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Chapter 1

Introduction

The magnetism of nanostructures such as thin films and clusters has been a well-
researched topic over the past 100 years. This began with Werner Heisenberg,
who in the 1920s raised his model explaining ferromagnetism, which was general-
ized throughout the years, and today it is a widely accepted method to describe
the magnetic excitations by means of Heisenberg Hamiltonians. Meanwhile thanks
to the development of experimental techniques such as the scanning tunneling mi-
croscopy (STM), nowadays surfaces can be investigated at an atomic level, and spin
chains can be created and controlled on these substrates with an atomic precision [1].
The mixing of superconductivity and magnetism has attracted considerable interest
since the discovery of Majorana bound states in magnetic chains on top of a super-
conducting surface [2–4], and it may open a new prospect in quantum computation.

In the past decades thin films have a great importance in the technological app-
lications, where their magnetic anisotropy plays a key role in several phenomena.
This property was first discussed by Néel in 1954 [5], where he predicted the perpen-
dicular interfacial anisotropy (PMA) as a result of the lowered symmetry at a surface
or interface. Since then a considerable interest has been focused on the magnetism
of thin films and multilayers. The interfacial nature of the PMA was experimentally
first demonstrated in the 1960’s on ultrathin NiFe films on Cu(111) [6]. This dis-
covery was followed by a plethora of work both from theoretical and experimental
points of view [7–10].

The most important practical use of magnetic anisotropy is in the magnetic
data storage technology where the information is stored by controlling the magnetic
orientation of a small magnetic domain that is retained by magnetic anisotropy. In
the early implementation of magnetic recording the magnetization of the bits was
parallel with the plane of the film. Application of materials with PMA triggered
the reduction of grain size, and thus resulted in an order of magnitude increase of
the storage density. The first technological application of perpendicular magnetic
recording was in 2005 [11], and recent reviews on PMA can be found in Refs. [12–14].
Today the PMA in the ultrathin magnetic films, heterostructures and nanostructures
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has an important role in the development of energy efficient and ultrahigh density
memory and logic devices. In order to further increase the storage density, the grain
size in the recording medium should be further decreased, which requires a high
uniaxial magnetic anisotropy of the thin film. Due to the large magnetic anisotropy
of the recording media the magnetic field produced by the write head might no longer
be sufficient to overcome the barrier to switch the magnetization. To circumvent this
issue a heat assisted magnetic recording (HAMR) was proposed [15–17]. In HAMR
the magnetic anisotropy is decreased by temporarily heating the domain storing the
information.

The magnetic anisotropy can be traced back to different contributions, namely
the magnetocrystalline anisotropy (MCA), and the shape anisotropy (SA). The for-
mer is significant in materials with strong spin–orbit coupling (SOC), which can
be enhanced by the combination of magnetic materials with heavy nonmagnetic
elements. This component ensures the stability of nanoscale magnetic domains,
particularly in thin films with PMA. The easy axis MCA in thin films often com-
petes with the SA created by the dipole–dipole interaction, the latter preferring an
in-plane orientation of the spins over a perpendicular alignment. The magnetization
direction of ferromagnetic PMA materials rotates to in-plane as the film thickness is
increased, which effect is called spin reorientation transition (SRT). Increasing the
temperature may also induce a SRT due to the different temperature dependence of
the MCA and the SA [18]. Since its discovery in the 1960s in NiFe(111)/Cu(111)
films [6], thickness- and temperature-driven SRTs have been observed in a wide range
of materials [18–21]. Understanding SRT is essential in engineering the thickness of
the layers in heterostructures for stable room-temperature spintronic applications.

The Dzyaloshinsky–Moriya interaction (DMI) [22, 23] is also attributed to the
SOC in systems with broken inversion symmetry, which naturally appears at mag-
netic-nonmagnetic interfaces. The DMI is responsible for the formation of chi-
ral noncollinear spin structures including spin–spirals [24], domain walls [25] and
skyrmions [26, 27], and leads to a nonreciprocal propagation of spin–waves [28].
Since DMI and MCA are both significant in the same magnetic-nonmagnetic inter-
faces, it is legitimate to raise the question whether DMI has an effect in the SRTs.
A positive answer was found by Rózsa [29], where they showed a mechanism, how
finite temperature spin fluctuations can cause the emergence of an effective dynamic
anisotropy term in the spin–wave spectrum.

Magnetic skyrmions and other similar localized spin structures, such as anti-
skyrmions, biskyrmions and merons have been in the center of interest in the last
decade. The studies showed, that the stability of these patterns can be traced
back to several mechanisms, such as the DMI [30], four-spin interactions [31], or
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the frustration of Heisenberg exchange interactions [32, 33]. These objects have
been found in several bulk materials and thin films [34]. Modern techniques make
possible to create, annihilate and move such objects [27], which can be regarded
as quasiparticles [35]. Their size of nanometers, exceptional stability and mobility
makes the skyrmions perfect candidates for usage in logical and high-density mem-
ory devices [36–38], and they form an emerging platform for future neuromorphic
and quantum computing [39].

In numerical simulations the magnetic atomic clusters and ultrathin layers are
frequently modeled by classical spin models [40]. The parameters of the spin Hamil-
tonians can be calculated from first principles using methods, such as the torque
method (TM) [41, 42] or the spin–cluster expansion technique (SCE) [43–45]. This
is a very effective method, Monte Carlo and spin dynamics simulations can repro-
duce and explain a myriad of phenomena, but their applicability is always limited
by the accuracy of input parameters (e. g. exchange couplings, anisotropies), by the
order of expansion of the spin–spin interactions, and the consideration of long-range
interactions especially in a large simulation.

In order to avoid using spin models the magnetic ground state of nanoclusters
can be determined directly from first principle calculations based on density func-
tional theory. The real-space linear muffin-tin orbital method in the atomic sphere
approximation (RS-LMTO-ASA) extended to non-collinear magnetic systems has
been successfully used to obtain the magnetic configurations of supported nanoclus-
ters [46–48]. Including the effects of spin–orbit coupling, this parameter-free method
was applied to explore the complex magnetic ground state of Mn nanowires on
Ag(111) and Au(111) [49], as well as of Cr nano-islands on Pd(111) [50]. Using the
constrained local moment method employed with the multiple scattering Green’s
function technique [51, 52], the existence of a canted magnetic state of a Co chain
along a Pt(111) surface step edge [53] was demonstrated from first principles in good
agreement with experiment [54]. Deriving explicit expressions for the torque acting
on the magnetic moments, the formation of a domain wall through a nano-contact
has been studied within an ab initio framework [55]. Using the same approach for the
torque and by solving the stochastic Landau–Lifshitz–Gilbert equations, it became
possible to perform finite temperature spin dynamics simulations for monatomic Co
chains on top of Au(001) [56].

In this thesis I use density functional theory (DFT) based electronic structure
calculations to describe electronic and magnetic structure of ultrathin films and
nanoclusters. Since the electronic degrees of freedom are much faster than the
magnetic ones, the two can be decoupled, and the magnetic structure is investigated
with a fixed electronic structure. As I described above, the magnetic structure
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can be obtained either by introducing effective spin models, or directly from the
electronic structure by finding the optimal magnetic ordering by using the ab initio
equations. In this work I present examples for both ways, which have advantages
and disadvantages too. The advantage of spin models is the smaller computational
effort, and that the temperature effects can be easily considered in the spin dynamics
calculations. On the other hand an ab initio method still describes the system
better because a less simplified model of the physical system means less chance
that our model cannot reproduce the more complicated spin structures found in the
experiments.

This work is organized in the following way: first in Chapter 2 I present the basics
of the methods I used. The electronic structure of the systems is determined in terms
of the fully relativistic screened Korringa–Kohn–Rostoker (SKKR) method [57–59]
(Sec. 2.1). Then I present how spin models can be set up to describe a magnetic thin
film or a cluster of atoms, and how the appropriate coupling and anisotropy param-
eters can be obtained by using the method of infinitesimal rotation and spin–cluster
expansion technique (Sec. 2.2). This is followed by the description of Monte Carlo
simulations, and the well-tempered metadynamics method [60, 61] (Sec. 2.3), which
was used to investigate the temperature dependent magnetic anisotropy energy of
ultrathin films, and the equilibrium value of magnetic skyrmions in a lattice. The
final section of this chapter discusses the ab initio energy minimisation scheme (Sec.
2.4), which was used to obtain the ground state of magnetic clusters.

Chapter 3 discusses the studies on magnetic anisotropy energy and spin reori-
entation transitions in magnetic ultrathin films. First I present the metadynamics
method on model systems to formulate the general rules of the SRTs, and how the dif-
ferent distribution of anisotropy can cause a different kind of SRT. This is followed
by two real, experimentally motivated thin films: Fen/Au(001) and Fe2/W(110).
The first example is a well researched ferromagnet, which shows a typical temper-
ature dependent behaviour [19, 62]. The second, due to its lower symmetry, has a
much more interesting behaviour. The observed SRT [46, 63, 64] was investigated
in details with respect to the effect of the DMI, which can cause an effective finite
temperature magnetic anisotropy term, described in Ref. [29].

In Chapter 4 I present the study on the temperature dependence of equilib-
rium topological charge of a lattice. This quantity – in some cases – can be in-
terpreted as the number of skyrmionic textures, and thus I show how the chemical
potential of skyrmions and antiskyrmions can be evaluated. This analysis was per-
formed on the ultrathin skyrmion–hosting films, namely (Pt0.95Ir0.05)/Fe/Pd(111)
and Pd/Fe/Ir(111).

Chapter 5 contains the results of the ab initio optimisation of magnetic clusters
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of atoms. Here I present three systems: Fe chains on top of Re(0001), Rh(111),
and Nb(110) substrates. This part extends to demonstrate the effect of the angular
momentum cutoff ℓmax used for the partial waves in multiple scattering theory on the
magnetic structure, and I present a comparison of results gained from direct first
principle and spin model calculations. I show how the experimentally measured
spin–spiral structure can be reproduced theoretically by ab initio optimisation of
magnetic moments.

The thesis is end with a summary of the conclusions and my thesis statements.
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Chapter 2

Methods

In this chapter I present a brief summary of density functional theory and Korringa–
Kohn–Rostoker multiple scattering theory, which I used to obtain the electronic
structure of the investigated systems. The magnetic degrees of freedom of the sys-
tems are usually described by a classical Heisenberg spin model. I introduce the
general formula, and describe the terms I use later. I present the relativistic torque
method and the spin–cluster expansion technique, which were used to calculate the
magnetic exchange parameters. I used Monte Carlo based well-tempered metady-
namics simulations to describe the finite temperature effect of the spin systems.
Here I present the basis of Monte Carlo simulations, and introduce why the well-
tempered metadynamics is useful tool. The detailed description of the method and
phenomenon based peculiarities are presented later in the respective Chapters for
the magnetic anisotropy energy (Chap. 3) and skyrmion creation and annihilation
(Chap. 4). The chapter finishes with the description of the conjugate gradient
optimization method.

2.1 Calculating the electronic structure

The most ideal solution for acquiring the properties of a H quantum system would
be solving the time independent Schrödinger equation:

(En −H)Ψn = 0 . (2.1)

In practice this option is only viable for a very few systems such as the hydrogen
atom, the quantum harmonic oscillator or Hooke’s atom. In the presence of more
and more interacting particles the calculations become more and more difficult, and
for solids, where the number of the interacting atoms N is so high (N ≈ 1023), the
computational capacities mean another limit. The common solution is replacing the
many-particle system with a single-particle system with some effective interaction.
This simplification can be done within the terms of the density functional theory [65,
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66]. The single particle problem can be solved for the atomic-scale volume, and
then the solution can be expanded to the whole space by considering the scattering
between the cells. For this purpose we use the Korringa–Kohn–Rostoker multiple
scattering theory [57, 58]. In the following I present the core ideas of this theory,
but the curious reader can find more details in a lecture note [67] and book [68] or
in PhD dissertations of similar topics [69–71].

2.1.1 Density functional theory

The density functional theory (DFT) relies on the two Hohenberg—Kohn theo-
rems [65]. The first one claims that there is a bijective relationship between the
external potential and the ground state density and according to the second one the
exact ground state density minimizes the energy of the system. In order to make
the electronic structure calculations tractable within DFT Walter Kohn and Lu Jeu
Sham [66] introduced the following approximations. They decomposed the energy
of the system as:

E[ϱ] = T +

∫
V [ϱ]d3r+ EC[ϱ] + Exc[ϱ] , (2.2)

where

T [ϱ] =
∑

i

∫
φ∗
i (r)

(
− ℏ2

2m
∇2

)
φi(r)d

3r (2.3)

is the kinetic energy of non-interacting particles, V is an external potential, EC is
the energy of the electrons due to the Coulomb repulsion:

EC =
e2

2

∫ ∫
ϱ(r)ϱ(r′)

r− r′
d3r′d3r (2.4)

and Exc is the exchange-correlation energy, where all correlation effects are con-
tained. They further supposed that the ground state electron density ϱ can be
reproduced by a density of non-interacting particles moving in a Veff effective po-
tential:

ϱ =
∑

i∈occ.

|φi(r)|2 , (2.5)

where the i index runs over the occupied orbitals and the φi wave-functions satisfy
the following Schrödinger equation:

(
p2

2m
+ Veff

)
φi = εiφi . (2.6)
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The above Kohn–Sham equation can be easily derived by applying the variational
principle on the energy given in Eq. (2.2). The effective potential can be obtained
as:

Veff = V (r) + VH(r) + Vxc(r) , (2.7)

where VH(r) is the Hartree potential:

VH(r) =

∫
ϱ(r′)

|r− r′|d
3r′ , (2.8)

and Vxc(r) stands for the functional derivative of the exchange-correlation energy
with respect of the density:

Vxc(r) =
δExc

δϱ
. (2.9)

Whenever spin–orbit coupling plays an important role in a phenomenon the
electronic structure of the system can be described by the relativistic Kohn–Sham–
Dirac equation:

(
cαp+ βmc2 + VeffI4 + µBβΣBeff

)
Ψn = εnΨn , (2.10)

where Ψn is a bispinor eigenstate with four components, µB = eℏ
2me

is the Bohr
magneton, c is the speed of light, me and e is the mass and charge of an electron.
The I4 is the 4× 4 identity matrix, the Σ, and the α and β the Dirac matrices, are
defined as the following:

Σ =

(
σ 0

0 σ

)
α =

(
0 σ

σ 0

)
β =

(
I2 0

0 −I2

)
, (2.11)

where σ are the Pauli matrices, and I2 is the 2× 2 identity matrix.
The density and magnetization density in relativistic formalism can be given as:

n(r) =
∑

n

ψ†
n(r)ψn(r) (2.12)

m(r) = −µB

∑

n

ψ†
n(r)βΣψn(r) . (2.13)

In Eq. (2.10) a new effective field Beff has been introduced which is the sum of the
external magnetic field and the exchange-correlation field. The exchange-correlation
field is the functional derivative of the exchange-correlation energy with respect of
the magnetization density:

Bxc =
δExc

δm
(2.14)

Unfortunately the exact form of the exchange-correlation energy functional is not
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known. In the present thesis the local density approximation (LDA) is used for
all the electronic structure calculations. In LDA the exchange-correlation energy
density is approximated by the energy density of the uniform electron gas:

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ(r)) d

3r (2.15)

2.1.2 Multiple scattering theory

Instead of solving the (2.1) Schrödinger equation, in scattering theory we define the
resolvent operator:

G(z) = (z −H)−1 , (2.16)

where H is the Hamiltonian of the system, and z is a complex number outside of
the {εn} spectrum of H. The coordinate representation of the resolvent operator is
called the Green’s function:

G(z, r, r′) =
∑

n

ψn(r)ψ
∗
n(r

′)

z − εn
. (2.17)

A local density of an operator A (e. g. n – electron density) can be calculated from
the Green’s function:

A(r) = − 1

π
Im

∫
f(z, µ)Tr(AG+(z, r, r))dz , (2.18)

where f(z, µ) = (1+e(z−µ)/kBT )−1 is the Fermi function, µ is the chemical potential,
and G+ denotes the limit of the Green’s function as the complex energy z approaches
the real axis from the direction of positive imaginary part.

