents coexist in the sample, the switching dynamics change,
and the damping increases due to the increased temperature. [T5]
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First and foremost, to my supervisor, Péter Makk for guiding me throughout the years
since my master studies. His devotion to physics has motivated me to a great extent. I am also
grateful to him for dealing with scientific and more personal problems with the same enthusiasm.
I would also like to thank Szabolcs Csonka for his enlightening ideas and positive attitude. It is
due to their tireless effort that the nanoelectronics lab is thriving and continuously expanding.

I am also thankful to my experienced colleagues: Zoltán Balogh, Bálint Fülöp, Gergő Fülöp,
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Appendix A

Sample fabrication parameters

A.1 E-beam lithography parameters

Resist type: 950k PMMA

• Spin-coating:

– 4000 rpm, 40 s

– Nominal thickness: 300 nm

– Heat treatment: 180 ◦C, 3 min

• Patterning parameters:

– Extractor voltage: 20 kV

– Dose: 450 µC/cm2

• Development:

– Developer: IPA:H2O (7:3), 1 min at 0 ◦C

– N2 blow-dry

Resist type: 600k PMMA

• Spin-coating:

– 4000 rpm, 40 s

– Nominal thickness: 300 nm

– Heat treatment: 150 ◦C, 3 min

• Patterning parameters:

– Extractor voltage: 20 kV

– Dose: 240 µC/cm2

• Development:

– Developer: IPA:MIBK (1:3), 1 min at room temperature

– Stopper: IPA, 30 s

– N2 blow-dry
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A.2 Reactive ion etching

• Gases: CHF3 (40 sccm), O2 (4 sccm)

• pbase = 5e− 5 mBar

• pbackground = 60 mTorr

• P = 60 W

• Etching rates:

– hBN: 24 nm/min

– WSe2: 18 nm/min

– SiO2: ∼10 nm/min

A.3 Sputtering parameters

MoRe

• Target: MoRe

• Pressure: pbg = 2 mTorr

• Gases: Ar (35 sccm)

• Rf power: P = 100 W

• Plasma ignition: 35 mTorr, 100 W

• Rate: 3 Å/s

A.4 ALD parameters

Aluminium oxide

• 1 min O2 plasma cleaning before deposition

• Precursors: trimethylaluminium (TMA) and water

• Temperature: 225 ◦C

• 300 cycles → 30 nm
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Appendix B

WSe2/BLG/WSe2 heterostructures

B.1 Continuum model of WSe2/BLG/WSe2

B.1.1 Low-energy Hamiltonian

We model the studied heterostructure with the low-energy Hamiltonian of bilayer graphene
with an additional spin–orbit coupling term, which is different on the two graphene layers,
induced by the proximity of the two WSe2 layers. In the basis of the 4 atom unit cell,
(|CA1⟩ , |CB1⟩ , |CA2⟩ , |CB2⟩) ⊗ (|↑⟩ , |↓⟩), where the A1 and B1 sites are located on the bottom
layer and the A2 and B2 sites are on the top layer, the Hamiltonian is written as

H = HBLG +HSOC, (A1)

HBLG =


u/2 v0π

† −v4π† v3π
v0π u/2 + ∆′ γ1 −v4π†

−v4π γ1 −u/2 + ∆′ v0π
†

v3π
† −v4π v0π −u/2

⊗ s0, (A2)

HSOC =


ξλb

Isz/2 iλb
Rs

ξ
− 0 0

−iλb
Rs

ξ
+ ξλb

Isz/2 0 0

0 0 ξλt
Isz/2 iλt

Rs
ξ
−

0 0 −iλt
Rs

ξ
+ ξλt

Isz/2

 , (A3)

where HBLG is the Hamiltonian of the BLG[89] and HSOC is the spin–orbit coupling term
describing the layer-specific proximity induced Ising-type SOC with the parameters of λi

I and
Rashba-type SOC parametrized with λi

R [66, 74]. Here, si, with i = {0, x, y, z}, are the spin

Pauli matrices and sξ± = 1
2(sx + iξsy). In HBLG, γi, with i = {0, 1, 3, 4} describe the intra-

and interlayer hoppings in BLG, as illustrated in Figure 5.1.(b), vi =
√
3aγi/2ℏ are effective

velocities, with the lattice constant of the graphene a = 2.46 Å and ∆′ is the dimer on-site
energy. γ0 is the nearest neighbour intralayer hopping, γ1 is the interlayer hopping between
the dimer sites, γ3 describes the hopping between the non-dimer sites and γ4 is the interlayer
hopping between the dimer and non-dimer orbitals. InH, π = ℏ(ξkx+iky) and π† = ℏ(ξkx−iky)
are momentum operators measured from the K and K’ valleys with the valley indices ξ = ±1.
The parameter u is the interlayer potentials difference modelling the effect of an external electric
field.

In our simulations we have used the following parameters: γ0 = 2.61 eV, γ1 = 0.361 eV,
γ3 = 0.283 eV, γ4 = 0.138 eV and ∆′ = 0.015 eV [61].

