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Introduction

The semiconductor industry is approaching a limit where Moore’s law [1] is becom-
ing increasingly difficult to sustain [2]. Alternative approaches building on the results of
quantum mechanics are required to further enhance the functionality of electronic devices.
For example, recent years have seen a surge in encouraging achievements in the field of
quantum computation. Most notably, the quantum advantage over classical comput-
ers for specific problems was demonstrated using superconducting [3, 4] and photonic [5]
quantum computers. Superconducting qubits are among the most promising platforms
to create scalable and programmable quantum computers capable of solving practical
problems. Furthermore, superconducting hybrid devices are also proposed to host exotic
quasiparticles such as Majorana fermions[6–8] that may enable fault-tolerant quantum
computing [9]. Majorana fermions are expected to arise if superconducting correlations
are induced in the surface states of topological insulators [7].

Graphene has been theoretically predicted as a topological insulator soon after its
discovery in 2004 [10]. However, the experimental observation of this exotic phase in
graphene has remained elusive due to its very weak intrinsic spin–orbit coupling (SOC) [11].
On the other hand, the family of two-dimensional (2D) materials has grown rapidly over
the last two decades, making it possible to tailor the physical porperties of graphene by
creating van der Waals heterostructures that combine graphene and other 2D materials.
For example, by bringing graphene in close proximity to transition metal dichalcogenides
(TMDs) in such heterostructures, a large SOC can be induced in graphene [12]. This, on
the one hand, gave a significant boost to the field of spintronics. The combination of the
large spin diffusion length in graphene [13–15] and the ability to manipulate spins by elec-
tric fields [16–18] are key elements to realize information storage and logic devices that
utilize the spins of electrons [19]. On the other hand, this so-called proximity-induced
SOC has opened new possibilities to engineer topological phases in graphene [20–22],
leading to the experimental observation of a peculiar band-inverted phase hosting helical
edge states in bilayer graphene [23, 24]. Furthermore, the induced SOC can also have a
strong effect on the correlated states observed in twisted structures [25–27].

Objectives

Proximity-induced spin–orbit coupling in graphene

By combining graphene with other 2D materials that have a large intrinsic spin–orbit
coupling, it becomes possible to induce a significant SOC in graphene via the proximity-
effect [12, 28–31]. Although other methods have also been proposed to enhance SOC in
graphene [19, 32, 33], TMDs are among the most promising candidates to enable spintron-
ics applications in graphene devices. It was found both theoretically [29] and experimen-
tally [12, 31] that graphene/TMD heterostructures make it possible to engineer a large
proximity-induced SOC in graphene while preserving its high electronic quality. Among
the family of TMD materials, WS2 [12, 34], MoS2 [34] and WSe2 [34, 35] have all been
demonstrated to induce a SOC in graphene on the order of ∼ 1−10 meV that is multiple
orders of magnitude larger than the intrinsic SOC in pristine single-layer graphene.

I fabricated van der Waals heterostructures that combine single- and bilayer graphene
with WSe2. These heterostructures allow the investigation of proximity-induced SOC in
graphene using low-temperature transport measurements. Our research group has devel-
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oped a method to perform transport measurements on van der Waals heterostructures
under hydrostatic pressure. This method is applied to boost the proximity-induced SOC
in a bilayer graphene/WSe2 heterostructure. Using low temperature transport measure-
ments, I investigated the effect of hydrostatic pressure on the band-inverted phase arising
from the proximity-induced SOC.

Current–phase relation measurements of WSe2/graphene het-
erostructures

Josephson junctions, consisting of two superconducting leads connected by a weak
link, are the building blocks of state-of-the-art superconducting qubits [3, 4]. The current–
phase relation (CPR) is the most fundamental property of a Josephson junction. It relates
the magnitude of the dissipationless supercurrent in the weak link to the macroscopic
phase difference of the two superconducting leads. Therefore, it provides information on
the physical process underlying the supercurrent transport in the junction. Furthermore,
it is also expected to be affected by SOC in the weak link [36] that can give rise to anoma-
lous Josephson effect, resulting in the appearance of a phase shift in the CPR [37–40] and
the superconducting diode effect that manifests in the asymmetry of the critical current,
the maximum allowed supercurrent in the weak link, for different current directions [40–
48].

I measured the current–phase relation of graphene/WSe2 heterostructures using two
Josephson junctions in an asymmetric SQUID configuration. In such devices, the loop
inductance can have a significant impact on the measured CPR. Taking this into account,
I investigated the phase shifts of the CPR in in-plane magnetic fields and the limitations
of this method to determine small phase shifts.

Multiterminal Josephson junctions

Multiterminal Josephson junctions (MTJJs) consisting of a single scattering region
connected to multiple superconducting terminals attracted significant attention in recent
years. Theoretical works showed that MTJJs may enable multiplet supercurrents [49],
and the Andreev bound state (ABS) spectra of MTJJs can exhibit non-trivial topology
and simulate the band structure of Weyl semimetals [50].