In the Korringa–Kohn–Rostoker scattering theory we describe the solid state
systems as a perturbation with respect to a chosen reference system i. e. the free
space, so the H Hamiltonian is divided into two parts: the reference system H0 and
a V perturbation (the potential):

H = H0 + V . (2.19)

The volume of the solid state system is also partitioned. A usual way is the so
called muffin-tin method [72], where the space is divided between nonoverlapping
spheres and an interstitial region of constant potential. In our implementation we
use a slightly different approach. The space is also divided to spheres centered at
the atomic positions, but the total volume of the spheres equals to the volume of
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the system, so in this way there is some overlap between the spheres. This is the
so-called atomic sphere approximation (ASA). The perturbation potential is also
divided between the atomic sites:

V =
∑

Ri

Vi , (2.20)

where Vi is the single site potential centered at Ri, which is restricted to sphere
around Ri. If the cells and the atomic potentials have spherical symmetry, we can
use effective potentials which reflect this symmetry. In this case, the Kohn–Sham–
Dirac equation is simplified to a radial equation, which has to be solved within a
single cell.

The Green’s function belonging to the reference system H0 is defined:

G0(z) = (z −H0)
−1 , (2.21)

similarly to G(z). Assuming the free particle as the reference system, G0 is known,
and the perturbation can be included as the Green’s function G of the interacting
system is expanded into a Born series, and this way we get the single site ti operator:

ti(z) = Vi + ViG0(z)ti(z) = · · · = (I − ViG0(z))−1 Vi , (2.22)

where I is the identity operator. The scattering events can be easily described if we
use the angular momentum expansion of the operator ti, and of the Green’s function
G0:

t = {tiδij} G0 = {G0i,j(1− δij)} τ = {τij} , (2.23)

where τij is the so-called scattering path operator (SPO) between site i and j, which
describes the possible scattering events between the i and the j sites. In Eq. (2.23) ti,
G0ij and τij are matrices with their sizes determined by the the angular momentum
cutoff ℓmax. The connection between the three quantity can be simply written in
the matrix form as the following:

τ =
(
t−1 −G−1

0

)−1
. (2.24)

With knowledge of the SPO and the solutions of the Kohn–Sham–Dirac equation,
the real space representation of the Green’s function can be calculated using the
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following formula:

G(z,Ri + ri,Rj + rj) =
z +mc2

2mc2

∑

Q,Q′

ZQ
i (z, ri)τ

Q,Q′

i,j ZQ′

i (z∗, rj)
†

− δij
z +mc2

2mc2

∑

Q

(
ZQ

i (z, ri)J
Q(z, r′i)

†Θ(r′i − ri)

+ZQ
i (z

∗, r′i)
†JQ(z, ri)Θ(ri − r′i)

)
(2.25)

where Ri is the position of site i, ZQ
i (z, ri) and JQ(z, r′i) are the regular and irregular

solutions of (2.10) Kohn–Sham–Dirac equation using the Bristol convention [73] with
Q = (κ, µ) a composite angular momentum quantum number, where κ and µ are
connected to the J and Jz total angular momentum. Finally Θ(x) denotes the
Heaviside function.

The electron density can then be calculated using (2.18):

n(r, z) = − 1

π
f(ε)ImTrG+(z, r, r) . (2.26)

After an energy integration we get n(r), which can be substituted back into the
exchange correlation energy and magnetic field, and then to the Kohn–Sham–Dirac
equation again. This way we can calculate again self consistently until obtaining
the desired precision. On the other hand if we perform a real space integration of
Eq. (2.26) we get the n(ε) density of states, which can be used to calculate the
band energy, the torque acting on the magnetic moments and finally spin model
parameters, that describe the system.

2.1.3 Numerical challenges

Theoretically, the t, τ , and G matrices are infinite in both the site i and angular
momentum Q indices, which should be treated for the numerical application. The
angular momentum expansion is usually truncated by choosing a maximum value
ℓmax for the orbital angular momentum quantum number. Due to spin and magnetic
quantum numbers, overall this reduces the dimension to 2(ℓmax + 1)2 Q indices.
Choosing ℓmax = 2 or ℓmax = 3 is usually enough to produce a good description of
the systems we investigated.

A bulk system in a crystal lattice has a discrete translational invariance in the
direction of all three base vectors and the Green’s function can be calculated in
Fourier space. If necessary an inverse Fourier transform can be performed to get it
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in real-space. The accuracy of the electronic structure calculation depends on the
number of k vectors used for calculating the τ matrices.

The KKR structure constant G0ij decays as 1

rℓ+1
ij

with the separation between
sites i and j. This long range behaviour does not permit the calculations of the
Green’s function in real-space. In layered systems, such as a surface or an interface
only two-dimensional translation invariance is present and the Fourier transform only
partially solves our problem. This unfavorable property of the structure constant
still remains in a direction normal to the surface. In order to overcome this difficulty
a so called screened representation of the Green’s function is applied. A detailed
description of the screened KKR (SKKR) method can be found in Refs. [59, 74]. The
basic idea of the screening transformation is the introduction of a repulsive potential.
Treating the new potential construction as a reference system the Green’s function
falls off exponentially with distance, thus allowing the inversion of sparse, in the case
of layered systems block tridiagonal matrices. The screening transformation can be
considered as a special case of the embedding technique, and will be detailed in the
next section. In practice both the bulk systems and interfaces are investigated with
the same layered code to ensure the minimal numerical difference.

Here it is important to mention that the layer–layer distances close to the surface
or interface must be also optimized in order to be able to reproduce experimental
results. Since the KKR method is not the perfect choice to find the optimal geo-
metric structure due to the muffin-tin potential construction and ASA usually the
relaxations are obtained by using the Vienna ab initio Package (VASP) [75].

2.1.4 The embedded cluster method

Figure 2.1: Concept of the embedded cluster method. The blue spheres denote the
substrate atoms, whereas the white ones belong to the empty positions above the interface.
The atoms of the cluster – denoted by red spheres – are placed in the vacuum positions.
The black polygon surrounds the first neighbourhood of the cluster, which – as expanded

cluster – is taken into account in the calculation.

The above described SKKR method is only suitable to describe layered systems
with 2D discrete translation symmetry. This condition is obviously not fulfilled for a
cluster of finite number of atoms. In this case the so-called embedding technique [74,
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76] has to be used. Usally we assume, that the magnetic cluster is positioned on the
surface of a hosting substrate. In this case the cluster changes the electronic struc-
ture in its close neighbourhood. So for a proper desciption not only the magnetic
atoms, but also their environment is taken into account in the embedding scheme,
as shown in Fig. 2.1. The number of included surrounding shells is system specific,
but usually 1–2 shell is enough to describe the whole perturbation caused by the
magnetic atoms. As this method assumes that the electronic properties of a host-
ing substrate are already known, it can act as a reference system (r) for further
calculations. Based on Eq. (2.24), we can give the SPO of the reference system:

τ r =
(
t−1
r −G−1

0

)−1
. (2.27)

Similarly, the SPO for the interested system (s) can be written as the following:

τ s =
(
t−1
s −G−1

0

)−1
. (2.28)

From the difference of Eq. (2.27) and (2.28) we can get the following formula:

τ s = τ r

(
I− (∆t)−1 τ r

)−1
, (2.29)

where I is the identity and

(∆t)−1 = t−1
r − t−1

s . (2.30)

Since this only differs from zero for the cluster atoms, (2.29) can be rewritten into:

τC
s = τC

r

(
I−

(
∆tC

)−1
τC
r

)−1

, (2.31)

where C denotes the site indices inside the extended cluster (see Fig. 2.1). Note
that this cluster contains not only the magnetic atoms, but the atomic sites from the
host system surrounding it. This way we have to deal with matrices of dimension of
only N × (ℓmax + 1)2, where N denotes the number of sites in the extended cluster.

In the practice all these mentioned procedures for bulk, thin layers or atomic
clusters are repeated successively in a self consistent way until the error for the
potentials reaches a predefined desired precision.
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2.2 Heisenberg spin model

The adiabatic approximation [40] makes possible to decouple the electronic and spin
degrees of freedom of a magnetic system. In the spirit of the rigid spin approxima-
tion, the magnitude of the spins in the system is assumed constant, making possible
to describe the magnetization at site i by a direction given by a unit vector si, and
the magnetic state of an N atomic system can be described by a set of {si} spin
vectors. As introduced in the beginning of my work, the energy of the interacting
spin system is often described by a classical Heisenberg Hamiltonian. From this
point generally our spin Hamiltonian has the following form:

H =
∑

i ̸=j

sTi Ji,jsj +
∑

i

sTi Kisi , (2.32)

where si is unit vector parallel to the atomic magnetization at site i, Ji,j is 3 × 3

tensor of exchange interactions, which can be decomposed into three parts in the
following way [42]:

Ji,j =
1

3
Tr (Ji,j) I+

1

2

(
Ji,j − JT

i,j

)

+
1

2

(
Ji,j + JT

i,j −
2

3
Tr (Ji,j) I

)
. (2.33)

The |i − j| spatial cutoff is system specific: e. g. for a short atomic spin chain the
number of coupling parameters is low, and all can be included, but theoretically
for a plane this number can be infinitely high, so one has to omit the negligible
ones. The three parts of the Ji,j tensor can be interpreted as the following: the first
Ji,j =

1
3
Tr (Ji,j) term is the isotropic Heisenberg exchange coupling. The second

JA
i,j =

1

2

(
Ji,j − JT

i,j

)
(2.34)

antisymmetric part is related to the Dzyaloshinsky–Moriya interaction (DMI):

sTi J
A
i,jsj = Di,j (si × sj) (2.35)

This type of exchange interaction was discovered by Dzyaloshinsky [22] and by
Moriya [23]; it appears as a consequence of the relativistic spin–orbit coupling (SOC).
The last, symmetric traceless part of the Ji,j second order tensor:

JS
i,j =

1

2

(
Ji,j + JT

i,j −
2

3
Tr (Ji,j) I

)
(2.36)
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describes classical dipolar and SOC-induced pseudo-dipolar anisotropy contribu-
tions. It is commonly referred as the two-site anisotropy of the system. Finally,
Ki is an on-site anisotropy tensor at site i. The sum of the on-site and two-site
anisotropy matrices, as a 3× 3 matrix has 3 eigendirections. The direction with the
lowest energy eigenvalue is called easy direction and it is the preferred magnetization
direction for a ferromagnetic system.

Note that the odd order terms in si are missing in Eq. (2.32) due to the time-
reversal symmetry. In this work only second order terms are considered, but it has
to be mentioned, that recently there are works that include higher order terms of
spin–spin interaction in order to obtain higher accuracy of the results [77].

In general the largest energy contribution comes from the isotropic exchange.
The DMI and the on-site and two-site anisotropy constants are smaller by a scale.
Regardless of the scale of these parameters they should reflect the symmetry of the
system.

In the the following I present two different methods, which can be used to obtain
the spin model parameters: the relativistic torque method or method of infinitesi-
mal rotations, and the spin–cluster expansion, which two were both used for some
calculations in this work.

2.2.1 The relativistic torque method

It was demonstrated first by Liechtenstein et al. [41], how Heisenberg exchange
interactions between pairs of spins may be determined based on the derivatives of
the energy i. e. the torque acting on the spins. Later this torque method or the
method of infinitesimal rotations was generalized for relativistic systems by Udvardi
and his coworkers [42] and it is a commonly used method today.

In the spirit of the magnetic force theorem [78], Veff(r) potential and Beff(r)

exchange field are kept fixed for small changes of the magnetic orientations. This
implies that the number of the electrons in a finite cluster is not preserved, therefore,
the variation of the energy of the system at zero temperature is replaced by the
variation of the grand potential, Ω = E − εFN , where the energy E of the system
is approximated by the single particle (band) energy,

∆Ω =

εF∫

−∞

∆n(ε)(ε− εF)dε = −
εF∫

−∞

∆N(ε)dε , (2.37)



2.2. Heisenberg spin model 17

where εF is the Fermi energy and N(ε) =
∫ ε

−∞ n(ε′)dε′ is the integrated density of
states (DOS). The main advantage of this formula is that in the multiple scattering
theory it can easily be calculated using Lloyd’s formula [42, 79].

It is straightforward to derive a formula for the first order change of the grand
potential when the exchange correlation field in an atomic sphere at site i is rotated
around a unit vector ni with an angle of ∆φi:

∆Ω
(1)
i = Ti∆φi , (2.38)

where ∆φi = ni∆φi, and the Ti is the torque, defined as:

Ti =
1

π

EF∫

−∞

ImTr

(
i

ℏ
[
J, t−1

i

]
τii

)
dε , (2.39)

where J = L+S is the matrix of the total angular momentum operator, ti and τii are
the single-site scattering matrix and the scattering path operator, respectively, de-
fined previously in Sec 2.1. Similarly the second order change of the grand potential
due to the rotations at sites i and j by ∆φi and ∆φj, respectively:

∆Ω
(2)
ij =

1

2
∆φiHij∆φj , (2.40)

where Hij is the Hessian matrix, defined as:

Hij =
1

π

EF∫

−∞

1

ℏ2
ImTr

([
J, t−1

i

]
τij
[
J, t−1

j

]
τji

−δij
{[
J,
[
J, t−1

i

]]}
τii
)
dε . (2.41)

The first and second derivatives need not to be calculated for arbitrary rotation
axes, since every infinitesimal rotation of the direction si may be expressed as a
linear combination of rotations around two vectors, which are linearly independent
from each other and si. We will choose these fixed directions in such a way that
the vectors e1i, e2i, and si form an orthonormal right-handed system as shown in
Fig. 2.2, and the rotations are chosen as:

∆φi = ∆φ1ie1i +∆φ2ie2i , (2.42)

where the rotation angles ∆φ1i, and ∆φ2i are defined to be positive for right-handed
rotations.
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si

∆φ1i

∆φ2i

s′i

e1i

e2i

Figure 2.2: Rotation of si magnetization vector around the orthogonal directions e1i and
e2i by angles ∆φ1i and ∆φ2i, respectively.

We can calculate the same derivatives for the (2.32) general classical Heisenberg
model. The first derivatives with respect to the rotation of si at site i are:

∂H

∂∆φ1i

= −
∑

j

e2iJi,jsj −
(
eT2iKisi + sTi Kie2i

)
(2.43)

∂H

∂∆φ2i

=
∑

j

e1iJi,jsj +
(
eT1iKisi + sTi Kie1i

)
, (2.44)

where we used that ∂si/∂φli = eli × si and e1i × e2i = si . The similarly the second
derivatives:

∂2H

∂∆φ1i∂∆φ1j

= e2iJi,je2j for i ̸= j , (2.45)

∂2H

∂∆φ2i∂∆φ2j

= e1iJi,je1j for i ̸= j , (2.46)

∂H

∂∆φ1i∂∆φ2i

= −e1iJi,je2j for i ̸= j , (2.47)

∂H

∂∆φ2i∂∆φ1i

= −e2iJi,je1j for i ̸= j , (2.48)

∂2H

∂∆φ1i∂∆φ1i

= −
∑

j

siJi,jsj + 2
(
eT2iKie2i − sTi Kisi

)
for i = j , (2.49)

∂2H

∂∆φ2i∂∆φ2j

= −
∑

j

siJi,jsj + 2
(
eT1iKie1i − sTi Kisi

)
for i = j , (2.50)

∂H

∂∆φ1i∂∆φ2i

=
∂H

∂∆φ2i∂∆φ1i

= −
(
eT1iKie2i + eT2iKie1i

)
for i = j . (2.51)

From the Eqs. (2.45)-(2.48) only the four transverse components of the Jij ma-
trix can be obtained supposing a ferromagnetic reference configuration. In order
to determine the full Jij matrix the second derivatives of the band energy must be
calculated for three or more ferromagnetic orientations and the matrix can be ob-
tained by fitting Eqs. (2.45)-(2.48). The diagonal elements of the on-site anisotropy
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Ki can be obtained from the difference of Eqs. (2.49) and (2.50). Note that in this
way it is only possible to calculate the difference of two diagonal elements of Ki,
but such a shift in free energy does not influence the magnetic configuration.

The magnetic dipole-dipole interaction

Dij = mimj
rijδij − 3rij ◦ rij

r5ij
, (2.52)

also has a two-site anisotropy contribution but it is usually weaker than other con-
tributions, and often it is omitted from the simulations.