In the main text, we show the spectrum near the K valley. Here, we show the difference
between the K and K ′ valleys in Fig B.1. The main difference, besides the opposite tilting due
to the trigonal warping, is the opposite spin polarization of the bands, which is the manifestation
of the Kramers theorem, since the valley-Zeemann terms generate an opposite effective magnetic
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field in the two valleys. In the figures, we calculate the spin polarization as

ζn =
∑

X=A1,A2,B1,B2

|cX,↑|2 − |cX,↓|2. (A4)

(a) (b)

Figure B.1: Calculated band structure using the parameters of u = 3meV and λb
I = −λt

I =
2meV (a) near the K valley and (b) near the K ′ valley.

Besides the spin polarization, the layer polarization αn is also an important parameter of
the model, which is defined as

αn =
∑
s=↑,↓

|cA1,s|2 + |cB1,s|2 − |cA2,s|2 − |cB2,s|2. (A5)

As shown in Figure B.2, at u = 0 the bands have no layer polarization, which can be lifted by
increasing u. For |u| > |λb

I |, the low energy part of the conductance and valence bands becomes
layer polarized with the opposite layer polarization of the valence and conduction bands.

(a) (b)

Figure B.2: Calculated band structure using the parameter of λb
I = −λt

I = 2meV (a) at
u = −3meV and (b) at u = 0meV. The color of the line corresponds to the layer polarization:
the blue (red) points are fully polarized to the top (bottom) layer and the purple points are
layer degenerated.

For completeness, the band structure near theK-point is shown in Figure B.3. with λb
I = λt

I .
In this case, the bands are spin split due to the SOC, which can be considered here as a Zeeman
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splitting in an effective magnetic field. Moreover, in this case, there is no gap at u = 0 and a
gap only opens if |u| > |λb,t

I |.
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Figure B.3: Calculated band structure using the parameter of λb
I = λt

I = 2meV (a) at u =
−3meV, (b) at u = −2meV and (c) at u = 0meV. The color of the lines corresponds to the
spin polarization.

B.1.2 Landau level calculations

Figure B.4: Single-particle zeroth LL spectrum as a function of u at B = 10T for (a) λb
I =

−λt
I = −2meV, (b) λb

I = λt
I = −0 and (c) λb

I = 1.8meV and λt
I = −2.2meV.

The Landau level calculations were performed by Bálint Szentpéteri along the lines of Ref-
erence [186]. In Figure 5.5.(a), we plot the lowest 8 LLs with respect to u at B = 8.5T. These
LLs would be degenerate if we set every parameter to zero except γ0 and γ1, including the
interlayer potential. In Figure B.4, we show the LLs in three different scenarios of λI : in panel
(b) the LLs are shown if λI = 0. In this case, the LLs are spin-split due to the Zeeman term
and also split in the orbital index due to γ0 and ∆′. A finite u further splits these LLs and their
energy is linear in u. Since for the two lowest LL the spin and layer index become effectively
the same, different valleys shift oppositely with a displacement field. By introducing a finite
Ising-type SOC λb

I shifts the energies of the eigenstates of |K,n, σ⟩ and λt
I shifts the energies of

the eigenstates of |K ′, n, σ⟩. Comparing panel (a) and (b), if λt
I = −λb

I , at high magnetic field,
the spectrum seems very similar to the case without SOC, however, the order of the spin up
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and spin down levels flip. Moreover, the positions (u∗) where two LLs cross also change, which
we defined as D∗ crossings in the measurements in the main text. In the third case, shown in
panel (c), when λt

I and λb
I have an opposite sign but their magnitudes are different, the u, −u

symmetry is lost, leading to a non-zero u∗±3 crossings (indicated by arrows in FigureB.4.(c)).
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Figure B.5: Landau level crossings at ν = 0 as a function of B with (a) λb
I = −λt

I = −5.6meV,
(b) λb

I = −λt
I = −2meV and (c) λb

I = λt
I = −0.

In Figure B.5 and Figure B.6, we plot the Landau level crossings, with SOC and without
SOC, for ν = 0 and ν = ±1, respectively. Without SOC the crossings go to zero as B → 0 as
opposed to the case of λb

I = −λt
I ̸= 0. Comparing these figures with Fig 4. in the main text, the

experiments show similarities to the model: the ν = 1 crossings show similar tendency, so do the
higher u∗0 branches in the ν = 0 crossings. Likely the discrepancy between the model calculated
in a single-particle picture and the experiment comes from the fact that in our calculations we
neglect electron-electron interactions [185].
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Figure B.6: Landau level crossings at ν = ±1 as a function of B with (a) λb
I = −λt

I = −5.6meV,
(b) λb

I = −λt
I = −2meV and with (c) λb

I = λt
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Figure B.7: Conversion from a) gate voltages to b) charge carrier density n and transverse
displacement field D.

p (GPa) αBG (1015 V−1m−2) αTG (1015 V−1m−2)

0 2.47± 0.08 2.81± 0.10

1.65 2.82± 0.07 3.12± 0.09

Table A1: Lever arms determined from quantum Hall measurements.