I investigated a graphene-based three-terminal Josephson junction using low-temperature
transport measurements. I investigated the effect of self-heating due to the coexistence
of normal current and supercurrent in these devices. The behavior of such devices can
be described by a network of resistively shunted Josephson junctions. I showed that sim-
ulations can be further improved if these self-heating effects are taken into account. The
switching dynamics of the device were also probed by the measurement of its switching
current distribution.

Thesis points

1. I created van der Waals heterostructures based on single-layer graphene, hexagonal
boron nitride (hBN), and tungsten diselenide (WSe2) to induce spin—orbit coupling
in graphene. One of these devices allowed our coworkers to investigate the spin
relaxation times related to the spin—orbit coupling induced by WSe2 in graphene
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as a function of momentum relaxation time, which enabled the identification of
the relevant spin relaxation mechanism and the large spin-relaxation anisotropy.
These results are presented in [T1]. I also fabricated a heterostructure consisting
of single-layer graphene and hBN that enabled our research group to test if hBN
can protect graphene from kerosene used in a pressure cell. This result is published
in [T2]. Furthermore, in [T3], using low-temperature transport measurements, I
showed that the band-inverted phase formed in bilayer graphene due to double-sided
WSe2 encapsulation can be stabilized using hydrostatic pressure. By performing
activation measurements on this WSe2/bilayer graphene/WSe2 heterostructure, I
determined the magnitude of the induced spin-orbit coupling with and without
hydrostatic pressure. I also confirmed the increase of the spin—orbit coupling
strength in the heterostructure due to hydrostatic pressure by measuring Landau
level crossing points. [T3]

2. I fabricated superconducting quantum interference devices (SQUIDs) from Joseph-
son junctions based on heterostructures containing single-layer and bilayer graphene,
hBN, and WSe2, which allowed me to perform current-phase relation (CPR) mea-
surements. In the case of a Josephson junction containing a WSe2/single-layer
graphene/WSe2 heterostructure, I showed by CPR measurements that resistance
oscillations caused by ballistic Fabry-Perot (FP) interference are also detectable
in the superconducting critical current. Furthermore, I demonstrated with these
measurements that the skewness of the CPR is enhanced at high doping, indicating
high transparency of the conduction channels. Moreover, I have shown that the p-n
junctions formed in the junction that also led to the formation of the FP oscilla-
tions, led to decreased skewness in the bipolar regime. Additionally, I investigated
the phase shifts of the current—phase relation in an in-plane magnetic field. By
increasing the magnetic field, I showed phase shifts that cannot be explained by
imperfect sample orientation or inductive effects. In connection with these mea-
surements, I demonstrated the practical limitations of the measurement of phase
shifts. [T4]

3. I fabricated three-terminal Josephson junctions based on graphene and hBN and
performed low-temperature transport measurements on a device. I showed that
the behavior of these samples can be described in the measurements by a network
model containing three resistively shunted Josephson junctions. In connection with
the model, I showed that a more accurate agreement with measurements can be
achieved if self-heating effects due to normal currents are also taken into account
using electron-phonon coupling. I investigated the behavior of the switching current
distribution of the three-terminal Josephson junction. Using this, I showed that its
switching dynamics are governed by phase diffusion when the entire sample is in
the superconducting state. Furthermore, I showed that if supercurrents and normal
currents coexist in the sample, the switching dynamics change, and the damping
increases due to the increased temperature. [T5]

List of publications

T1 Simon Zihlmann, Aron W. Cummings, José H. Garcia, Máté Kedves, Kenji Watan-
abe, Takashi Taniguchi, Christian Schönenberger, and Péter Makk, Large spin re-
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laxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/Gr/hBN het-
erostructures, Phys. Rev. B 97, 075434 (2018)

T2 Bálint Fülöp, Albin Márffy, Endre Tóvári, Máté Kedves, Simon Zihlmann, David
Indolese, Zoltán Kovács-Krausz, Kenji Watanabe, Takashi Taniguchi, Christian
Schönenberger, István Kézsmárki, Péter Makk, and Szabolcs Csonka. New method
of transport measurements on van der Waals heterostructures under pressure, J.
Appl. Phys, 130(6):064303 (2021)

T3 Máté Kedves, Bálint Szentpéteri, Albin Márffy, Endre Tóvári, Nikos Papadopoulos,
Pra-sanna K. Rout, Kenji Watanabe, Takashi Taniguchi, Srijit Goswami, Szabolcs
Csonka, and Péter Makk, Stabilizing the inverted phase of a WSe2/BLG/WSe2
heterostructure via hydrostatic pressure, Nano Letters 23 (20), 9508-9514 (2023)