2.2.2 The spin–cluster expansion method

Whereas the torque method uses a ferromagnetic ground state to obtain the spin
model parameters by calculating the infinitesimal rotations, in the spin–cluster ex-
pansion (SCE) [43, 44] the band energy is calculated in the paramagnetic state,
where the directions of the exchange field on different sites have a uniform distribu-
tion on the unit sphere.

The grand potential can be expanded using real space harmonics YL(si), where L
is a composite angular momentum index for (l,m), which up to second order looks
as the following:

Ω = Ω0 +
∑

i

∑

L̸=(0,0)

JL
i YL(si) +

1

2

∑

i ̸=j

∑

L̸=(0,0)

∑

L′ ̸=(0,0)

JL,L′

ij YL(si)YL′(sj) , (2.53)

where Ω0 = ⟨Q⟩, and the integrals are

JL
i =

∫
⟨Q⟩siYL(si)d2ei , (2.54)

and

JL,L′

i,j =

∫∫
⟨Q⟩si,sjYL(si)YL′(si)d

2eid
2ej . (2.55)

Here ⟨·⟩ means an average for all possible configurations, and in Eqs. (2.54) and
(2.55) the noted si spins are fixed during the averaging process. For further details
a more comprehensive description of the method can be read in Ref. [69].

Note that the torque method (TM) and the SCE technique use different spin
configurations to obtain the exchange parameters. The TM relies on ordered spin
configurations, which respects the symmetry of the system. In general this means a
collinear ferro-, or antiferromagnetic reference, which are in most cases the ground
state of the system. On the other hand, the SCE calculations rely on a disordered,
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paramagnetic state as a reference, which often provides more realistic exchange
parameters than the TM for noncollinear magnetic systems. This implies that the
TM is better suited to describe the collinear ground state and low temperature
excitations, whereas the SCE based parameters better describe the non collinear,
high temperature magnetism.

Usually the coupling parameters are used in Monte Carlo (MC) and Landau-
Lifshitz-Gilbert spin dynamics simulations [56] to obtain the magnetic configuration.
In my work I used a MC simulation based method called metadynamics, which I
present in detail in the following section.

2.3 Monte Carlo simulations

2.3.1 The Metropolis algorithm

A Monte Carlo simulation is a powerful tool to numerically compute integrals such
as thermodynamics average of different quantities by using random positions, called
samples. The choice on sampling is essential to gain correct results, and a common
choice is using Markov-chain algorithms. In this case the new sample (b) is always
based on the previous one (a) with a finite probability of this transition. An al-
gorithm is proved to be good, if the so-called detailed balance is fulfilled for every
possible a and b samples:

π(a)P(a→ b) = π(b)P(b→ a) , (2.56)

where probability P(a→ b) of changing sample from a to b and π(a) is the stationary
probability of sample a. The Metropolis algorithm [80] is one of the most frequently
applied choice to obtain the probability P(a→ b):

P(a→ b) = min

[
1,
π(b)

π(a)

]
. (2.57)

If π(b) > π(a) i. e. the final sample is more probable than the initial, then P(a →
b) = 1, and id π(b) < π(a) then the change only appears with a smaller probability.

In my work I investigate spin systems, where each sample can be matched to
a configuration and the change is rotation of si to s′i. The probability of a spin
configuration {si}Ni=1 at a finite temperate depends on its energy given by the spin
Hamiltonian of the system. Thus we get the following expression:

P(si → s′i) =




e−β[E(s′i)−E(si)] if ∆E > 0

1 otherwise,
(2.58)
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where β is the inverse temperature and E(s) is the energy of the spin configuration
given the spin model Hamiltonian of the system. This algorithm works very well for
simpler cases, but as more complex spin structures appear the sampling of the whole
configuration space becomes more cumbersome due to the larger energy barriers.
The computational time is increased, and in worse cases the results will correlate
with the initial configuration, which must be avoided. That is the reason why more
sophisticated methods are needed to use.

2.3.2 Metadynamics

Adaptive bias potential methods, such as Wang-Landau algorithm [81], umbrella
sampling [82] and metadynamics [60], are widely used to compute the free energy
landscapes. If the local minima of the free energy of a system are separated by high
energy barriers simulations often get stuck leading to extremely long running time
and false conclusions. In adaptive bias potential method the bias potential contin-
uously evolves during the simulation and destabilizes states that have already been
visited. In my thesis metadynamics has been chosen to study magnetic anisotropy
and spin reorientation transition in thin films, and for investigating the evolution of
topological charge in skyrmionic systems.

Metadynamics was first introduced by Alessandro Laio and Michele Parinello in
2002 [60]. In this algorithm the biasing potential is constructed as a sum of Gaussians
centered along a trajectory of a random walker in the space of collective variables
(CVs). In their initial work of the method Laio et al. tested the method on chemical
reactions, such as the dissociation of NaCl in water or the isomerization of alanine
dipeptide in water [60]. In this work the CVs were the distance rNa−Cl between Na
and Cl ion and the electric fields VNa and VCl on the Na and on the Cl in the first
study and in the second study they were the backbone dihedral angles. Already from
these examples it can be seen that the choice and the exact number of collective
variables depend on the investigated system and phenomena we are interested in.
In our particular case the out-of-plane component of the collective magnetization
has been chosen to be the CV for studying magnetic anisotropy and the topological
charge for investigating magnetic skyrmions. The algorithm was improved during
the years, the adaptively changing height of the Gaussians facilitated the smooth
converge of the biasing potential – well-tempered metadynamics [61] –, and this
algorithm was proved to converge to the exact free energy [83].

In its first implementation, in chemistry [60] the drive of the walker was based
on molecular dynamics [60], but later it was successfully implemented in Monte
Carlo simulations as well [84–86]. In solid state physics Tobik et al. [86] used
metadynamics to sample the free energy surface (FES) of a vortex in a nanodot, and
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very recently similarly to us, Charalampidis et al. used this method to investigate
the effect of thermal spin fluctuations on skyrmion stability [87]. For our purposes
metadynamics has been applied in MC simulations. Considering a Monte Carlo step
(MCS) as a time step, the bias potential becomes time dependent. After every τ

MCS a Gaussian potential centered at the actual value of the CV (ηact), is added to
the biasing potential:

Vbias(η, t+ τ) = Vbias(η, t) + VG(η − ηact) , (2.59)

VG(η − ηact) = we−
(η−ηact)

2

2σ , (2.60)

where σ and w are the width and the height of the Gaussian, respectively. In well-
tempered metadynamics [61] the height of the Gaussian depends on the actual value
of the bias potential.

In our metadynamics implementation we applied a simple Metropolis algorithm,
where during the calculation of the change of the energy in a trial the change of the
bias potential has been also included. The probability of acceptance of a random
change defined in Eq. (2.57) has the following form:

P (si → s′i) =




e−β[E(s′)+Vbias(η(s

′))−E(s)−Vbias(η(s))] if ∆ (E + Vbias(η)) > 0

1 otherwise,
(2.61)

where s and s′ denote the spin configuration before and after the si → s′i change
was made on site i.

Due to the bias all configurations belonging to the same CV value η become less
preferable and the walker moves to another configuration, but the history of the
walk is stored in the biasing potential. After a predefined number of Monte Carlo
steps the biasing potential is updated by adding a Gaussian centered at the actual
value of the CV with the height of

w = w0e
− Vb(η)

kBTm , (2.62)

where Tm is an appropriately chosen temperature as it is explained in the procedure
of well-tempered metadynamics [61]. Performing a fairly large number of steps the
free energy is sampled in the whole range of CV. In well-tempered metadynamics
the bias potential becomes stationary and the free energy F (T ) of the system is
identified with the negative of the bias potential. Due to the introduction of the
Tm temperature in the well-tempered calculations the connection between the free
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energy and the biasing potential is the following:

F (T ) = −Vb(η(T )) = −
T + Tm
Tm

Vbias(η(T )), (2.63)

where η(T ) stands for the equilibrium value of the CV [83].

2.4 Ab initio optimization of magnetic configura-

tion for atomic clusters

Building up a classical Heisenberg model-based on first principle calculations turned
out to be an effective and successful way of exploring magnetic properties of several
systems. However, there are situations where the inclusion of higher order magnetic
interactions are necessary for the right description of magnetic properties. Ab initio
calculation of higher order interactions is also possible [44], but their large number
makes the simulations hardly tractable. For small atomic clusters the direct op-
timization of the magnetic structure without any underlying magnetic model is a
passable way. In the present thesis a modified version of the conjugate gradient and
Newton–Raphson methods [55] have been used to find the magnetic ground state of
deposited clusters from first principles. The method is implemented into the SKKR
framework applying the usual approximations (see Sec. 2.1): the magnetic moment
of an atom is calculated in a corresponding atomic sphere, the direction of the ex-
change field is supposed to be constant within an atomic sphere only its magnitude
has a radial dependence. As a starting point the electronic structure of the host
system – a semi infinite substrate and semi infinite vacuum – is calculated. The
electronic structure of a deposited magnetic clusters is described by the embedded
cluster technique (see Sec. 2.1.4): the effective potential of the cluster atoms replace
those of the vacuum positions on the surface of the substrate and the new effective
potentials and fields are self-consistently iterated.

In case of spin model-based techniques at this point the exchange coupling and
anisotropy parameters are evaluated and any further optimizations are done within
the magnetic model (e. g. classical Heisenberg model). In our case the exchange field
on each magnetic atom is rotated to find the optimal directions and the Veff effective
potentials and Bxc exchange-correlation fields are recalculated. The procedure is
continued as long as the errors decrease below a predefined value. In the case of
simple systems a simultaneous iteration of the direction of the exchange field, of the
effective potential and of the exchange-correlation field works flawlessly [55]. How-
ever, in case of complex magnetic structures, e. g. for frustrated antiferromagnetic
or for spin-spiral ground states, the convergence of the above scheme might be less
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satisfactory. Here comes the idea to estimate the change of the energy of the system
with respect to the change of the orientation of the magnetization the same way as
for obtaining the spin model parameters for the torque method in Sec. 2.2.1. The
formulas for the grand potential, and its first and second derivatives for a cluster
can be found in Eqs. (2.37), (2.38), and (2.40).

The detailed description of the method is the following: At first Veff and Bxc are
fixed and we search for the directions of the exchange correlation field si at each sites
corresponding to the lowest free energy. Once the minimum of the grand potential
Ω is found the set of si is kept frozen and Veff,i and Bxc,i are iterated. The whole
procedure is repeated until the error of the effective potential and the exchange
correlation field as well as the torque on each site gets smaller than a predefined
value.

Note that during the optimization si is moving on the surface of a unit sphere.
The minimum of the free energy should be found on the direct product of the unit
spheres, thus the standard optimization methods working in Euclidean space do
not apply. Instead, an extension of the conjugate gradient algorithm to Riemann
manifolds has been used [88–90]: Let t

(k)
i be the torque vector for site i at the

kth step of iteration. At the start of the iteration t
(0)
i is set to equal Ti given by

Eq. (2.39). As a first step of the iteration we look for the minimum of the grand
potential with respect of α,

Ω(α) = Ω
{
O
(
n
(k)
i , αt

(k)
i

)
si

}
, (2.64)

where t(k)i = |t(k)i |, n(k)
i = t

(k)
i /t

(k)
i and O(n, φ) denotes a rotation around a vector

n with an angle of φ. This way every si spin is rotated around the local torque t
(k)
i

by an angle which is given by a product of the local magnitude of the torque t(k)i

and a global parameter α. Once the minimum with respect to α is found for the
next iteration step k + 1 we recalculate the torque T

(k+1)
i using Eq. (2.39) now in

the new configuration, and the effective torque for the next iteration step is set by
mixing T

(k+1)
i with t

(k)
i :

t
(k+1)
i = T

(k+1)
i + βit

(k)
i , (2.65)

where the multipliers βi are set by the Polak-Ribière formula [91]:

βi =

(
T

(k+1)
i −T

(k)
i

)
T

(k+1)
i

T
(k+1)
i T

(k)
i

. (2.66)

The iteration is repeated until satisfactory convergence is achieved.
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The efficiency of this optimization scheme is increased by using the Newton-
Raphson method adopted to the Riemann manifold. Using Eqs. (2.38) and (2.40)
the change of the grand potential up to second order can be written as:

∆Ω =
∑

i

∆Ω
(1)
i +

1

2

∑

ij

∆Ω
(2)
ij =

=
∑

i

Ti∆φi +
1

2

∑

ij

∆φiHij∆φj . (2.67)

The component of the total angular momentum operator parallel to si commutes
with the single site scattering matrix ti: [siJ, ti] = 0, consequently:

Tisi = 0, Hijsj = 0 . (2.68)

In order to find the set of rotation {∆φi} minimizing the free energy the search must
be constrained to the manifold perpendicular to {si}. Using the two perpendicular
auxiliary vectors e1i and e2i as seen on Fig. 2.2, this rotation angles can be written
as

∆φi = ∆φ1ie1i +∆φ2ie2i . (2.69)

This can be substituted into Eq. (2.67) to obtain the Newton-Raphson equations
for γ = 1, 2:

eγiTi +
∑

γ′j

eγiHijeγ′j∆φγ′j = Tγi +
∑

γ′j

Hγi,γ′j∆φγ′j = 0 . (2.70)

Inverting the Hessian H = {Hγi,γ′j} a new set of ∆φγi can be easily calculated:

∆φγi = −
∑

γ′j

H−1
γi,γ′jTγ′,j , (2.71)

and a new spin configuration can be generated. The Newton-Raphson method con-
verges to the local minimum if the HessianH is positive definite. In our implementa-
tion at the end of every line search of the conjugate gradient procedure the Hessian
was checked and if all the eigenvalues were positive the optimization method was
continued with the Newton-Raphson method.





27

Chapter 3

Magnetic anisotropy energy in
ultrathin films

In this Chapter I am going to present the results for ultrathin layers obtained by
metadynamics simulations. First I summarize the background of magnetic anisotropy
energy (MAE), spin reorientation transitions (SRTs). Then first I present the results
on the temperature dependence of the MAE of model systems [92] which helps to
understand the method for the later results. It is followed by the results on the
SRTs in the model systems [92], and in the Fen/Au(001) [92, 93] and Fe2/W(110)
[92, 94] systems. The effect of the DMI on this system is further investigated [94].

3.1 Background

3.1.1 The magnetic anisotropy energy

General properties and experiments The key property of a ferromagnetic
sample is the direction of the magnetization, and the magnetic anisotropy is the
quantity which determines the easy direction. With respect to its origin we dis-
tinguish different types of anisotropies, such as the magnetocrystalline anisotropy
(MCA), due to the spin–orbit-coupling, and shape anisotropy (SA) which is origi-
nated from the magnetic dipole-dipole interaction. It is worth mentioning that the
pseudo dipolar coupling also due to the spin–orbit coupling may also contribute to
the shape anisotropy. It is a common idea to divide the anisotropy into so-called
volume and surface anisotropies. This way the effective anisotropy can be described
by the following phenomenological expression [6]:

Keff
1 = K̃V

1 +
KS

1

t
, (3.1)

where K̃V
1 is the volume contribution (energy per unit volume), which includes the

shape anisotropy, KS
1 is the surface contribution (energy per unit surface), and t is
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the thickness of the film. In bulk system the former one dominates. For thin films the
shape anisotropy prefers in-plane ferromagnetic orientation. In-plane anisotropy is
used for longitudinal recording magnetostrictive and inductive heads, and media for
magnetic-field sensors [95]. While in thin layers the surface contribution can lead to
the perpendicular magnetic anisotropy (PMA) (e. g. FePt, CoPt compounds [96]).
The PMA is used in high density data storage.

This picture is also very useful in the study of thickness driven spin reorientations,
since it gives a simple explanation for the phenomenon. The volume part – which is
dominated by the shape anisotropy – favours magnetization parallel to the plane of
the surface, while the surface contribution prefers magnetization perpendicular to
the plane. Since these two change oppositely with the change of the film thickness
t, at one specific value the effective anisotropy changes sign. While this work is not
about thickness driven SRTs, but the idea of competing anisotropies can also be
used in temperature driven phenomena.