B.2 Determination of the lever arms

As discussed in the main text, to tune the charge carrier density n and the transverse
displacement field D in the sample, gate voltages are applied to the metallic topgate (VTG) and
the graphite bottom gate (VBG). The conversion from gate voltages to n and D is shown in
FigureB.7 and is given by the following relation:

n = αTGVTG + αBGVBG + n0

D

ϵ0
=

e

2ϵ0
(αTGVTG − αBGVBG) +

D0

ϵ0
,

(A6)

where ϵ0 is the vacuum permittivity, e is the elementary charge, αBG,TG are the lever arms of
the bottom and topgate, respectively, while n0 and D0 are the offset charge carrier density and
displacement field. Since the lever arms are subject to change after the hydrostatic pressure
is applied, originating from the compression of dielectricts, we determine them experimentally.
First, the ratio of lever arms αBG/αTG can be obatined from gate voltage maps of the resistance
(e.g. FigureB.7.(a)), as it is given by the slope of the charge neutrality line. Secondly, by
measuring the fan diagram of Landau levels for D = 0, we determine the lever arms via the
relation ν = nh/eB between the filling factor ν and the carrier density n for a given magnetic
field B, where h is Planck’s constant. The values of the lever arms can be found in TableA1.

B.3 Additional measurements on two-terminal devices

We performed additional measurements on two-terminal devices also shown in Figure 5.1.(a).
Two different devices were measured between contacts E-F (device S2) and F-G (device S3) in
separate pressurization and cool-down cycles. Two-terminal resistance maps of the devices as
a function of n and D are shown in FigureB.9 at p = 0 and p = 1.2GPa. These results are
consistent with our observations on device S1 in that the inverted phase is clearly visible and
is enhanced by the applied pressure. FigureB.9.(c) and B.9.(f) shows the comparison between
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Figure B.8: Landau fan daigram of the resistance for a) p = 0 and b) p = 1.65GPa at D = 0.
Dashed lines correspond to carrier densities with filling factors ν = 4k, where k ∈ Z.

line traces of the resistance measured at n = 0 as a function of D at p = 0 and p = 1.2GPa for
device S2 and S3, respectively. In both cases, the resistance at D = 0 is increased due to the
applied pressure and the location of resistance minima (D∗) is increased by ∼ 25%.

We also performed thermal activation measurements on both devices. For reference, the raw
measurement data is shown for device S2 in FigureB.10.(a) for p = 0 obtained while cooling
the sample from 100 K to base temperature. Due to the two-terminal geometry of these devices
a large jump in resistance is visible that corresponds to the superconducting phase transition
of the NbTiN contacts.

In order to extract the band gaps from these measurements additional data processing
is required and the normal resistance of the contacts have to be subtracted from the high
temperature parts of the data. We subtract RN,S2 = 5.90 kΩ and RN,S3 = 5.38 kΩ for device S2
and S3, respectively. The thermal activation data after the subtraction of the contact normal
resistance is shown in FigureB.10.(b) and B.10.(c) for device S2 at p = 0 and p = 1.2GPa,
respectively. After the subtraction, a vertical line is visible that originates from the phase
transition. We exclude these outliers from further analysis. Although this makes our data
analysis less reliable, we can nevertheless extract the SOC strength using the same method as
described in section 5.6. This yields λt = −λb = 1.6± 0.4meV for p = 0 and λt = −λb = 2.4±
0.5meV for p = 1.2GPa and λt = −λb = 1.0± 0.3meV for p = 0 and λt = −λb = 2.0± 0.4meV
for p = 1.2GPa for device S2 and S3, repsectively. These results also reproduce our findings for
device S1 as a significant increase in the extracted SOC strength is seen in all cases.
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Figure B.9: a,b) 2-terminal resistance map of device S2 for a) ambient pressure and b) p =
1.2GPa. c) Line traces of resistance for device S2 as a function of D at n = 0 for ambient
pressure (blue) and p = 1.2GPa (red). d,e,f) Similar resistance maps and comparison for device
S3.
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Figure B.10: Temperature dependence of the resistance of device S2 as a function of D at
n = 0 for a) p = 0. The jump in the resistance around 15 K corresponds to the superconducting
phase transition of the NbTiN leads. Corrected data after the contact normal resistance was
subtracted for b) p = 0 and c) p = 1.2GPa.
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Figure B.12: Band gaps determined from thermal activation measurements performed while
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Figure B.13: Differential resistance of a two-terminal device as a function of VBG and VTG that
shows no signatures of band inversion.

B.4 Additional data from Sample S4

As mentioned in section 5.3, not all samples showed signatures of band inversion. We at-
tribute this to the lack of control over the rotation of WSe2 layers. Based on theoretical
predictions[72, 76], we argue that for certain rotation angles of the two WSe2 layers (e.g. 0◦),
the sign of λb

I and λt
I can be the same which leads to the situation discussed section B.1 and

shown in FigureB.3 where no band gap is present at D = 0. For reference, in FigureB.13, we
show measurement data of a two-terminal device measured at 4 K, where no signatures of band
inversion can be observed in the resistance map.
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Appendix C

Current–phase relation
measurements

C.1 Conversion from gate voltages to n and D

Here, we show the normal state resistance RN as a function of VTG,dev and VBG in Fig-
ureC.1.(a), as presented in Figure 6.2 in the main text. As discussed in Section 2.4.1 and Ap-
pendixB, we can calculated the charge carrier density n and the transverse displacement field
D from the gate voltages. In this case, we calculate the lever arms using the layer thicknesses
determined from AFM measurements and the ratio of lever arms from the slope of the CNL.
FigureC.1.(b) shows RN as a function of the calculated n and D.
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Figure C.1: a) Normal state resistance RN as a function of VTG,dev and VBG at VTG,ref = 5V.
b) RN as a function of n and D.