T4 Máté Kedves, Prasanna K. Rout, Nikos Papadopoulos, Kenji Watanabe, Takashi
Tanigu-chi, Szabolcs Csonka, Srijit Goswami, Péter Makk, Current–phase relation
measurements of WSe2/graphene heterostructures, manuscript under preparation

T5 Máté Kedves, Tamás Pápai, Gergő Fülöp, Kenji Watanabe, Takashi Taniguchi,
Péter Makk, and Szabolcs Csonka, Self-heating effects and switching dynamics in
graphene multiterminal Josephson junctions, Phys. Rev. Research 6, 033143 (2024)

Other unrelated publications

T6 Simon Zihlmann, Péter Makk, Mirko K. Rehmann, Lujun Wang, Máté Kedves,
David Indolese, Kenji Watanabe, Takashi Taniguchi, Dominik M. Zumbühl, and
Christian Schönen-berger, Out-of-plane corrugations in graphene based van der
Waals heterostructures, Phys. Rev. B 102, 195404 (2020)

T7 Bálint Fülöp, Albin Márffy, Simon Zihlmann, Martin Gmitra, Endre Tóvári, Bálint
Szentpéteri, Máté Kedves, Kenji Watanabe, Takashi Taniguchi, Jaroslav Fabian,
Christian Schönenberger, Péter Makk, Szabolcs Csonka, Boosting proximity spin
orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure, npj 2D
Mater Appl 5, 82 (2021)

T8 Tosson Elalaily, Martin Berke, Máté Kedves, Gergő Fülöp, Zoltán Scherübl, Thomas
Kanne, Jesper Nyg̊ard, Péter Makk, and Szabolcs Csonka, Signatures of gate-
driven out of equilibrium superconductivity in Ta/InAs nanowires, ACS Nano 17,
6, 5528–5535 (2023)

T9 Bálint Szentpéteri, Albin Márffy, Máté Kedves, Endre Tóvári, Bálint Fülöp, István
Küke-mezey, András Magyarkuti, Kenji Watanabe, Takashi Taniguchi, Szabolcs
Csonka, Péter Makk, Tuning the proximity induced spin-orbit coupling in bilayer
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[14] Marc Drögeler, Christopher Franzen, Frank Volmer, Tobias Pohlmann, Luca Ban-
szerus, Maik Wolter, Kenji Watanabe, Takashi Taniguchi, Christoph Stampfer, and
Bernd Beschoten. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve de-
vices. Nano Letters, 16(6):3533–3539, may 2016. doi: 10.1021/acs.nanolett.6b00497.

[15] Simranjeet Singh, Jyoti Katoch, Jinsong Xu, Cheng Tan, Tiancong Zhu, Walid
Amamou, James Hone, and Roland Kawakami. Nanosecond spin relaxation times
in single layer graphene spin valves with hexagonal boron nitride tunnel barriers.
Applied Physics Letters, 109(12):122411, sep 2016. doi: 10.1063/1.4962635.

[16] Bowen Yang, Min-Feng Tu, Jeongwoo Kim, Yong Wu, Hui Wang, Jason Alicea,
Ruqian Wu, Marc Bockrath, and Jing Shi. Tunable spin–orbit coupling and
symmetry-protected edge states in graphene/ws2. 2D Materials, 3(3):031012, sep
2016. doi: 10.1088/2053-1583/3/3/031012.
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[20] Martin Gmitra, Denis Kochan, Petra Högl, and Jaroslav Fabian. Trivial and inverted
dirac bands and the emergence of quantum spin hall states in graphene on transition-
metal dichalcogenides. Physical Review B, 93(15):155104, April 2016. ISSN 2469-
9969. doi: 10.1103/physrevb.93.155104.

[21] Michael P. Zaletel and Jun Yong Khoo. The gate-tunable strong and
fragile topology of multilayer-graphene on a transition metal dichalco-
genide. arXiv (Condensed Matter, Mesoscale and Nanoscale Physics),
January 2019. doi: 10.48550/ARXIV.1901.01294. January 9, 2019,
https://arxiv.org/abs/1901.01294 (accessed 2023-09-01).
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[45] Lorenz Bauriedl, Christian Bäuml, Lorenz Fuchs, Christian Baumgartner, Nicolas
Paulik, Jonas M. Bauer, Kai-Qiang Lin, John M. Lupton, Takashi Taniguchi, Kenji
Watanabe, Christoph Strunk, and Nicola Paradiso. Supercurrent diode effect and
magnetochiral anisotropy in few-layer nbse2. Nature Communications, 13(1), July
2022. ISSN 2041-1723. doi: 10.1038/s41467-022-31954-5.

[46] Banabir Pal, Anirban Chakraborty, Pranava K. Sivakumar, Margarita Davydova,
Ajesh K. Gopi, Avanindra K. Pandeya, Jonas A. Krieger, Yang Zhang, Mihir Date,
Sailong Ju, Noah Yuan, Niels B. M. Schröter, Liang Fu, and Stuart S. P. Parkin.
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