Techniques to measure MAE There are many experimental techniques to de-
termine the magnetic anisotropy of ultrathin films and nanostructures, such as
the ferromagnetic resonance (FMR) [97] experiments, the Brillouin light scatter-
ing (BLS) [98] or the torsion oscillation magnetometry (TOM) [6, 99]. The former
two are based on the fact that the magnetic anisotropy has a direct impact on spin
dynamics, while the later one is measuring the mechanical torque. Unfortunately
all these methods require ultrahigh vacuum for appropriate measurements. The
magneto-optical Kerr-effect (MOKE) measurement are also commonly used [100].
This method is based on the magneto-optical response upon reflection of polarized
light from a ferromagnetic sample. Since the polarization and the intensity of the
reflected light depend on the relative direction of the optical plane and the magneti-
zation of the sample the magnetization can be determined in the different directions.
This can also be used to discover spin reorientation transitions [19, 101, 102].

Table 3.1: Magnetic anisotropy energy in some systems.

System MAE (meV/atom)
bcc Fe 0.0035 [103]
hcp Co 0.035 [103]
fcc Ni -0.0004 [103]

CoPt (th) 1.052−1.782[95]
CoPt (exp) 1.451−1.665[95]
L10FePt 0.373 [104]
L10FePd 0.133 [105]
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The typical order of the MCA of cubic 3d-tranisition bulk metals is only a
µeV/atom [103]. In the case of ultrathin films it can be orders of magnitude
larger and reach the meV/atom value. This increase is originated to the interface
anisotropy contributions, which appear due to the different atomic environment near
the interface. Some typical values are reported in Tbl. 3.1.

Temperature dependence of the MAE The anisotropy energy K is defined in
terms of the dependence of the free energy on the direction of the magnetization,
which can be expanded into power series. For cubic system this takes the following
form:

F = K0(T ) +K1(T )
[
cos2 α cos2 β + cos2 β cos2 γ + cos2 γ cos2 α

]
+

+K2(T ) cos
2 α cos2 β cos2 γ + . . . , (3.2)

where α, β, and γ are the angles between the magnetization vector and the crystallo-
graphic axes. The theoretical analysis of the anisotropy was already started in 1936,
when Akulov presented the 10th power law, using a simple classical argument [106]:

K1(T )/K1(0) ≈ [M(T )/M(0)]10 , (3.3)

where M(T ) is the magnetization of the system. Comparing this theory with ex-
periments on Fe concluded, that this law is accurate up to T ≈ 0.65TC, where TC
denotes the appropriate Curie temperature. Later Zener generalized this law to the
ℓ(ℓ+1)/2 power law [107]. This work was followed by Callen and Callen [108]. Their
work on the MCA gave two limits:

Kℓ(T )

Kℓ(0)
≈
[
M(T )

M(0)

]ℓ
T > TC , (3.4)

Kℓ(T )

Kℓ(0)
≈
[
M(T )

M(0)

]ℓ(ℓ+1)/2

T ≪ TC , (3.5)

with a continuous transition in between. This implies that for on-site uniaxial
anisotropy, i. e. ℓ = 2, the MAE should exhibit a K(T ) ∝ M(T )3 scaling. For the
two-ion terms they gave the same low and high temperature limits.

In case of strongly itinerant magnetic systems both the on-site and the two-site
anisotropy should be present in the spin model, and the scaling behaviour of the
MAE can be remarkably different than for only the on-site anisotropy [109, 110].

The Dzyaloshinksy–Moriya interaction (DMI) induced anisotropy energy
In simulations the different parameters of the spin model play the role of the different
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anisotropies. Let’s consider the second order classical spin Hamiltonian introduced
in Eq. (2.32):

H =
∑

i ̸=j

sTi Ji,jsj +
∑

i

sTi Kisi . (3.6)

First principle calculations showed [111], that the uniaxial MCA depends very sen-
sitively on the type of the surface, this way, more generally the onsite anisotropy K

plays the role of the MCA in the spin models. The resolution of the Jij exchange-
coupling tensor [42] gives two anisotropic terms (see Sec. 2.2). The symmet-
ric isotropic term describes the classical dipolar and SOC-induced pseudo-dipolar
anisotropy contributions. This two-ion term is connected to the shape anisotropy.
Finally the third, antisymmetric part, which is connected to the DMI does not con-
tribute to the anisotropy energy of a collinear magnetic configuration at zero tem-
perature. Although both the MCA and the DMI are attributed to the SOC, they
typically compete with each other since the former tends to align all spins along
a preferential direction, while the latter opens a finite angle between the magnetic
moments. However, in inhomogeneous and disordered systems the DMI may also
enhance the anisotropy field, such as in spin glasses containing nonmagnetic heavy
metal impurities and displaying a noncollinear magnetic configuration [112, 113], or
due to the spin canting at the edges of nanomagnets [114]. In Ref. [29], it has been
shown that thermal fluctuations and spin correlations lead to the emergence of a
DMI-induced anisotropy term even in homogeneous ferromagnetic systems.

s1

s2

D

EDM = 0

T = 0

s1

δs1
s2

δs2

D

T > 0

s1

δs1
s2

δs2

D

δs1δs2

δs1 × δs2

EDM < 0

T > 0

Figure 3.1: Left to right: The mechanism explaining the DMI induced anisotropy energy
on a bcc (110) lattice. At T = 0 with ferromagnetic ordering the DMI energy contribution
is zero. At finite T > 0 temperature small δs fluctuations emerge, which have minimal
energy if the ordering is parallel to the DM vector, causing an effective anisotropy parallel

with D.

This mechanism is explained on Fig 3.1. As an example let’s consider a bcc(110)
lattice with easy x axis and a DM vector D parallel to the x direction. At zero
temperature the configuration is collinear, but at finite temperature, the spins min-
imize their free energy by fluctuating around this equilibrium direction. So among
the higher orders of the DM spin–spin interactions appears a term which is minimal
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if the spins are parallel to the DM vector. Thus effectively an in-plane anisotropy
term appears, which can be estimated by the following formula on a spin lattice:

KDMI =
m

2

∑

p,q

∑

j

Dp0,qj · ⟨sp0 × sqj⟩ , (3.7)

where sqj is a unit vector pointing to the magnetization direction in layer q at site
j, m is the overall dimensionless magnetization of the whole lattice, normalized to
m = 1 at zero temperature, Dp0,qj is a DM vector between the reference 0 site in layer
p and site j in layer q, and ⟨sp0 × sqj⟩ corresponds to the vector chirality. Since the
DMI energy contribution reads Dpi,qj(spi×sqj), the scalar product Dp0,qj · ⟨sp0 × sqj⟩
will be negative when summed up over all neighbours in order to minimize the free
energy.

Free energy may be gained if the magnetization is oriented parallel to the DM
vector, since the chiral fluctuations have to take place in a plane perpendicular to
both the magnetization and the DM vector, as written before.

3.1.2 Spin reorientation phase transitions

The reorientation of the magnetization direction is a common phenomenon. As
the easy direction is coupled to the effective anisotropy, with the change of the
preferred direction of the anisotropy energy results in the SRT. Since the total
magnetic anisotropy comes from multiple components, which all depend differently
on external parameters, such as the temperature and the film thickness, the overall
anisotropy can easily change its easy direction.

The first discovery is connected to NiFe(111)/Cu(111) films [6], where it was
found that if the layer thickness is lower than a threshold value, then the surface
anisotropies force the magnetization along the surface normal. As mentioned be-
fore this can be interpreted with Eq. (3.1), where volume and surface anisotropy
terms are separated, and it is clear to see, that with different signs of KV and
KS, with the increase of the film thickness the effective anisotropy changes its sign.
Later it was examined in several other thin films, such as fcc Fe/Cu(001) [115–
117], bcc Fe/Ag(001) [118], hcp Co/Au(111) [119–121], Fe/Au(001) [18, 19], and
Fe/W(110) [63, 64, 122]. From these many possibilities the most interesting ones
for us are the Fe/Au(001) and Fe/W(110) systems, because in these the reorientation
occurs below 3 and 2 atomic layers, respectively, which can be simulated more easily
than about 7 atomic layers for the Fe/Ag(001) case. Here it has to be mentioned
that in several cases the critical thickness is at non integer layer numbers, which
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in experiments means that steps, and islands are present on the sample, which this
way has a varying thickness. This feature cannot be considered in our simulations.

Temperature driven SRTs are as common as thickness driven ones. Usually
if the layer thickness is close to the critical value, the effect caused by the in-
crease of the temperature is enough for the emergence of the SRT. This happens
in Fe4.3/Ag(001) [101], Fe/Cu(001) [123] and Fe2/W(110) [122]. An explanation
behind this, is that the different temperature dependence of on-site and two-site
anisotropies can change the competition which set the ground state easy direction.
Udvardi et al. made a mean field calculation [124] for a bilayer with two-site and uni-
axial on-site anisotropies. They found that the mean field approximation provides
different transition temperatures for the in-plane (Tx), and normal-to-plane (Tz)
magnetizations. The larger of these two is associated with the Curie temperature
TC of the system. An out-of-plane to in-plane SRT can occur when the ground state
magnetization is out of plane and Tz < Tx = TC. For a reversed SRT the ground
state magnetization must be in-plane and Tx < Tz = TC. In practice this later case
is more rare, our studies concentrate on out-of-plane to in-plane reorientations.

3.2 Peculiarities of the simulation of the magnetic

anisotropy energy

For examining the MAE of thin films a natural choice for collective variable (CV)
is the z (normal-to-plane) component of the normalized magnetization:

η =Mz/M, where Mz =
∑

i

szi, and M =

∣∣∣∣∣
∑

i

si

∣∣∣∣∣ . (3.8)

The values of the CV chosen for a Heisenberg spin model must be obviously within
the interval of [−1, 1] and the free energy has a discontinuity at the boundaries
which can not be accurately reproduced by a sum of finite-width Gaussians as it
is detailed in Refs. [85, 125]. In order to eliminate this numerical problem, the
procedure proposed by Crespo et al. [85] has been modified in the following manner:
Whenever the bias potential is updated, an extra Gaussian with the same width and
height is added out of the physically relevant interval of the CV:

Vbias(η, t+ τ) = Vbias(η, t) + VG(η − ηact)

+

{
VG(η − 2 + ηact) if η > 0

VG(η + 2 + ηact) if η < 0
, (3.9)
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where VG(η) is the Gaussian potential given in Eq. (2.60). This scheme clearly makes
the bias potential continuous at η = ±1. It should be noted that Vbias(η) does not
go smoothly to zero in the nonphysical region, but this part of the CV is never
sampled during the simulation. In order to explore the free energy surface along the
CV multiple walkers metadynamics [126] was applied. The simulations were done
simultaneously on typically four independently started replicas each contributing
equally to the growth of a joint bias potential.

The parameters of the bias potential were optimized for each system under con-
sideration. The half width σ determines the grid on the space of the CV, where the
bias potential is sampled. In general, we chose σ = 0.03 making sufficient to sample
150 points in the [−1 : 1] interval of the CV in order to get a smooth curve for the
free energy. The value of the meta temperature Tm depends on the Curie tempera-
ture. Obviously, in the high Tm limit the normal (non-tempered) metadynamics is
regained and the bias potential will not converge. If Tm is too small then the conver-
gence will be very slow. In the present study a few times the Curie temperature has
been used for Tm. The parameter w0 should be chosen considerably smaller than
the anisotropy energy of the whole lattice.

The magnetic anisotropy energy (K) is defined as the difference of the free en-
ergy for the normal-to-plane and in-plane spin configurations, which fits the same
difference in the bias potential:

K(T ) = Vb(T, η = 1)− Vb(T, η = 0) , (3.10)

where η = 1 value belongs to the normal to plane configuration and η = 0 refers to
the in-plane magnetic configuration. In Fig. 3.2(a) and Fig. 3.2(b) well converged
bias potentials are shown. The bias potential in Fig. 3.2(a) represents a normal-
to-plane ground state while Fig. 3.2(b) belongs to a canted magnetic configuration.
The flat region in the middle of the bias potential in Fig. 3.2(c) indicates that the
simulation could not cover the whole configurational space.

Unfortunately, when more coupling parameters are included in the spin model,
despite of all our efforts, the bias potential will become noisy especially around η = 1

and η = 0. The former one is treated by the upper mentioned extension of the CV,
but in the middle η range another effect is present: if the linear size of the sample is
large enough there is a possibility of magnetic domains to form. This is problematic,
since the in-plane ferromagnetic configuration will not be reached in the simulation.
The sufficient sample size for this problem is reached, when there are enough spins to
form 2 domain walls (in the case of periodic boundary conditions, which was used).
The typical size of a domain wall can be estimated by

√
J/K. So if the anisotropy
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Figure 3.2: Typical bias potential at the end of metadynamics simulations. (a) The
ground state is a normal-to-plane configuration. (b) The ground state is a canted configu-
ration. (c) The ground state is a normal-to-plane, but the in-plane configurations are not

reached.

is around 0.01 J (which is the typical magnitude at zero temperature), the critical
size will be around 10 − 20 spins, which is in the order of the typical linear size of
the lattice in the simulations.

Figure 3.3: A schematic example of domain walls with different distance from each other
in the magnetic configuration.

To understand why domain walls mean a horizontal region in the Vb(η) curve,
imagine now two simple configurations (see Fig 3.3) with the same domain walls,
but at different positions. As the domain walls are far enough from each other, the
energy of the system does not change as the domain wall is shifted. On the other
hand this shift clearly changes value of the CV, since the number of up and down
spin changes. These two effects combined mean a horizontal section in the bias
potential, which can be seen on Fig. 3.2(c).

In order the avoid this problem and to obtain the good K value, we approximate
the Vb(η) function with a polynomial:

V fit
b (η) = aη4 + bη2 + c , (3.11)

and restrict the fitting between η1 = −0.9 and η2 = −|ηDW| value, where ηDW is
the value where the domain walls appear at this temperature, which value can be
measured easily by looking at the Vb(η) function. This way effectively the magnetic
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anisotropy energy K becomes:

K = V fit
b (1)− V fit

b (0) = a+ b . (3.12)

Based on this, we can say that the MAE is proportional to the curvature of the bias
potential curve.

3.3 Temperature dependent MAE from different ori-

gins

Spin model

For the initial model calculations we used a very simple case of the general Heisen-
berg model in Eq. (2.32) on a (100) simple cubic lattice:

H = −1

2

∑

⟨i,j⟩

[Jsisj − d (siez) (sjez)]−
∑

i

λ (siez)
2 , (3.13)

where si is the normalized magnetic moment vector at site i, J is the isotropic
exchange coupling, d is the anisotropic part of the exchange coupling, λ is a uniaxial
on-site anisotropy, whose magnitude is the same in every site of the layer, and
ez is a unit vector pointing to the normal-to-plane [001] direction. The system
is a monolayer and only the nearest neighbour interactions are considered in the
calculations.

First let us investigate the zero temperature behaviour. The magnetic moment
can be written as the following unit vector:

si =



sinϑi cosφi

sinϑi sinφi

cosϑi


 , (3.14)

where ϑi and φi denote the polar angle with respect to the normal-to-plane direction
z and azimuthal angle with respect to the in-plane direction x at site i, respectively.
If we assume a ferromagnetic ordering, the energy becomes the following:

E = −2J + (2d− λ) cos2 ϑ . (3.15)

Depending on the (2d − λ) difference the ground is normal-to-plane, if λ > 2d and
in-plane otherwise. Note that the absence of variable φ shows that all directions are
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energetically equivalent in the plane, but this does not prevent the clear distinction
of states regarding Mz.

The scale of the anisotropy parameters can be based on experimental values
(see 3.1.1 Tbl. 3.1): the uniaxial anisotropy constant for a broad scale of ultrathin
films is in the range of 10 − 200µeV. The Curie temperature of an ultrathin film
of transition metals is few hundreds of Kelvins and so the corresponding effective
exchange coupling J is a few tens of meV. These two set the value of the relative
anisotropy of the exchange coupling (d/J) and of the uniaxial on-site anisotropy
constant (λ/J) between 0.001 and 0.01 for the simulations.

Metadynamics simulations

The aim of the first simulations on the model systems was to reproduce the tempera-
ture dependence of the MAE predicted by the Callen–Callen theory (see Sec. 3.1.1).
As the energy contribution associated to the different types of anisotropy terms i. e.
the λ on-site, and the d two-site anisotropy may have different temperature depen-
dences, the first model is more specified and only contains one them, namely first
only an on-site anisotropy λ.