Similarly, the normal resistance map showing the Fabry-Perot oscillations in Figure 6.3 in
the main text can be represented as a function of n and D. This is shown in FigureC.2.

C.2 Additional CPR devices

The devices uses for current–phase relation measurements are listed in TableA1. Layer
thicknesses obtained from AFM measurements are also given in parentheses where known. Fur-
thermore, schematic illustrations of the different measured heterostructures and corresponding
optical microscopic images are shown in FigureC.3. Each device features metallic top gate
electrodes. Independent tuning of the charge carrier density and transverse electric field is en-
abled by either a graphite bottom gate or the doped Si substrate utilised as a global backgate
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Figure C.2: a) Normal state resistance RN as a function of VTG,dev and VBG at VTG,ref = −1.5V,
showing the Fabry-Perot oscillations. b) RN as a function of n and D.

electrode. Superconducting electrodes were fabricated by DC sputtering of MoRe or NbTiN.
Loop size in every instance is ∼ 10× 10µm2.1
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Figure C.3: (a-d) Top: schematic illustration of the heterostructures fabricated for CPR mea-
surements. Bottom: optical microscopic images of devices corresponding to the schematic
depictions in the top row. Scale bar is 5 µm.

C.3 In-plane magnetic field dependence of the device critical
current

To further illustrate that the rapid decrease of critical current is not unique to device A, we
present here the gate maps of the device critical current as a function of top and bottom gates
for samples A−D. Ic,dev is extracted from CPR measurements as described in section 6.3.3 of
the main text. FigureC.4 shows the gate maps of Ic,dev for samples A − D for By = 0. The

1I fabricated devices A and C in Budapest. I also fabricated Device B with the help of Nikos Papadopulos at
TU Delft. Device D was fabricated at TU Delft by Prasanna Rout and Nikos Papadopulos.
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Device Substrate heterostructure layers (d (nm))

A Si/SiO2 graphite gate/hBN (40)/WSe2 (15)/SLG/WSe2 (5)/hBN (25)
B Si++/SiO2 hBN/BLG/hBN
C Si++/SiO2 hBN (20)/WSe2 (20)/BLG/hBN (10)
D Si++/SiO2 hBN/WSe2/BLG/WSe2/hBN
E Si++/SiO2 graphite gate/hBN (30)/WSe2 (20)/SLG/hBN (40)

Table A1: List of devices used for current–phase relation measurements. Layer thicknesses
obtained from AFM measurements are indicated in parentheses.

gate maps of Ic,dev show similar features in all cases. Although signatures of p–n junctions can
only be seen for device A, the charge neutrality line where the critical current is minimal can
be identified in all cases. The maximum of Ic,dev is similar for devices A− C and significantly
smaller for device D. This suggests that the quality of device D is lower than the other devices.
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Figure C.4: (a-d) Device critical current Ic,dev as a function of VTG,dev and VBG for By = 0 in
case of device A−D, respectively.

FigureC.5 shows similar gate maps of Ic,dev for samples A −D measured in finite in-plane
magnetic field. The values of By were chosen such that the reference critical current remained
large enough to ensure true CPR measurements. The direction of By was perpendicular to the
direction of current in the Josephson junctions. A significant decrease in Ic,dev is observed for
device A − C. No decrease of Ic,dev was found for device D which might be explained by the
low sample quality that results in inhomogeneous supercurrent flow already without in-plane
magnetic field.

C.4 In-plane magnetic field dependence of the reference critical
current

FigureC.6 shows the extracted values of Ic,ref of device A as a function of VTG,dev and
VBG for different values of By. In FigureC.6.(a) the measurement for By = 0 is shown again
for convenience. VTG,ref is set to −0.4V (By = 0mT), 0V (50mT), 2V (100mT) and 5V
(150mT). A small change in Ic,ref is observable in all cases as a function of gate voltages and
a significant decrease in the amplitude of Ic,ref is visible despite of increasing VTG,ref with By.
For By = 100mT, the gate dependence is qualitatively different from the other measurements.
This could be attributed to sample inhomogeneity and the different gate setting. However, the
relative amplitude of the change in Ic,ref is similar in all cases.
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Figure C.5: (a-d) Critical current of the device junction Ic,dev as a function of VTG,dev and VBG

for relatively large By in case of device A−D, respectively.
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Figure C.6: (a)-(d) Critical current of the reference junction Ic,ref of device A as a function
of VTG,dev and VBG for By = 0, 50, 100 and 150mT. To compensate for the decrease in Ic,ref
due to the in-plane magnetic field the reference topgate voltage was tuned to VTG,ref = −0.4V
(0mT), 0V (50mT), 2V (100mT) and 5V (150mT), respectively.