In the first simulation the spin model of the monolayer consists only of an
isotropic ferromagnetic nearest neighbour exchange coupling (J > 0) and of a uni-
axial on-site anisotropy constant with easy axis perpendicular to the plane (λ > 0).
With such parameters the ground state of the system is ferromagnetic with a normal-
to-plane orientation of the magnetic moments.
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Figure 3.4: Free energy difference of normal-to-plane and in-plane magnetic configu-
rations normalized to one spin of a 32 × 32 monolayer with isotropic nearest neighbour
exchange coupling J > 0 and a uniaxial on-site anisotropy of λ = 0.01 J at different tem-
peratures. The simulations were performed with the parameters Tm = 10 J , w0 = 0.02 J

and σ = 0.03.
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The free energy obtained from the metadynamics simulations is depicted in
Fig. 3.4. It shows that the free energy has a quadratic dependence on the col-
lective variable (CV), which is in a good agreement with the cosϑ dependence in
Eq. (3.15). The parabolic behaviour of the free energy is retained in the whole
temperature range below the paramagnetic phase transition. The free energy has
a single maximum at η = 0 referring to an in-plane configuration and it has two
minima at η = ±1 representing the two opposite normal-to-plane magnetic orienta-
tions. This agrees with the aforementioned normal-to-plane easy orientation of the
moments.

The MAE – calculated using Eq. (3.12) as presented in Sec. 2.3.2 – is plotted on
the left side of Fig. 3.5. As the temperature is increasing the curvature of the free
energy as a function of CV is gradually decreasing and it tends to zero above the
Curie temperature. Here the Curie temperature (TC) is identified as the temperature
corresponding to the maximum of the specific heat identified in another independent
Monte Carlo simulation. Although the Curie temperature scales with the system
size, it was chosen to be compatible with the size of the system for which the MAE
was calculated.
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Figure 3.5: Left side: Temperature dependence of the magnetic anisotropy energy K(T )
of a monolayer with isotropic nearest neighbour exchange coupling J > 0 and a uniaxial
on-site anisotropy of λ = 0.01 J . Right side: Log-log plot of the magnetic anisotropy
energy of the same system as a function of the magnetization. Note that both the MAE
and the magnetization are normalized to zero temperature value. The simulations were
performed on a lattice of 32 × 32 spins with the parameters Tm = 10 J , w0 = 0.02 J and

σ = 0.03.

The magnetic anisotropy in Fig. 3.5(left) is almost linearly decreasing with the
temperature similarly to the results obtained by using constrained Monte Carlo sim-
ulations [127] for uniaxial anisotropy. The non-zero value of the magnetic anisotropy
above the Curie temperature is the consequence of the finite size of the system. On
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the right side of the same Fig. 3.5 the MAE is plotted against the magnetization on
a log-log mesh. As can be seen, at low temperatures, i. e. at high magnetization,
the results on the anisotropy energy K show an excellent agreement with the M3

scaling behavior predicted by Callen and Callen [108].
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Figure 3.6: Left side: Temperature dependence of the magnetic anisotropy energy K(T )
of a monolayer of a 32 × 32 with anisotropic nearest neighbour exchange coupling J > 0,
d = −0.01 J and zero on-site anisotropy λ = 0 Right side: Log-log plot of the magnetic
anisotropy energy of the same system as a function of the magnetization. Note that both

the MAE and the magnetization are normalized to zero temperature.

Similar simulations were also performed in the case when simply an anisotro-
pic exchange d < 0 was included in the model instead of the λ uniaxial on-site
anisotropy. The results of these simulations can be seen in Fig. 3.6. The temperature
dependence is very similar to the case of a uniaxial on-site anisotropy. A clear
difference can be observed when the MAE is plotted against the magnetization.
At very low temperatures, i. e. when M(T )/M(0) ≈ 1, the system behaves as for
the other case, but below M(T )/M(0) ≈ 0.8 the exponent γ in the relationship
K(T ) ∝ M(T )γ changes from three to two. The occurrence of the exponent γ = 2

in the low-temperature scaling of the MAE was explored in earlier experimental [128]
and theoretical studies [109, 110, 129] for FePt alloys.

An important message of the comparison of the two cases is that the MAE
attributed to the on-site term decays faster with the temperature than the MAE
contribution originated from the anisotropic exchange, which in particular cases can
lead to a spin reorientation transition.
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Figure 3.7: The ground state spin configuration (grey) of the model system used to
investigate the effect of the DMI (green) induced anisotropy term. The [110], [001] and

[110] vectors refer to the respective crystallographic directions.

The Dzyaloshinsky-Moriya interaction induced magnetic anisotropy en-
ergy

Opposite to the previous two cases, the appearance of DMI induced anisotropy
requires a more sophisticated model. As introduced in Sec. 3.1.1 let’s consider a
magnetic monolayer on a bcc (110) surface. The lower symmetry means that instead
of the uniaxial on-site anisotropy, a biaxial one with different λx and λy constants
are needed, and an in-plane DM vector D is included in the spin Hamiltonian:

H = −1

2

∑

i,j

Jsisj+
∑

i

λx (siex)
2+
∑

i

λy (siey)
2 +

∑

i,j

D (si × sj) . (3.16)

The x, y, z axes correspond to the [110], [001] and [110] crystallographic directions,
respectively. The zero temperature energy in a ferromagnetic state is the following
energy:

E = −2J + λx sin
2 ϑ cos2 φ+ λy sin

2 ϑ sin2 φ . (3.17)

The direction of the minimal energy configuration depends on the anisotropy terms.
If λx > 0 and λy > 0 the easy direction will be normal-to-plane. If one of them is
negative then it will set the easy magnetic direction to the corresponding direction.
For the simulations λx/J = −0.005, λy/J = 0.01, and D/J = (−0.05; 0; 0) were
chosen. The negative on-site anisotropy in direction x and positive in direction y

makes it clear that the easy direction is the in-plane x. The finite temperature
induced DMI anisotropy is expected to prefer the same alignment.

The metadynamics simulations were performed on a 64 × 64 lattice with the
usual parameters (see in Sec 2.3). To separate the effect of the DMI from the
other contributions two separate series of simulations were performed, first with the
whole set of coupling parameters (J , λx, λy, D), then the DM vectors were omitted.
This way we got two curves of the magnetic anisotropy energy, whose difference is
the effective DMI induced anisotropy energy. These curves and their difference are
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Figure 3.8: Temperature dependent magnetic anisotropy energy per atom of a model
system desribed by Eq. (3.16), with and without including the DM term. The right
side figure shows the difference of the two anisotropies, which equals the DMI induced

anisotropy.

shown in Fig. 3.8.
First it is clear to see – that as predicted–, this DMI induced term prefers the

in-plane x direction. Secondly we can discuss the temperature dependence of this
anisotropy term. Since its origin is the finite temperature fluctuation of the magnetic
moments, at low temperatures it has a small value and becomes larger and larger
with T. In the middle T range it reaches its maximum, and as the whole system turns
paramagnetic, this term also vanishes. This behaviour is fundamentally different
from the ones originated from the anisotropy of the exchange coupling or the on-site
anisotropies, since opposite to them it is not a monotonically decreasing function of
the temperature but has a maximum at a temperature far from 0 and also from the
Curie temperature of the system.

3.4 Spin reorientation transitions

Now that all anisotropy types were investigated individually the next step is to put
them together to investigate the more interesting behaviour of the spin reorientation
transitions. First we study the simplest case of a monolayer with two competing
anisotropies of λ and d, then comes the investigation of the more feature-rich bilayer.

3.4.1 Case of a monolayer

Eq. (3.13) gives a model of a monolayer with the two competing anisotropies: the on-
site uniaxial anisotropy λ and the anisotropy of the exchange coupling d. Considering
a single square lattice, with only the four nearest-neighbour couplings, in case of
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Figure 3.9: Free energy of a model monolayer as a function of collective variable
η = Mz/M measured from the free energy of a normal-to-plane magnetized configuration.
The free energy values are normalized to one spin. The metadynamics simulations were
performed on a 64 × 64 rectangular lattice with competing on-site and nearest-neighbour

two-site anisotropies, λ = 0.05375 J and d = 0.025 J , respectively, see Eq. (3.13).

λ > 2d the ground state will be normal-to-plane ferromagnetic as Eq. (3.15) showed.
Since the MAE contribution from the onsite term decays faster than the one from
the two-site term, if λ − 2d is not too large, the difference can be overcome and a
temperature induced normal-to-plane to in-plane SRT can occur.

Metadynamics simulations

For the simulations we used λ = 0.05375 J and d = 0.025 J as anisotropy constants.
In this case the λ− 2d difference is 0.00375 J, which is expected to be small enough
for a SRT. Fig. 3.9 shows the free energy as a function of the CV, and the energy
difference of normal-to-plane and in-plane configurations (similarly to Fig. 3.4). The
free energy preserved the parabolic behaviour also for this case of mixed anisotropies.
At low temperatures it has two minima, corresponding to η = Mz = ±1, i. e. to a
normal-to-plane configuration, as expected. Yet as the temperature is increasing the
curvature of the free energy becomes smaller and smaller, and at one point it changes
sign and the minimum of the free energy moves to η = Mz = 0, i. e. to an in-plane
magnetic orientation. This change can also be seen on the magnetic anisotropy
energy curve in Fig. 3.10. It is positive at low temperatures, and becomes zero at a
transition temperature Tr.

Here it is worthwhile to mention that if the magnetization turns into the plane the
system will have a gap-less magnetic excitation spectrum and long range magnetic
order will no longer exist according to the well-known Mermin-Wagner theorem [130].
Still, the magnetic anisotropy energy can be defined as the free energy difference
between the normal-to-plane and in-plane magnetic orientations. Looking back to
Fig. 3.10 the free energy demonstrates a first order phase transition. Moschel and
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Figure 3.10: Magnetic anisotropy energy K(T ) normalized to its zero temperature value
of a model monolayer system as a function of the temperature. The metadynamics simula-
tions were performed on a 64× 64 rectangular lattice with competing on-site and nearest-
neighbour two-site anisotropies, λ = 0.05375 J and d = 0.025 J , respectively, see Eq. (3.13).

Usadel [131] using MC simulations and Fridman et al. [132] applying a Hubbard-
operator technique also confirmed that a monolayer exhibits first order SRT.

3.4.2 Study of reorientation in a bilayer

Spin model

The increase of film thickness to a bilayer increases the number of anisotropy pa-
rameters to three (d, λ1, λ2). This enriches the phase diagram, now both first order
and second order SRT can occur. As a model system we consider a minor expansion
of the model in Eq. (3.13), a bilayer on an fcc (001) surface with nearest-neighbour
interactions J and d, and on-site anisotropy parameter λp, where p is the layer index:

H = −1

2

2∑

p,q=1

∑

⟨i,j⟩

(Jspisqj − d (spiez) (sqjez))−
2∑

p=1

∑

i

λp (spiez)
2 . (3.18)

A mean-field analysis of a similar model has been performed two decades ago
by Udvardi et al. [124], where instead of the d anisotropy of the exchange coupling
a dipole-dipole interaction was included. Since their part is similar in the models,
the same steps can be made to set up the boundaries of the different regions of the
phase space.
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Zero temperature behaviour

At zero temperature we can suppose a uniform magnetization within each monolayer,
whose direction not necessarily agrees, which can be described by the ϑi polar and
φi azimuthal angle in layer i as defined in Eq. (3.14). In this case the energy of the
system can be written as:

E =− 4J + (2d− λ1) cos2 ϑ1 + (2d− λ2) cos2 ϑ2

− 4J [sinϑ1 sinϑ2 cos(φ1 − φ2) + cosϑ1 cosϑ2] + 4d cosϑ1 cosϑ2 . (3.19)

This energy term is minimal, if the φ1 and φ2 azimuthal angles agree in the two
layers. After this assumption we get the following expression:

E = −4J + (2d− λ1) cos2 ϑ1 + (2d− λ2) cos2 ϑ2

− 4J cos(ϑ1 − ϑ2) + 4d cosϑ1 cosϑ2 , (3.20)

In the case of uniform in-plane (ϑ1 = ϑ2 = ϑ = π/2) and a normal-to-plane (ϑ1 =

ϑ2 = ϑ = 0) orientations the energy has extrema:

E(ϑ = 0) = −8J + 8d− λ1 − λ2 , (3.21)

E(ϑ =
π

2
) = −8J . (3.22)

Similar to the case of the monolayer, the energies of these two particular configura-
tions coincide if 8d = λ1 + λ2, which defines a line in the {λ1, λ2} parameter space.
In the vicinity of this line a canted magnetic configuration exists. The boundaries
of the region of the canted states can be obtained from the stability condition:

∣∣∣∣
∂2E

∂ϑi∂ϑj

∣∣∣∣
ϑi=0,π/2

= 0 , (3.23)

yielding the lower boundary line,

(
J + d− λl1

2

)(
J + d− λl2

2

)
= (d− J)2 (3.24)

and the upper boundary line,
(
J − 2d+

λu1
2

)(
J − 2d+

λu2
2

)
= J2 . (3.25)

Below the line given by Eq. (3.24), λ1 + λ2 < λl1 + λl2, the ground state is in-plane
ferromagnetic and above the line given by Eq. (3.25), λ1 + λ2 > λu1 + λu2, it is
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normal-to-plane ferromagnetic. These borders are visualised for the d = 0.02 J case
in Fig. 3.11.
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Figure 3.11: Ground states and possible SRTs of an fcc(001) ferromagnetic bilayer de-
scribed by the model Hamiltonian Eq. (3.18) with nearest-neighbour exchange interactions,
J and d, and uniaxial anisotropies, λ1 and λ2. The plot is restricted to the positive {λ1, λ2}
region, and the boundaries are calculated for the case of d = 0.02 J . The solid blue line
shows the boundary where the normal-to-plane and in-plane configuration have the same
energy, while the region of canted ground states given by Eqs. (3.24) and (3.25) is shown
with dotted and dashed lines. The upper red line bounds the area where a normal-to-plane
to in-plane spin reorientation occurs according to mean-field theory (Eq. (3.35)). The dif-

ferently colored regions correspond to ground states and SRTs shown in the legend.

Mean field estimation for finite temperature

At finite temperature the mean-field free energy of the bilayer can be expressed as:

F =
4J

2
M2 − 4d

2
(M z)2 − kBT ln(Z1)− kBT ln(Z2) , (3.26)

where

Zi =

∫
I0(4JβM

x sinϑ) exp [4(J − d)βM z cosϑ] exp
[
λiβ cos

2 ϑ
]
sinϑ dϑ , (3.27)

I0(x) is the modified Bessel function of the first kind, while Mx and Mz are the x
and z component of the whole magnetization of the bilayer, respectively.
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The magnetization in the normal-to-plane z and in-plane x directions can be
given with the following formulas:

Mx =
2∑

i=1

1

Zi

∫
sinϑI1(4JβMx sinϑ) exp

(
λiβ cos

2 ϑ
)
sinϑ dϑ , (3.28)

Mz =
2∑

i=1

1− d
J

Zi

∫
cosϑ exp (4(J − d)βMz cosϑ) exp

(
λiβ cos

2 ϑ
)
sinϑ dϑ , (3.29)

where I1(x) denotes the the modified Bessel function of first order. As was shown in
Ref. [124] the magnetization can go to zero either via an in-plane or via a normal-
to-plane direction at temperatures, Tx and Tz, respectively, the higher of which can
obviously be associated with the mean-field estimation of the Curie temperature TC.
Minimizing the free energy with respect to the magnetization of the system with
the constraint Mz = 0 or Mx = 0 can give these temperatures.

A high temperature expansion (β → 0), the series expansion of the Bessel func-
tions I0(x) and I1(x), and a z = cosϑ variable replacement in Eqs. (3.27), (3.28)
and (3.29) yield the following form:

Zi =

∫
exp

(
λiβz

2
)
dz (3.30)

Mx =
2∑

i=1

1

Zi

∫
(1− z2)2JβMx exp

(
λiβz

2
)
dz , (3.31)

Mz =
2∑

i=1

1− d
J

Zi

∫
4(J − d)βMzz

2 exp
(
λiβz

2
)
dz . (3.32)

Finally for Tx and Tz this gives the following expressions to first order in λ1 and λ2:

kBTz =
8

3
(J − d) + 2

15
(λ1 + λ2) , (3.33)

kBTx =
8

3
J − 1

15
(λ1 + λ2) . (3.34)

Depending on the ground state magnetization and the value of Tz and Tx, spin
reorientation transition is only going to happen of if the ground state magnetic
orientation has lower critical temperature, e. g. out-of-plane to in-plane SRT occurs
when the ground state magnetization is out of plane and Tz < Tx = TC, or reversed
SRT occurs if the ground state magnetization is in-plane (or canted) and Tx <

Tz = TC. In other cases the magnetization turns paramagnetic without changing its
direction. If the two temperatures agree, then no reorientation can occur. In the
parameter space {λ1, λ2} this region is bounded by the line defined by Eq. (3.24)
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and by the line where Tx = Tz:

λ1 + λ2 =
40

3
d . (3.35)

The visualisation of the different regions for the d = 0.02 J case can be seen in
Fig. 3.11.

Metadynamics simulations

Metadynamics Monte Carlo simulations are a perfect tools to explore the phase
diagram of the model bilayer. The reorientation temperature can be determined by
calculating the magnetic anisotropy energy curve and searching for the temperature
where is crosses the zero value. Although e. g. according to ab initio calculations the
anisotropy parameters λp and d can take both positive and negative values, in order
to keep the MC simulations tractable, the investigations were similarly restricted to
the positive quarter of the {λ1/d, λ2/d} parameter space as previously in Fig. 3.11.
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Figure 3.12: Phase diagram of an fcc (001) ferromagnetic bilayer described by the model
Hamiltonian Eq. (3.18) with nearest-neighbour exchange interactions, J and d, and uniaxial
anisotropies, λ1 and λ2. Similarly to Fig 3.11, now for the case of d = 0.005 J , the solid
blue line shows the boundary where the normal-to-plane and in-plane configuration have
the same energy, while the region of canted ground states given by Eqs. (3.24) and (3.25)
is comparable with the line width. The solid red line bounds the area where a normal-
to-plane to in-plane spin reorientation occurs according to mean-field theory. This area
becomes considerably narrower from metadynamics simulations as shown by the colored
area. The color-bar to the right refers to Tr/TC. For this case, the points A (λ1/d = 8.66,

λ2/d = 0) and B (λ1/d = λ2/d = 4.33) are chosen for further investigations.

The phase diagram for d = 0.005 J is shown in Fig. 3.12. In this case, the region
where canted ground states exist determined by Eqs. (3.24) and (3.25) is extremely
narrow. The area where a normal-to-plane to in-plane SRT occurs provided by
the metadynamics simulations (colored region) is considerably narrower than the
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corresponding area predicted by the mean field theory (bounded by the blue and red
solid lines). The coloring clearly demonstrates that the reorientation temperature
Tr gradually approaches the Curie temperature as the sum of the uniaxial on-site
anisotropy constants λ1+λ2 is increasing, while parallel to the lines λ1+λ2 = const.

it is almost unchanged. If the uniaxial on-site anisotropy is further increased after
the reorientation temperature Tr approached the Curie temperature TC, the system
keeps its normal-to-plane ferromagnetic order till the ferromagnetic-paramagnetic
phase transition.

The area of the canted ground states depends on the value of two-site anisotropy
constant d. If it is increased, this area defined by Eqs. (3.24) and (3.25) becomes
wider (compare Fig. 3.11 with d = 0.02 J and Fig. 3.12 with d = 0.005 J). For
further investigations we choose two specific points in the phase diagram: point A
(λ1/d = 8.66, λ2/d = 0) representing a canted ground state, however, lying in the
vicinity of the upper boundary line of this region (dashed line in Fig. 3.12) and
point B (λ1/d = λ2/d = 4.33) corresponding to a normal-to-plane ferromagnetic
ground state. For the first choice of (λ1, λ2) the magnetization of the system con-
tinuously turns into the plane as the temperature is increasing and, considering the
normal-to-plane component of the magnetization as order parameter, the system
undergoes a second order SRT. This is demonstrated in left subfigure of Fig. 3.13,
where the free energy is shown as the function of the CV at different temperatures
close to the reorientaion temperature Tr. At low temperatures the minima of the
curve confirms the expected canted initial state, and below the reorientation tem-
perature, Tr/TC ∼ 0.45, the magnitude of the minimum position of the free energy,
ηmin, decreases continuously with increasing temperature, while at the in-plane mag-
netization η = 0 there is a maximum in the free energy. Above the reorientation
transition temperature the in-plane configuration belongs to the minimum of the
free energy, that means the order parameter is identical to zero.

At point B in Fig. 3.13 the uniaxial anisotropy parameters λ1 and λ2 agree and
no canted ground state exists for the bilayer, therefore, the mean-field description of
temperature dependent magnetism becomes analogous with that of the monolayer.
The results of metadynamics simulations show, however, some different features for
the bilayer and the monolayer. According to Fig. 3.9 the SRT for the monolayer is
discontinuous and the normal-to-plane and in-plane phases can not coexist. The free
energies for the bilayer with anisotropy parameters λ1 = λ2 = 4.33 d are shown in
right subfigure of Fig. 3.13. Below the reorientation temperature the free energy has
minima at η = ±1 which correspond to a normal-to-plane average magnetization.
As the temperature is increasing a local minimum of the free energy evolves to η = 0

referring to in-plane magnetization. In a small temperature range (3rd blue curve
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Figure 3.13: Free energy profiles from metadynamics simulations of a 2× 64× 64 bilayer
with nearest-neighbour exchange interactions. For the left figure d = 0.05 J , and anisotropy
constants λ1 = 8.66 d, λ2 = 0 (point A in Fig. 3.12). The low temperature magnetic
configuration is canted (0 < η < 1), while by increasing the temperature the system
continuously turns into the phase with in-plane magnetization showing the nature of a
second order phase transition. For the right figure d = 0.05 J , and anisotropy constants
λ1 = λ2 = 4.33 d (point B in Fig. 3.12). At low temperature the magnetization points
normal to the plane (η = ±1), while at the reorientation temperature, Tr ∼ 0.366TC, it
suddenly jumps to in-plane, as η = 0 becomes the minimum position of the free energy,

displaying thus a first order phase transition.

on Fig. 3.9 left) this is only a metastable stable, which is separated from the global
minimum at η = ±1 by a small barrier. Yet as the temperature is further increased
the local minimum at η = 0 becomes the global maximum. The spin reorientation
transition is, therefore, of first order as in the case of the monolayer but the phases
with in-plane and normal-to-plane magnetization can coexist.

3.5 Fen/Au(001)

Ultrathin Fe layers on Au(001) substrate are the subject of extensive investigations
especially in context of low-dimensional magnetism, see Ref. [19] and references
therein. An Fe monolayer grown on Au(001) has often been referred as a prototypical
two-dimensional ferromagnet. The film Fen/Au(001) exhibits a normal-to-plane
magnetic ground state for n ≤ 2 and MOKE measurements showed that it undergoes
a thickness driven spin reorientation, when the thickness of the Fe film increased
to 2.3 monolayers [19]. Whereas the driving force of this spin reorientation is the
magnetostatic shape anisotropy, it is worth to study the temperature dependence of
the spin-orbit induced MAE by using the metadynamics simulations.
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Figure 3.14: Interface geometry of Fe2/Au(001) showing the different interlayer dis-
tances. The yellow, red and green spheres denote the gold, the iron and the vacuum sites,
respectively. The spheres are proportional to their ASA sizes of the atoms. The bulk label

indicates, that from this point the bulk geometry is applied.

3.5.1 Fe2/Au(001)

Geometry and electronic structure

The Fe2/Au(001) was modeled by four atomic layers of Au, two atomic layers of
Fe, and three atomic layers of empty spheres (vacuum) sandwiched between semi-
infinite bulk Au and semi-infinite vacuum. Since the (001) surface of fcc Au fits
almost perfectly to the (001) surface of the bcc Fe – the lattice mismatch is less
than 0.6% –, a perfect 2D translational symmetry was supposed for the whole
system with the lattice constant of Au substrate (aAu = 2.87Å) in all atomic layers,
thus the distance of the Au atomic layers was dAu−Au = 2.03Å. The Fe-Fe interlayer
distance, the Fe-Vac distance and the Vac-Vac distance above this have been chosen
to be the same as the bulk value (dFe−Fe = 1.44Å). Since the magnetic anisotropy
energy is sensitive to the lattice relaxation, the electronic structure was determined
for different values of the Fe-Au interlayer distance ranging from dFe−Au =1.45 Å to
1.7 Å. The geometry of the interface region is presented in Fig. 3.14.

Spin model

The magnetic behaviour of the system was described by the following Heisenberg
Hamiltonian:

H = −1

2

n∑

p,q=1

∑

i,j

sTpiJpi,qjsqj −
2∑

p=1

∑

i

λp(spiez)
2 , (3.36)

where p and q denote the layers, i and j stand for Fe atoms within each layer, ez
is a unit vector parallel to the [001] direction, Jij is a 3 × 3 matrix of exchange
interactions, and λp is an on-site uniaxial on-site anisotropy constant at layer p.
The detailed description of this model can be read in Sec. 2.2. The Jij exchange
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coupling parameters, and the λp on-site anisotropies were determined for all inves-
tigated dFe−Au distances ab initio using the relativistic torque method [42]. The
Jij exchange interaction was limited to the radial distance of 8aAu = 22.96Å. The
energy difference between the ferromagnetic z and ferromagnetic x configurations,
and the layer dependent on-site anisotropies are presented in Tbl. 3.2. The largest
anisotropy energy is at the dFe−Au = 1.1 dFe−Fe = 1.584Å relaxation, which we used
for the further calculations. The spin magnetic moments of the Fe layers – which
are also susceptible to interlayer relaxations –, were found to be µS = 3.0µB in the
surface layer (in direct contact with vacuum), and µI = 2.7µB in the interface layer.

Table 3.2: Zero temperature total MAE and layer dependent on-site anisotropy constants
(in units of meV) in Fe2/Au(001) for different dFe−Au values. The Fe layer at the interface
with Au is denoted by I, the one at the surface by S. Negative/positive values of the

anisotropies prefer in-plane/normal-to-plane orientation of the magnetization.

dFe−Au/dFe−Fe λI λS Ez − Ex

1.02 -0.0509 0.4630 -0.2778
1.04 -0.0600 0.4732 -0.4083
1.06 -0.0800 0.4525 -0.5109
1.08 -0.0936 0.4061 -0.6032
1.10 -0.0966 0.3600 -0.6692
1.12 -0.0892 0.3120 -0.6491
1.14 -0.0802 0.2647 -0.6056
1.16 -0.0702 0.2202 -0.5653
1.18 -0.0591 0.1809 -0.5541
1.20 -0.0438 0.1518 -0.5443

In order to characterize the anisotropy of the exchange tensors the lattice sum
of the exchange couplings has been introduced:

Jp =
1

2

∑

q=1,2

∑

j

Jp0,qj , (3.37)

where Jp0,qj is the coupling tensor between an arbitrary site 0 in layer p and site j
in the layer q. Due to the C4v symmetry of the lattice Jp is a diagonal matrix with
identical Jxx

p and Jyy
p elements.

The layer dependent uniaxial on-site anisotropy constants λp, and the anisotropy
of exchange couplings Jzz

p − Jxx
p are summarized in Tbl. 3.3. Interestingly, the

on-site anisotropies and the exchange anisotropies have different signs in both the
interface (I) and the surface (S) layer, and they also change sign between the two
layers. Nevertheless, in both layers the positive contributions dominate, resulting in
an overall normal-to-plane magnetic ground state for the bilayer.
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Table 3.3: Calculated layer dependent magnetic anisotropy parameters for the chosen
relaxation (in units of meV) for the Fe2/Au(001) layers. The Fe layer at the interface with
Au is denoted by I, the one at the surface by S. Negative/positive values of the anisotropies

prefer in-plane/normal-to-plane orientation of the magnetization.

layer λ Jzz
p − Jxx

p

I −0.097 0.181
S 0.360 −0.314

Finite temperature simulations

The thermodynamic quantities of the system such as the magnetization (M(T )) and
the specific heat (C(T )), have been calculated by means of Monte Carlo simulations.
The peak of the C(T ) curve set the Curie temperature to TC = 440K, which is very
close to the experimentally reported value of T exp

C = 430K [62].
The MAE was calculated by well-tempered metadynamics simulations. The

results for K(T ) are plotted against the magnetization curve in Fig. 3.15 for the low
temperature limit. It is remarkable that the MAE exhibits a K ∝ M3 dependence
similar to the Callen and Callen theory for ℓ = 2 [108], though the anisotropy has
both on-site and two-site contributions, see Tbl. 3.3. In such cases the temperature
dependence of the MAE has no predictable power-law form, for systems with uniaxial
anisotropy one can expect an exponent between two and three.
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Figure 3.15: Temperature dependence of the magnetic anisotropy energy of Fe2/Au(001)
om a log-log mesh. The simulations were performed on a 2 × 64 × 64 lattice with the

parameters Tm = 10TC, w0 = 0.16TC and σ = 0.04.
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3.5.2 Fe3/Au(001)

Geometry, electronic structure and spin model

For the trilayer the same geometry was used as for the bilayer (see Fig. 3.14.), the
third Fe layer was put in the place of the first vacuum layer in the same vertical
position. Similarly the effect of the Fe-Au interlayer distance on the exchange cou-
pling parameters was calculated. We used the same Heisenberg Hamiltionian, the
only difference is the extension to the third Fe layer:

H = −1

2

n∑

p,q=1

∑

i,j

sTpiJpi,qjsqj −
3∑

p=1

∑

i

λp(spiez)
2 , (3.38)

where the exchange parameters were calculated with the relativistic torque method.
The result of the study on interlayer relaxation can be seen in Tbl. 3.4. The on-site
anisotropy prefers normal to plane configuration, but it is compensated by the two-
site contribution and the MAE prefers an in-plane magnetization, as it is expected
from the experiments. The spin magnetic moments of the Fe layers are 3.0µB, 2.3µB

and 3.0µB in the surface, middle and interface layers, respectively.

Table 3.4: Calculated total MAE and sum of the layer-dependent on-site anisotropy
constants for Fe3/Au(001). All energies are given in meV.

dFe−Au/dFe−Fe Ez − Ex λS + λM + λS

1.10 0.073 −0.072
1.12 0.088 −0.076
1.14 0.118 −0.086
1.16 0.142 −0.095

Finite temperature simulations

The thermodynamic quantities of the system, such as the magnetization (M(T )) and
the specific heat (C(T )), have been calculated by means of Monte Carlo simulations.
The peak of the C(T ) curve set the Curie temperature to TC = 500K, which is still
close to the experimentally reported value of T exp

C = 550K [62].
The MAE was calculated by well-tempered metadynamics simulations, using the

same relaxed geometry as for Fe2/Au(001). Here we have to note, that as in the
model systems the x and y directions are equivalent in a (001) surface, and cannot
be differentiated with a collective variable defined by the out-of-plane component
of the magnetization. So in the following we can only state that the magnetization
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is in-plane, without further specifying its direction. The metadynamics simulations
were performed on a 3×32×32 lattice. The temperature dependence of the relative
free energy magnetic anisotropy with respect to the normal to plane configuration
can be seen in Fig. 3.16. As the figure shows, the MAE is in the µRy range. This
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Figure 3.16: Temperature dependence of the relative free energy magnetic anisotropy
normalized to one spin with respect to the normal to plane configuration in Fe3/Au(001).
The simulations were performed on a 3× 32× 32 lattice with the parameters Tm = 10TC,

w0 = 0.16TC and σ = 0.04. The different colors represent different temperatures.

values are so small, that we are in the range of the Gaussian in the metadynamics
simulations, which explains the error of the curve. The comparison of the different
temperatures shows, that this temperature dependence is not monotonic, both at
low temperatures (blueish curves) and high temperatures (reddish curves) it is small,
and it has a maximum at 0.36TC, i. e. 180K. This can probably be explained
similarly to the SRTs of the model system. At low temperatures the term from the
on-site anisotopy, which was proven to prefer the normal-to-plane configuration is
strong, it nearly compensates the contribution from the two-site anisotropy, thus the
MAE is small. Then the former contribution diminishes faster, thus the anisotropy
energy grows, until a maximum, where is begins to decrease with the temperature,
as expected.