C.5 Additional data for device C

The measurement of current–phase relation becomes more challenging if the two Josephson
junctions share a common gate, such as the doped Si backgate in case of devices B − D.
In this instance, the two junctions are tuned simultaneously by the backgate electrode and the
measurement of gate maps (similarly to device A, presented in the main text) requires additional
care. To ensure that the true CPR of the device junction is measured and to avoid unwanted
phase shifts related to the change of Ic,ref , we keep Ic,ref constant by simultaneously tuning the
reference topgate (VTG,ref ) and backgate (VBG) voltages. To this end, we first measure CPR as
a function of VTG,ref and VBG and extract Ic,ref using the fit procedure described in the main
text. The extracted Ic,ref as a function of VTG,ref and VBG is shown in FigureC.7.(a). The
measurement of the CPR of the device junction requires that Ic,ref ≫ Ic,dev. By interpolating
the gate map of Ic,ref shown in FigureC.7.(a), the required value of VTG,ref can be found for
a given VBG and Ic,ref , assuming that Ic,ref is independent of VTG,dev. This allows us to keep
Ic,ref constant during the CPR measurement of the device junction and compensate the effect
of changing VBG on Ic,ref .

Using the previously described compensation method, we performed CPR measurements
on device C as a function of VTG,dev and VBG with Ic,ref ≈ 6µA. The effectiveness of the
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compensation method is further illustrated in FigureC.7.(b) where the extracted Ic,ref is shown
as a function of VTG,dev and VBG during the CPR measurement of the device junction. From
here, it is easily visible that Ic,ref can effectively be kept constant during the measurement and
this method results in a relative change of Ic,ref smaller than what is observed for device A. This
means that, assuming that τref is also kept constant along with Ic,ref , using this compensation
method the relative phase shifts can be more precisely measured even though the gates are not
independent. On the other hand, it is also important to note that the available range of VBG

is constrained by the required value of Ic,ref ≈ 6µA since a suitable VTG,ref can only be found
for a subset of the VBG range.
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Figure C.7: (a) Reference critical current of device C as a function of VTG,ref and VBG. (b)
Ic,ref as a function of VTG,dev and VBG during the CPR measurements of the device junction.
Ic,ref ≈ 6µA is kept constant by simultaneously tuning VBG and VTG,ref . The required gate
voltages are determined using the measurement in panel (a).

FigureC.8.(a) and C.8.(b) shows the measured gate map of Ic,dev for By = 0 and By =
200mT, respectively. As discussed earlier, we generally observe the decrease of Ic,dev as By is
increased for multiple devices. It is also visible in FigureC.8.(a) that the minimum of Ic,dev
is decreasing along the charge neutrality line which is a consequence of the opening of a band
gap in the device junction. Furthermore, similarly to device A, we fit the measurements using
the effective single channel Andreev formula and observe a large transparency τ where Ic,dev is
large and a rapid decrease of τ with By, as illustrated in FigureC.9.

FigureC.10.(a) and C.10.(b) shows the extracted phase shift φ0 forBy = 0 andBy = 200mT.
Here, due to the appearance of an uncontrolled external flux during the measurement, the
relative phase shift compared to the value obtained for VTG,dev = −5V for each value of VBG

is shown. For both By = 0 and By = 200mT, outliers around the CNL appear. In this case,
this is attributed to the unreliability of the fit procedure due to the very small Ic,dev around the
gapped region.

C.6 Numerical calculation of the current–phase relation

As mentioned in the main text, it is possible to numerically calculate the CϕR of a SQUID
device. In the absence of inductance effects, this is a straightforward task. We model our devices
with two Josephson junctions, each hosting a single Andreev bound state. Using the previously
introduced notation of device and reference junctions, the CPRs of the junctions are given by:

Idev(φdev) = Ic,devf̃(τdev, φdev)

Iref (φref ) = Ic,ref f̃(τref , φref ),
(A1)
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Figure C.8: (a,b) Critical current of the device junction Ic,dev of device C as a function of
VTG,dev and VBG for By = 0 and By = 200mT, respectively.
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Figure C.9: (a,b) Transparency τ of device C as a function of VTG,dev and VBG for By = 0 and
By = 200mT, respectively.

where Ic,dev (Ic,ref ) is the device (reference) critical current, φdev (φref ) is the phase difference,

τdev (τref ) is the transparency of the device (reference) junction and f̃ is the normalised Andreev
formula introduced in Section 2.5.4. The two phase differences are connected by the applied
magnetic flux Φa via:

φref − φdev = 2π
Φ

Φ0
. (A2)

Combining equationA1 and A2, the critical current of the SQUID for a given magnetic flux –
the CΦR – can be found as:

Ic(Φ) = max
φdev∈[0,2π[

{
Ic,devf̃(τdev, φdev) + Ic,ref f̃

(
τref , φdev + 2π

Φ

Φ0

)}
. (A3)

As detailed in Section 6.5, if a finite inductance L is present, the applied magnetic flux is
screened by the circulating current. In this case, in order to calculate the switching current as
a function of the applied external magnetic flux Φa, equationA2 has to be modified:

φref − φdev =
2π

Φ0
(ϕa − LIcirc) . (A4)

Using the notation introduced in Section 6.5, the circulating current is given by:

Icirc = (Iref − Idev) /2.
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Figure C.10: (a,b) Phase shift φ0 of device C as a function of VTG,dev and VBG for By = 0 and
By = 200mT, respectively. In this case, the phase shift relative to the value at VTG,dev = −5V
for each VBG is shown.