3.6 Fe bilayer on W(110): reorientation and DMI

Ultrathin Fe films epitaxially grown on W(110) have been studied intensively [133,
134] due to their peculiar magnetic properties, such as in- and out-of-plane aniso-
tropy [135], spin reorientation [63, 64], and domain wall formation [136]. The
magnetic ground state of the Fe2/W(110) depends on the size and shape of the
double-layer areas in the experiments [64, 137]. Fe double layer (DL) stripes ex-
hibit a periodic magnetic structure with alternating out-of-plane domains separated
by 180◦ walls [138]. For larger DL islands there is a normal-to-plane ferromag-
netic order at low temperature [63], which turns into the in-plane direction [110] at
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higher temperature [139]. The quality of the Fe coverage also influences the thermo-
dynamic properties, i. e. according to susceptibility measurements [139] the Curie
temperature strongly depends on the Fe coverage.

Geometry and electronic structure

The Fe2/W(110) interface was modeled by seven atomic layers of W, two atomic
layers of Fe, and three atomic layers of empty spheres (vacuum) sandwiched between
semi-infinite bulk W and semi-infinite vacuum. The bulk lattice constant of bcc Fe
is aFe = 2.867Å, and of bcc W is aW = 3.165Å. Due to this large lattice mismatch
of 9.4%, there is a considerable inward relaxation of the Fe layers, which has been
confirmed by many experimental [134, 140, 141], as well as theoretical [142–144]
investigations. In our calculations the distance between the upmost W layer and
the interfacial Fe layer was chosen to be dFe−W = 2.01Å, whereas the distance
between the interfacial and surface Fe layers was set to dFe−Fe = 1.71Å, according
to the results of earlier studies based on density functional theory calculations [143,
144]. The layered geometry is presented in Fig. 3.17. The spin magnetic moments
of the Fe layers were found to be µS = 2.78µB in the surface layer, and µI = 2.34µB

in the interface layer, and the ferromagnetic alignment of the layers was found to be
preferred. The largest induced magnetic moment of µW = 0.16µB was found in the
upmost W layer, and it was aligned antiparallel to the magnetic Fe layers.
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Figure 3.17: Interface geometry of Fe2/W(110) showing the different interlayer distances.
The blue, red and green spheres denote the tungsten, the iron and the vacuum sites,
respectively. The spheres are proportional to their ASA sizes of the atoms. The bulk label

indicates, that from this point the bulk geometry is applied.

Spin model

As opposed to the previous case, the W(110) substrate has a lower – C2v – symmetry,
which implies that the x and y components of the parameters will not be equal, and
a bi-axial on-site anisotropy is required. The magnetic Fe DL was modeled by the
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following classical Heisenberg spin Hamiltonian:

H = −1

2

2∑

p,q=1

∑

i ̸=j

sTpiJpi,qjsqj +
2∑

p=1

∑

i

λpx(spix̂)
2 +

2∑

p=1

∑

i

λpy(spiŷ)
2 , (3.39)

where λpx, and λpy are the on-site biaxial anisotropy constants in layer p, and the
x̂ and ŷ vectors are unit vectors parallel to the [110] and [001] in-plane directions,
respectively.

The relativistic torque method was applied by Levente Rózsa to calculate the ex-
change interaction tensors and the on-site anisotropy coefficients. Due to the (110)
surface the calculations were performed in parallel alignments of the spins along
two in-plane nearest-neighbour directions, one in-plane next-nearest-neighbour and
third-nearest-neighbour direction, and along the out-of-plane directions. The ferro-
magnetic or antiferromagnetic alignment of the moments in the Fe as well as the
substrate layers was based on the self-consistent calculations. Since orienting the
moments along a specific direction only gives information about the exchange ten-
sor elements with Cartesian indices perpendicular to the magnetization direction, a
least-squares-fitting procedure was applied to the results of the five different calcu-
lations mentioned above. The interaction between atoms was included in the model
within a real-space cutoff of 8

√
2aW = 35.808Å. The magnetostatic dipolar interac-

tion was added manually to the traceless symmetric part of the exchange tensors,
since it is not taken into account in the ab initio calculations. The dipolar term
favors spin alignment along the [001] direction by 0.143meV/atom and along the
[110] direction by 0.137meV/atom over the out-of-plane [110] orientation.

Table 3.5: Calculated layer dependent magnetic anisotropy parameters (in units of meV)
for the Fe2/W(110) layers. Jαα

p is defined in Eq. (3.37). The Fe layer at the interface with
W is denoted by I, the one at the surface by S. The notations x, y, and z stand for the

[110], [001], and [110] directions, respectively.

layer λx λy Jzz
p − Jxx

p Jzz
p − Jyy

p

I 0.611 0.261 – 0.603 0.138
S – 0.055 – 0.137 0.377 0.106

The layer-wise on-site and exchange anisotropy parameters defined in Eq. (3.37),
are summarized in Tbl. 3.5. The anisotropy of the exchange couplings in the in-
terface layer prefers the in-plane [110] direction, which is partially compensated by
the contribution from the surface layer. On the contrary, the on-site anisotropy of
the interface layer clearly prefers the normal-to-plane [110] direction for the magne-
tization. The MAE calculated as the difference between the energy of the system
magnetized in the [110] in-plane direction and parallel to the normal-to-plane [110]
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direction, E110 − E110 = 0.330meV, as well as the MAE related to the [001] and
[110] directions, E001−E110 = 0.368meV, imply indeed a normal-to-plane magnetic
orientation in the ground state as also found in Refs. [136, 142].

Finite temperature simulations

Standard Metropolis Monte Carlo simulations on the perfect DL of Fe resulted in
a Curie temperature of TC = 520K, which is in relatively good agreement with the
experimentally reported T exp

C = 455K [139]. In the metadynamics MC simulations
the normal-to-plane component of the normalized magnetization was chosen again
as the collective variable. The height of the Gaussian bias potentials was set to
w0 = 0.04mRy, their width was σ = 0.06, and the metadynamics temperature was
set to Tm = 10400K. The simulations were performed on a 64 × 64 × 2 lattice.
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Figure 3.18: Temperature-dependent MAE of the DL Fe on W(110) obtained from meta-
dynamics simulations, defined as the difference in the free energy between the normal-to-
plane and the in-plane magnetic configurations. The presented values are normalized to one
Fe atom. The black solid circles show results based on the full Hamiltonian in Eq. (3.39),
while the red squares correspond to a simulation where the DMI was set to zero. An av-
erage over 60 Monte Carlo simulations was performed at each temperature, and the error
bars denote the standard deviation calculated from these independent simulations. The
number of Monte Carlo steps was at least 1.5 × 105 at each temperature, with a higher
number of steps close to the phase transitions. The calculations were carried out on a
64 × 64 × 2 lattice, using the metadynamics parameters Tm = 10400K, w0 = 0.04mRy,

and σ = 0.06.

Since the DMI induced anisotropy (see in Sec. 3.3) is expected to be present in
this system, two sets of calculations were performed, one with the full set of coupling
parameters, and a second where all the DM vectors were omitted by the removal
of the antisymmetric part of the coupling tensors Jpi,qj. In Fig. 3.18 the magnetic
anisotropy energy (K) defined as the difference of the free energy between the [110]



3.6. Fe bilayer on W(110): reorientation and DMI 57

Table 3.6: In-plane components of the DM vectors with the largest magnitude in the
Fe2/W(110). The Fe layer at the interface with W is denoted by I, the Fe at the surface
by S. The number after N denotes the order of the neighbour. Dx

pi,qj > 0 prefers a right-
handed rotation or fluctuation of the spins in the yz plane (z → y), Dy

pi,qj > 0 describes an
energy gain from a left-handed rotation in the xz plane (x→ z), following the convention

of Ref. [146]. The z component of the DM vectors is 0 for all pairs in the table.

pair Dx
pi,qj (meV) Dy

pi,qj (meV)
S–S N1 1.62 -1.98
S–I N1 1.69 0.00
I–I N2 1.22 0.00
I–I N4 -1.12 0.34

in-plane orientation and the [110] normal-to-plane orientation is depicted for a wide
range below TC.

First let us focus on the calculation with the full set of parameters (black spheres).
As can be inferred from this figure, the MAE changes sign at Tr = 350K indicating
a SRT from the normal-to-plane (K > 0) to in-plane (K < 0) direction. The tem-
perature of the SRT is higher than the value reported experimentally in Ref. [137],
but is supported by the presence of out-of-plane magnetized DL patches found at
room temperature in Ref. [145], demonstrating that Tr strongly depends on the size
and shape of the DL areas. Although the metadynamics simulations which use only
the out-of-plane magnetization component as a collective parameter do not enable
one to differentiate between in-plane directions, calculations based on the standard
Metropolis Monte Carlo algorithm confirmed that above Tr the average magneti-
zation is aligned along the x direction, in agreement with the prediction based on
Table 3.5. The anisotropy goes to zero around T ≈ 450K, which is slightly be-
low the Curie temperature based on the heat capacity measurements, yet it is in
good quantitative agreement with the measurements in Ref. [139]. The driving
force of the spin reorientation is most probably a competition between the exchange
anisotropy and the on-site anisotropy, since these contributions to the MAE exhibit
different temperature dependences, as explained in details for the model systems
before. Yet we have to turn our attention to the difference of the two curves (with
and witout DMI). As seen for the model system in Sec. 3.3 the curve without the
DMI is shifted upwards at all temperatures compared to simulations utilizing the
full coupling. Note, that for this case this small shift has a significant effect, since
the curve has no crossing through the zero value, consequently, without this dynamic
anisotropy term due to the DMI, there is no reorientation of the spin direction.

The components of the largest DM vectors in the DL Fe on W(110) determined
from the ab initio calculations are listed in Tbl. 3.6. The C2v symmetry of the
system causes the in-plane components of the DM vectors to dominate, as expected
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for interfacial inversion-symmetry breaking. The z component of the DMI is exactly
zero for all pairs in the same magnetic layer, as well as for interlayer pairs located
in symmetry planes. Overall, the x component of the DM vectors has the largest
contribution, preferring the formation of right-handed Néel-type domain walls with
normal vectors along the [001] direction in the out-of-plane magnetized system, in
agreement with the experimental observations [146].
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Figure 3.19: The difference in the MAE per Fe atom between metadynamics simulations
with and without the DMI (black solid circles). The red squares denote the correlation
function KDMI from Eq. (3.7), which attributes this anisotropy to the DMI-induced chiral
spin correlations, with the magnetization and the correlation function determined from
Metropolis Monte Carlo simulations. Both calculations were performed on a 64 × 64 × 2
lattice. Error bars denote the standard deviation calculated from 60 independent simula-

tions.

The correlation function in Eq. (3.7), and the value for D in Tbl. 3.6 indicate
that at finite temperatures where the spin fluctuations play a prominent role the DMI
prefers the magnetization to be aligned in plane along the x direction. To confirm
this idea the correlation function and the difference of the two MAE curves from
Fig. 3.18 are plotted in Fig. 3.19. The magnetization and the correlation functions
necessary for the calculation ofKDMI were obtained from standard Metropolis Monte
Carlo simulations, with the correlation function determined only for the neighbours
with the largest DMI interactions listed in Tbl. 3.6. Figure 3.19 demonstrates
that the analytical expression for KDMI, which only takes into account the lowest-
order correlation corrections, is in good quantitative agreement with the full scale
numerical simulations of the anisotropy contribution attributed to the DMI over
the whole temperature range. Importantly, this contribution approaches zero at
low temperature, where the fluctuations are suppressed, and it also vanishes close
to the Curie temperature where the magnetization disappears, as can be deduced
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from Eq. (3.7). The magnitude of the DMI-induced anisotropy is maximal around
room temperature in the system, close to the SRT temperature. This behaviour is
fundamentally different from the temperature dependence of the on-site MCA and
the SA, which monotonically decrease in magnitude from zero temperature, and for
which the spin-spin correlations lead to a faster decay compared to the mean-field
prediction [147].





61

Chapter 4

Magnetic skyrmions in ultrathin
films

In this Chapter I am going to present the results on the creation and annihilation
of skyrmionic structures in skyrmion–hosting systems. First I summarize the basics
of skyrmions physics, then I show how well-tempered metadynamics can be used to
identify skyrmions and antiskyrmions as quasiparticles, and I present the prerequi-
sites needed to be able to obtain their respective chemical potential. The method
is tested in two skyrmion–hosting systems, namely (Pt0.95Ir0.05)/ Fe/Pd(111) and
Pd/Fe/Ir(111) illuminating their different energetics.

4.1 Background

Magnetic skyrmions, analogously to their namesakes in field theory are localized,
noncollinear configurations, on a lattice. Since the first indications for the for-
mation of a skyrmion lattice in bulk MnSi via neutron scattering [26, 148, 149]
and real-space imaging on Fe0.5Co0.5Si film using Lorentz transmission electron mi-
croscopy [150], magnetic skyrmions have been observed in a wide variety of bulk
materials and in thin films [34]. Later it was shown, that these whirling magnetic
patters can be stabilized by the Dzyaloshinky–Moriya interaction [30], by four-spin
interactions [31], or due to the frustration of Heisenberg exchange interactions [32,
33]. Similarly, the magnetostatic dipolar interaction can also create cylindrical mag-
netic domains, which are called magnetic bubbles. An important difference between
magnetic skyrmions and bubbles is that the size of a magnetic bubble is usually
in the micrometer range, whereas the magnetic skyrmions are much smaller, gen-
erally in the nanometers scale. A more important difference is that in contrast to
the bubbles, skyrmions are much more stable objects, in the continuum description
a skyrmion cannot be destroyed, and also in lattice models they show an excep-
tional topological stability. Their special properties, such as their nanoscale size,
exceptional stability and considerable mobility, make magnetic skyrmions perfect
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candidates for usage in logical and high-density memory devices [36–38], and they
form an emerging platform for future neuromorphic and quantum computing [39].

Though skymions have already been found at zero magnetic field [151], the sta-
bility of skyrmion state usuallys requires the presence of an external magnetic field,
which makes possible the magnetic skyrmions to become energetically the most
favourable state [30]. In bulk systems the skyrmions may be present as tubes align-
ing parallel to the direction of the magnetic field B. In thin films the external field
must be perpendicular to the surface so that the skyrmions become energetically
favourable. The spin in the middle of the skyrmion must be always directed oppo-
site to the external field. Yet the overall magnetization of the skyrmion is parallel
to the field, since there are more spins in the outer shells of the skyrmion, and this
makes it energetically preferred due to the Zeeman term. Finally note that with the
increase of the magnetic field the skyrmions loose their energetic advantage against
the ferromagnetic state, and the skyrmions disintegrate, so the individual skyrmion
particles can only be present in a specific field range. Skyrmions can be distinguished
based on the type of their respective domain walls, namely there are Néel-type and
Bloch-type skyrmions. In the former case the magnetic moments rotate along the
radial direction, whereas in the case of Bloch type skyrmions the moments rotate
perpendicular to the radial direction. The possible configurations are doubled when
the different chiralities are also taken into account. Usually the crystal structure and
the broken inversion symmetry at interfaces chooses the favourable configuration in
a given case.

The topology of magnetic skyrmions can be characterized by three parame-
ters [34]: their topological charge (Q), their vorticity (ω), and their helicity (ν).
In field theory the topological charge is defined as follows [152]:

Q =
1

4π

∫
d2r s · (∂xs× ∂ys) , (4.1)

where s is the classical spin vector with unit length. For the discrete lattice spin
models this transforms to the following formula [153]:

Q =
∑

{i,j,k}

1

2π
arctan

(
si · (sj × sk)

1 + si · sj + si · sk + sj · sk

)
, (4.2)

where {si, sj, sk} denotes the spin vectors at three nearest-neighbour sites forming
triangles that cover the lattice. In the case of periodic boundary condition the value
of Q is always an integer, and with this sign convention in our investigated host
systems, the topological charge of an isolated skyrmion in a background pointing
along the positive z direction will be Q = −1. The vorticity and helicity are linked
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to the magnetization field.

s(r, φ) =




sin θ(r) cosϕ(φ)

sin θ(r) sinϕ(φ)

cos θ(r)


 , (4.3)

θ(φ) = ωφ+ ν , (4.4)

where r and φ are the radial distance of s from the center of the skyrmion, and its
relative angle to the x direction. The direction of magnetization at position r, φ are
given by the angles θ and ϕ. The vorticity (ω) expresses how many times and in
which direction the in-plane component of the spins rotates around the circle when
following a closed curve surrounding the center of the skyrmion. It is connected to
the topological charge, Q = ±ω depending on the direction of B. In realistic surface
magnetic systems the Dzyaloshinsky–Moriya interaction prefers a given rotational
sense of the spins, which selects a fixed value of helicity for magnetic skyrmions [29,
154].