Following in the footsteps of Reference [199], Icirc can be eliminated from equationA4 and φref

can be expressed for a given current bias I as:

φref = φdev +
2π

Φ0
(ϕa + LIdev − LI/2) . (A5)

We then introduce the function:

F (I, φdev) = I − Ic,devf̃(τdev, φdev)− Ic,ref f̃(τref , φdev). (A6)

Using this, the critical current of the SQUID for a given Φa and L can be found as the maximal
value of I for which there exists some φdev ∈ [0, 2π[ where F (I, φdev) = 0.
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Appendix D

Multiterminal Josehpson junctions

D.1 Raw measurement data

Here, we show the complete set of raw measured voltages V1, V2 and V3, and the correspond-
ing differential resistance maps, as a function of IU and IR. The differential resistance maps
were partially presented in Figure 7.2.
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Figure D.1: a-c) Raw measured voltages V1, V2 and V3 as a function of IU and IR. e-f)
Differential resistances calculated from panels a-c)

D.2 RSJ simulations

As discussed in Section 7.3.1, we start our simulation by solving an RSJ network model.
For our three-terminal device, this consists of three blocks of resistively shunted Josephson
junctions as shown in FigureD.2.(a). The i−th block is described by a resistor with resistance
Ri and the phase difference of the Josephson junction φi. The normal current flowing in the
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resistor is given by IN,i = Vi/Ri, where Vi is the voltage drop on the RSJ block. We employ a
sinusoidal current-phase relation and the supercurrent flowing in the Josephson junction is given
by Is,i = Ic,i sinφi. According to the corresponding Josephson equation, the time derivative
of the phase difference is given by φ̇i = 2eVi/ℏ. With these, one can obtain the differential
equation of a single RSJ block:

Ii = Ic,i sinφi +
ℏ

2eRi
Vi,

where Ii is the total current flowing in the i−th block. Introducing the external current biases
IU and IR and the superconducting phases of the corresponding leads φU and φR according to
FigureD.2.(a), choosing the phase of the grounded terminal as zero and applying Kirchhoff’s
law, one can end up with a set of coupled differential equations for the complete RSJ network:

da1
dt

=
2e

ℏ
[IU − Ic,2 sin (−φU )− Ic,3 sin (φR − φU )] ,

da2
dt

=
2e

ℏ
[IR − Ic,1 sin (−φR) + Ic,3 sin (φR − φU )] ,

(A1)

where

a1 =
φR − φU

R3
− φU

R2
,

a2 = −
φR − φU

R3
− φU

R1

and we made use of the fact that φ3 = φR − φU . By numerically solving equation systemA1,
we obtain the stationary φi phase differences and Vi voltages from which both the normal In,i
and supercurrents Is,i in each block can be calculated for a given IU and IR.

D.2.1 Determination of junction parameters

As mentioned in the main text, to quantitatively match the simulations to our measurement,
we determine Ri and Ic,i from the measured differential resistance maps. First of all, it is easy
to show that the ratio IU/IR for which Is,i = 0, corresponding to the slope of the SC arms, is
determined by the normal resistances as:

α = −R2 +R3

R2
,

β = − R1

R1 +R2
,

γ =
R1

R2
,

(A2)

for junctions 1, 2 and 3 respectively. For these, we obtain α = −1.6, β = −0.34 and γ =
0.31 from the measured differential resistance maps at VBG = 10V. These are shown with
dashed lines in FigureD.2.(b). Since these equations are not independent, we also calculate the
differential resistances in the normal state where only normal currents are flowing as:

RI =
dV1

dIU
=

R1R2

R1 +R2 +R3
,

RII =
dV2

dIU
=

R2(R1 +R3)

R1 +R2 +R3
,

RIII =
dV2

dIU
=

R2R3

R1 +R2 +R3
.

(A3)
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Figure D.2: a) Differential resistance maps dV1/dIU . Dashed lines illustrate the obtained slopes
of the SC arms. b) Measured differential resistances for IR = 0 (markers). Solid lines show
the simulated differential resistances with our improved method, taking self-heating effects into
account.
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Figure D.3: a) The experimentally obtained Ic,1(Te) function. Triangles show Ic,1 obtained
from the central SC region and circles correspond to the values extracted from the SC arm of
junction 1.

Combining equation systemsA2 and A3, one can show that R2 = RI(γ − α)/γ and the normal
resistances can be calculated. For these, we obtain R1 = 420Ω, R2 = 1355Ω and R3 = 815Ω,
respectively. Having obtained the normal resistances, it is also possible to calculate the junction
critical currents Ic,i. First, we calculate the superconducting coherence length in graphene.
Since the length of our junctions is smaller than 200 nm, well below the typical mean free path
for similar graphene devices, we assume ballistic conduction. Using ∆ = 1.2meV for the SC
gap of the MoRe contacts [95, 207], the coherence length is given by ξ = ℏvF /π∆ ≈ 200 nm.
Therefore, we conclude that our junctions are in the short, ballistic limit which implies that
Ic,iRi = ∆ · const. This allows us to calculate Ic,i from the measured differential resistance
maps, using the previously calculated normal resistances. Using this, assuming that Ic,1 > Ic,3,
it can be shown that for IR = 0, the total critical current is given by Ic,tot = Ic,2 + Ic,3 =
Ic,2(1 +R2/R3) and the individual junction critical currents Ic,i can be calculated using the Ri

normal resistances. We associate Ic,i with the values obtained from the differential resistance
maps measured at base temperature. For these, we obtain Ic,1 = 545 nA, Ic,2 = 170 nA and
Ic,3 = 280 nA.
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D.2.2 Determination of Ic,i(Te)

As discussed in the main text, to include heating effects in our simulations, we perform
a fixed-point iteration. The pseudocode for this algorithm is shown in Algorithm1. First,
we solve the RSJ network model with the experimentally obtained parameters and calcu-
late the Joule heating power as PJ =

∑
i V

2
i /Ri and the equilibrium electron temperature

as Te = 4
√

T 4 + PJ/Σ, using Σ = 25 pW/K4 as obtained from the temperature-dependent
measurements (see Figure 7.3. of the main text) and assuming homogeneous temperature dis-
tribution in the device. The next step is to take the effect of the elevated electron temperature
into account via the Ic(Te) dependence. We construct this function from our temperature de-
pendent measurements. For this, we have to consider two different regimes. First, in the central
SC region, as discussed previously, the individual junction critical currents can be calculated
using the normal resistances. Assuming that the ratio of the resistances does not change with
temperature, we can obtain Ic,1 by taking Ic,tot as the mean of the SCDs measured at IR = 0
for different T (Figure 7.4.(c) of the main text). Moreover, since in this region all junctions are
superconducting, we can take Te = T as there is no Joule heating.

Next, we consider the SC arm of junction 1. Utilizing the previous definition of the slope α
of the SC arm of junction 1, for a given IR the supercurrent in junction 1 is zero for IU = αIR.
Furthermore, since along the SC arm, only junction 1 is superconducting and the remaining two
junctions are in the normal state, we can calculate the ratio of IU that is flowing towards junction
1. Combining these, the net current of junction 1 is given by I1 = (IU − αIR)R2/(R2 + R3).
In this case, we define the average switching current of junction 1 Is,1 as the value of IU for
which V 1 exceeds the pre-defined threshold voltage (20µV), where V 1 is the average voltage
obtained from averaging 10000 individual measurements. From this, we calculate the critical
current of junction 1 as Ic,1 = (Is,1−αIR)R2/(R2+R3). The obtained values of Ic,1 for different
Te are shown in FigureD.3. To find the value of Ic,1 for any Te, we linearly interpolate and
extrapolate. Finally, to get Ic,2 and Ic,3, we simply scale the Ic,1(Te) function according to the
ratio of normal resistances, based on our previous arguments.

The simulated differential resistances for IR = 0 are shown with solid lines in FigureD.2.(c).
As it is visible, the simulated curves qualitatively match the measured points for IU > 0. For
negative IU , the retrapping to the SC state happens later in the measurements than in the
simulations. We attribute this also to the elevated temperature due to self-heating, as the
simulated curves do not take into account the sweep direction of the current bias.

Algorithm 1 Iterative procedure for the self-consistent calculation of junction currents and
electronic temperature

function calculate mtjj(niter = 10, δ, Σ, Ri, Ic,i(Te) for i ∈ {1, 2, 3}, Tbath)
Te ← Tbath for all IU , IR ▷ Initialization
for niter repetitions do

for all IU , IR in the range do
Vi, Ii ← solve ODE set using Ic,i = Ic,i(Te) ▷ Eq. system A1
P ← V 2

1 /R1 + V 2
2 /R2 + V 2

3 /R3

T new
e ← solve P = Σ ·

(
T δ
e − T δ

bath

)
for Te ▷ Assumes Pe−ph = PJ

end for
end for
return Ii(IU , IR), Vi(IU , IR), Te(IU , IR)

end function
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Figure D.4: a-c) Simulated differential resistance maps after 1, 3 and 10 iterations, respectively.
d-e) Change of electronic temperature ∆Te = Tn − Tn−1, where n is the iteration step.

D.2.3 Iteration process

To further illustrate the fixed-point iteration method, we show the simulated differential
resistance map dV1/dIU after different numbers of iteration in FigureD.4. The first step (Fig-
ureD.4.(a)) corresponds to the simulation without taking heating into account, also shown in
Figure 7.2.(e) and 7.2.(f) of the main text. After three iterations (FigureD.4.(b)), the main
features of the measured resistance maps are well reproduced. FigureD.4.(c) shows the final re-
sult after 10 rounds of iteration which only shows minor differences compared to FigureD.4.(b).
FigureD.4.(d-f) shows the change of electronic temperature ∆Te = Tn − Tn−1, where n is the
iteration step and T0 = 40mK is the base temperature. It can be seen that while the elec-
tronic temperature is drastically modified for the first step, later iterations only result in minor
changes indicating the convergence of our simulations.

D.3 Additional simulations

As mentioned in the main text, we can also perform the scaling of Ic,1 along the SC arm
of junction 1 using δ = 3 corresponding to the dirty limit of electron-phonon coupling. This
scaling yields Σ = 30 pW/K3. We also construct the Ic(Te) function using this modified Σ and
simulate the differential resistance maps analogous to Figure 7.5. In this case, the expression

for Σ is modified, it is given by Σ =
2ζ(3)D2|EF |k3B
π2ρMℏ4v3F s2lmfp

. It can be shown that, in this case, Σ is

independent of n. The simulated resistance maps for δ = 3 and Σ = 30 pW/K3 are shown in
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FigureD.5.

VBG (V) n (1012 cm−2) Σδ=4 (pW/K4)

10 0.74 25

6 0.48 20

2 0.22 14

Table A1: Charge carrier densities n and Σ in case of δ = 4 corresponding to the values of VBG

for which the differential resistance maps were measured and simulated.

As detailed in the main text, for δ = 4, Σ is scaled according to a
√
n-dependence. The Σ

values for each VBG can be found in TableA1. We also present the charge carrier densities n for
the different VBG values where the differential resistance maps were measured and simulated in
TableA1. We determine the backgate voltage of the charge neutrality point VCNP = −1.4V
from the gate-dependent measurement shown in Figure 7.1.(c). Using this, the carrier density
is given by n = αBG(VBG − VCNP ). The lever arm of the backgate is calculated according
to a planar capacitor model as αBG = ε0/e · (dSiO2/εSiO2 + dhBN/εhBN)

−1, where ε0 is the
vacuum permittivity, e is the elementary charge, εSiO2 = 4 (εhBN = 3.3) and dSiO2 = 300 nm
(dhBN = 35nm) are the dielectric constant and thickness of SiO2 (hBN), respectively.
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Figure D.6: a) Measured differential resistances dVi/dIU as a function of the measured voltages.

D.4 Multiple Andreev reflections

FigureD.6 shows the differential resitances dVi/dIU plotted as a function of the measured
voltages Vi. We observe resonant features that are attributed to multiple Andreev reflec-
tions [203]. Each resistance map is plotted as a function of the two voltages that were measured
simultaneously.

D.5 Extended SCD data
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Figure D.7: a-b) Additional SCD data for junction 1 measured at IR = 0.2µA and IR = 0.4µA,
respectively, for different temperatures. c-d) SCDs for junction 2, simultaneously measured with
the SCDs for junction 1.

As mentioned earlier, we performed the SCD measurements simultaneously for two different
junctions. FigureD.7.(a) and D.7.(b) shows additional SCDs for junction 1, while FigureD.7.(c)
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and D.7.(d) shows the SCDs measured for junction 2. As mentioned in the main text, we observe
similar tendencies for all investigated SCDs in the range of 0µA< IR < 0.5µA. The narrowing
of the SCDs with temperature can be observed for both junctions in the whole investigated
temperature range. Furthermore, the SCDs obtained for junction 1 and 2 are almost identical,
further showing that the two junctions switch in a correlated manner.
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Schott, Werner Wegscheider, Juan Carlos Cuevas, Wolfgang Belzig, and Fabrizio Nichele.
Phase-engineering the Andreev band structure of a three-terminal Josephson junc-
tion. Nature Communications, 14(1):6784, 2023. ISSN 2041-1723. doi: 10.1038/
s41467-023-42356-6. URL https://doi.org/10.1038/s41467-023-42356-6.

136

https://link.aps.org/doi/10.1103/PhysRevB.85.201404
https://link.aps.org/doi/10.1103/PhysRevB.85.201404
https://link.aps.org/doi/10.1103/PhysRevB.95.035307
https://link.aps.org/doi/10.1103/PhysRevB.95.035307
https://link.aps.org/doi/10.1103/PhysRevB.102.195404
https://www.wmi.badw.de/teaching/lecture-notes
https://doi.org/10.1038/s41467-023-42356-6


[202] E. Strambini, S. D'Ambrosio, F. Vischi, F. S. Bergeret, Yu. V. Nazarov, and F. Giazotto.
The ω-SQUIPT as a tool to phase-engineer Josephson topological materials. Nature Nan-
otechnology, 11(12):1055–1059, sep 2016. doi: 10.1038/nnano.2016.157.

[203] Natalia Pankratova, Hanho Lee, Roman Kuzmin, Kaushini Wickramasinghe, William
Mayer, Joseph Yuan, Maxim G. Vavilov, Javad Shabani, and Vladimir E. Manucharyan.
Multiterminal Josephson effect. Phys. Rev. X, 10:031051, Sep 2020. doi: 10.
1103/PhysRevX.10.031051. URL https://link.aps.org/doi/10.1103/PhysRevX.10.

031051.

[204] Ethan G. Arnault, Trevyn F. Q. Larson, Andrew Seredinski, Lingfei Zhao, Sara Idris,
Aeron McConnell, Kenji Watanabe, Takashi Taniguchi, Ivan Borzenets, François Amet,
and Gleb Finkelstein. Multiterminal inverse AC Josephson effect. Nano Letters, 21(22):
9668–9674, nov 2021. doi: 10.1021/acs.nanolett.1c03474.

[205] Christopher B. McKitterick, Daniel E. Prober, and Michael J. Rooks. Electron-phonon
cooling in large monolayer graphene devices. Phys. Rev. B, 93:075410, Feb 2016. doi: 10.
1103/PhysRevB.93.075410. URL https://link.aps.org/doi/10.1103/PhysRevB.93.

075410.
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