Figure 4.1: Examples for Néel type skyrmions with different topological charges. Left:
skyrmion (Q = −1), middle: antiskyrmion (Q = 1) and right: chimera skyrmion (Q =
0). In all cases the magnetic field is pointing downwards, allowing only upward pointing
skyrmions in the system. The coloring respects the spin direction, upwards and downwards

pointing spins are denoted by blue and red, respectively.

The topological charge Q counts how many times the spin configuration winds
around the unit sphere upon the application of stereographic projection. This quan-
tity is zero in a ferromagnetic or antiferromagnetic state. However skyrmions always
have a finite topological charge. Fig. 4.1 shows examples for a skyrmion (left), an an-
tiskyrmion (middle) and for chimera skyrmion [155] (right), with topological charge
Q = 1, Q = −1 and Q = 0 respectively. Note, that the topological charge with-
out the other two parameters does not define uninquely the spin configuration: a
value of Q = 1 may describe an antiskyrmion with the spins winding oppositely
compared to a skyrmion (like on Fig. 4.1), or a skyrmion where all spin directions
are reversed compared to the Q = −1 case. Also more complex structures can have
larger topological charge, e. g Q = −2 may indicate a composite object but it can
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hide also two individual skyrmions. And finally, a finite topological charge does
not necessarily mean a localized object, since an elongated segment of a spin–spiral
can be described by the same topological charge as a skyrmion. On the other hand
localized objects with zero net topological charge may also be stable [29]. Among
all of this zoo of objects the skyrmions and antiskyrmions are considered to be the
most stable ones. In a continuum model the topological charge cannot be changed
dynamically, hence they are called topologically protected, yet in a crystal lattice
model it is not perfectly preserved. The finite energy gap between the skyrmion and
the topologically trivial states allows to create and annihilate skyrmions, which thus
can be regarded as quasiparticles [35]. Energetically, skyrmions are always preferred
compared to antiskyrmions, since they gain energy from the DM interactions, while
the energy contribution from the isotropic Heisenberg coupling and the Zeeman term
is the same for both of them [156]. Considering all the processes listed before, the
same change in the topological charge of a lattice can correspond to different phys-
ical processes with different energies. Even if only skymions and antiskymions are
considered the related energy difference can differ, depending whether a skyrmion
is created or an antiskyrmion is destroyed in the process. This means that if we
want to calculate these energies, we have to be sure which process is changing the
topological charge.

The energy barriers and the attempt frequencies of skyrmion creation and an-
nihilation have been thoroughly investigated based on the zero-temperature energy
landscape [33, 157–160], with the results in a good agreement with the collapse mech-
anisms observed with low-temperature STM [161]. Skyrmion lifetimes have also been
calculated based on Metropolis Monte Carlo [162] and atomistic spin dynamics [70]
simulations, which are primarily applicable at higher temperatures where the cre-
ation and annihilation processes are faster. Deviations from the method based on
the zero-temperature energy landscape have been observed in this elevated temper-
ature range [35]. The connection of the low and high T limits is an important task,
and it can be achieved by using specialized algorithms to speed up the numerical
simulations. A path–sampling approach was applied for this purpose in Ref. [163],
and the finite-temperature free energy barriers of single skyrmions were also recently
investigated in Ref. [87] using the well-tempered metadynamics. Most of these stud-
ies focus on the stability of single isolated skyrmions. Experimental observations in
Ref. [164] indicated that at elevated temperatures multiple skyrmions may be cre-
ated or annihilated at varying positions in nanoislands. It is expected that the
interactions between skyrmions as quasiparticles in such ensembles influence their
stability, as the influence of interactions has already been demonstrated on the ther-
mally induced motion of skyrmions [165–167]. In my work the goal is to investigate
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multi-skyrmion system, and so determine the equilibrium number of skyrmions as
a function of the temperature, and to obtain the temperature dependent chemical
potential of skyrmions and antiskyrmions.

4.2 Peculiarities in metadynamics to investigate

skyrmions

We used metadynamics to explore the free energy surface of skyrmion–hosting ul-
trathin film systems. Since each skyrmion gives −1 to the topological charge of the
lattice, Q is a natural choice for the collective variable. As opposed to the magneti-
zation in the previous chapter, there is no natural limit that bounds the magnitude
of the topological charge on a lattice other than its spatial extension which limits
the number of objects due to their size. In a recent work [87] the problem of un-
wanted high Q value was solved by applying a harmonic spring potential outside of
the region of interest. Our work focused on the investigation of many skyrmions and
such an approach was not used, and we let the walkers explore the whole Q range,
though this idea is worth considering to increase the speed of lower temperature
simulations. For numerical reasons we chose η = Q/Qmax for the CV, which made
the interpolation of the Gaussian potentials more manageable. The value Qmax was
set based on the lattice size, usually Qmax = 50 for a 128×128 lattice. This ensured
enough space in η to obtain a wide regime of the bias potential, while its resolution
remains still acceptable. Since as opposed to the case of MAE, there is no disconti-
nuity at the boundaries the time development of the bias potential in (3.9) takes a
simpler form:

Vbias(η, t+ τ) = Vbias(η, t) + VG(η − ηact) . (4.5)

Numerical challenges of these simulations are due to the well-known high stability of
the skyrmions. At low temperature the skyrmions in the lattice freeze in and it takes
extremely long simulation time to overcome the energy barrier between the skyrmion
and the ferromagnetic or spin–spiral state. In order to avoid this problem on one
hand we applied multiples walkers which covers different regions of the CV η, on the
other hand we also increased Tm temperature of the well tempered metadynamics.
This way we were able to go just below the ordering temperature of the spin–spiral
(SS) or skyrmion–lattice (SkL) phases.

At a given temperature, the position of the maximum of Vb(η) gives the most
likely value Q0 of the topological charge in the lattice. The average value of the
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topological charge ⟨Q⟩ can be calculated as

⟨Q⟩ =
∑

Q′ Q′ exp{βVb(Q′)}∑
Q′ exp{βVb(Q′)} , (4.6)

where β = 1/(kBT ) is the inverse temperature, and the free energy F is replaced by
the bias potential −Vb (see Eq. (2.63)).

4.3 Free energy curves and chemical potentials

As already explained, unfortunately the topological charge does not agree with the
number of localized non-collinear spin configurations, such as skyrmions in the lat-
tice. Since the definition of chemical potential is the free energy difference of the
system with N and N + 1 particles in it, it is a necessity to somehow identify how
many objects are there even if it cannot be controlled in the metadynamics simula-
tions. A possible solution to this is to look at the snapshots of the real-space spin
configurations taken from the simulations. In Fig. 4.2 the snapshots of Fe sites are
displayed for Q = 4, Q = 7 and Q = −5 at T = 61K in(Pt0.95Ir0.05)/Fe/Pd(111)
at B = 1T. At this temperature the thermal fluctuations make the identification
of topological objects cumbersome, so the snapshot spin configuration was relaxed
at zero temperature using the conjugate gradient method (See Sec. 2.4). It has to
be noted, that such a procedure can modify the topological charge of the system
by removing high-energy metastable skyrmionic textures, but in the case of low-
temperature simulations we found that the topological charge was not affected. The
coloring respects the local topological charge density, defined similarly to Eq. (4.2)
as the following:

q(Si) =
∑

{j,k}

1

2π
arctan

(
Si · (Sj × Sk)

1 + Si · Sj + Si · Sk + Sj · Sk

)
. (4.7)

Three types of objects were found: skyrmions with Q = −1, antiskyrmions with
Q = 1 and chimera skyrmions with Q = 0 enclosed in blue, red and green lines in
the figures, respectively. Composite objects with higher topological charge are not
found, and at this external magnetic field, non-local objects with final topological
charge such as elongated spirals are not present. An important fact is that in config-
uration with positive (Fig. 4.2(a) and (b)) and negative (Fig. 4.2(c)) net topological
charges the configuration consist mainly of |Q| antiskyrmions and skyrmions, respec-
tively. This suggests that in the positive and negative Q regions the process behind
the change of the topological charge is the creation/annihilation of an antiskyrmion
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(a)

(b)

(c)

Figure 4.2: Snapshots of spin configurations obtained in (Pt0.95Ir0.05)/Fe/Pd(111) at
external magnetic field B = 1T, temperature T = 61K, with topological charges (a)
Q = 4, (b) Q = 7, and (c) Q = −5. The configurations were relaxed to turning off the
thermal fluctuations for better visualization of the localized spin structures; The coloring
denotes the topological charge density: red q > 0, blue q < 0. Skyrmionic objects with
topological charge Q = 1, Q = 0, and Q = −1 are denoted by solid red, green and blue

circles, respectively.

and a skyrmion, respectively. By definition in a mixed system with multiple types
of particles the chemical potential is the free energy difference of the system with N
and N + 1 particles in it, while the number of every other particle is fixed. Though
chimera skyrmions with Q = 0 can also be observed in all configurations, which
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complicate the evaluation of the data, but at this low density of localized objects
their effect is expected to be small on the free energy differences. So we defined
chemical potential of the skyrmions and antiskyrmions as a slope of fitted linears as
follows:

µ± = lim
∆Q→±1

F (∆Q)− F (0)
|∆Q| , (4.8)

where the ± indices denote antiskymions and skyrmions, respectively. This defini-
tion assumes, that skyrmion–skyrmion interactions are negligible, which restricts it
to a finite region around Q = 0. It should be noted, that this definition is based
on skyrmion creation and annihilation events in a spatially homogeneous system. A
different definition of the skyrmion chemical potential was introduced in Ref. [168],
which is spatially inhomogeneous and leads to the accumulation of skyrmions in
certain areas while their total number is conserved.

Figure 4.3: Spin configuration obtained in (Pt0.95Ir0.05)/Fe/Pd(111) at external magnetic
field B = 1T, temperature T = 94K, with topological charge Q = −11. The configurations
were relaxed to turning off the thermal fluctuations for better visualization of the localized
spin structures; The coloring denotes the topological charge density: red q > 0, blue q < 0.
Skyrmionic objects with topological charge Q = 1, Q = 0, and Q = −1 are enclosed by

solid red, green and blue lines, respectively.

At higher temperatures the snapshots are more complicated. For the tempera-
ture T = 94K, a spin configurations after zero temperature relaxation is presented
in Fig. 4.3 with Q = −11, demonstrating that the topological charge is mostly
formed by skyrmions with Q = −1, but many other irregularly shaped skyrmion-
like patterns with Q = 0, and also antiskyrmions with Q = 1 are present in the
system. Altogether these magnetic textures are much denser than at low T , which
means that even with a small overall Q for the whole lattice the skyrmion–skyrmion



4.3. Free energy curves and chemical potentials 69

interactions play a crucial role, and an independent particle picture does not apply,
and the chemical potential of individual objects cannot be evaluated.
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Figure 4.4: Free energy curves as a function of the topological charge Q simulated
on a 128 × 128 lattice of Fe sites in (Pt0.95Ir0.05)/Fe/Pd(111) (left) at T=61 K (black)
and T=94 K (blue) in the presence of an external magnetic field B = 1T, and Fe sites
in Pd/Fe/Ir(111) (right) at T=141 K (black) and T=243 K (blue) in the presence of an
external magnetic field B = 4T. The red curves are obtained by fitting the data to to
Eq. (4.9) for high temperature and to Eq. (4.8) for low temperature example. The vertical

dashed lines mark the values of Q0 from the fitting procedures.

This work concentrates on two skyrmion–hosting systems, namely (Pt0.95Ir0.05)/
Fe/Pd(111) and Pd/Fe/Ir(111). A typical low and high temperature example for
the free energy curves is shown in Fig. 4.4 for both systems. The temperatures used
for (Pt0.95Ir0.05)/Fe/Pd(111) on Fig. 4.4(a) correspond to the ones of the snapshots
in Fig. 4.2. The curves corresponding to T = 61K (black) and to T = 94K (blue)
are significantly different.

At low temperature we found an asymmetrical shape with almost linear regions
around its minimum Q0, very close to zero. This behaviour clearly agrees with the
assumption of non-interacting, free skyrmionic objects, and the chemical potential
can be defined. The linearity of F (Q) in the Q < 0 region persists until Q ≈ −10
and in the Q > 0 region persists until Q ≈ 12. When the number of objects ex-
ceeds this, the energy contribution from the skyrmion-skyrmion interactions clearly
distorts the curve, as a sign that the free particle picture is only valid up to this
point. The relations µ+ > µ− > 0 implies that at B = 1T external field and
T = 61K temperature both the skyrmions and antiskyrmions are metastable in
(Pt0.95Ir0.05)/Fe/Pd(111), in agreement with the results in Ref. [35].

Later we will see, that as the temperature grows the linear region becomes smaller
and smaller. First this makes the precise definition of the linear region cumbersome
thus increases the fitting error, and after a point it is impossible to obtain the
chemical potential from Eq. (4.8). At high temperatures such as the blue curves
in Fig. 4.4, a parabolic fitting describes well the free energy curve over the whole
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range of Q:

F (Q) = F0 + a · (Q−Q0)
2 , (4.9)

where F0, Q0 and a are fitting parameters and Q0 defines the most likely value of
the topological charge. In such a mixed and dense state as in 4.3 the change of F
cannot be associated with the creation or annihilation cost of one type of skyrmionic
object.

Figure 4.4(b) shows the free energy curves for the Pd/Fe/Ir(111) system at
T = 141K (black) and T = 243K (blue) in the presence of an external magnetic
field of B = 4T , at which field value the ground state is known to be field polar-
ized [70]. The high temperature (blue) curve is very similar to that of the other
bilayer system, showing a parabolic dependence on the topological charge with a
value of Q0 ≈ −9. The low temperature curve is less asymmetric than the one
for the (Pt0.95Ir0.05)/Fe/Pd(111) system and has a minimum at a Q0 further from
the zero net topological case. Similarly, linear fits were performed above and below
Q = 0. Note that there is a kink in the curve around Q = 0, which suggests that
the chemical potential for skyrmion (Q < 0 side) and antiskyrmions (Q > 0 side)
differ. Now that both fitting lines are on the same side of the Q0, following the
definition in Eq. (4.8), we obtain different signs for the chemical potential, namely
µ+ > 0 and µ− < 0. This means that lowering the topological charge, i. e., creating
a skyrmion, decreases the free energy of the system. In the same temperature and
field regime, a high number of skyrmions was found in equilibrium in Ref. [70], in
agreement with this conclusion and the negative value of Q0 at the minimum of the
free energy curve. The relation |µ+| > |µ−| indicates that the free energy cost of
creating an antiskyrmion is larger than the free energy gain of creating a skyrmion.
Stable antiskyrmions have not been observed at zero temperature in this system
in Ref. [70], which correlates with the observation that short-lived antiskyrmions
created by thermal fluctuations have a high free energy cost. As we will see later,
when decreasing the temperature |Q0| also decreases, and at a certain temperature
µ−(T ) changes sign, indicating a field-polarized ground state at lower temperature.

4.4 (Pt0.95Ir0.05)/Fe/Pd(111)

Fe monolayer on Pd(111) with a Pt1−xIrx alloy overlayer has a ferromagnetic ground
state for x = 0, and it becomes a spin spiral as Ir is intermixed. A study [169]
of individual skyrmions depending on the mixing parameter x demonstrated that
skyrmions can be stabilized in this system. The most researched case is the x = 0.05
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alloy. The interplay between frustrated Heisenberg exchange and DMI can lead
to the formation of metastable skyrmionic spin structures with various topologi-
cal charges [170], and skyrmions with Q = −1 are found to be the lowest-energy
configurations [155].

The ground state configurations of (Pt0.95Ir0.05)/Fe/Pd(111) was investigated by
Schick et. al. [35] as a function of the external magnetic field B. Below B1 ≈ 0.21T
a spin–spiral state was found with the lowest energy, and above B1 it turns to a
field-polarized state. The skyrmion lattice phase is not a ground state for any range
of external field, but it has a positive energy compared to the field-polarized state
above B2 ≈ 0.1T. This work also reported about the thermodynamic properties
of the system above B2. They performed atomistic spin model simulations on a
relatively small lattice of 25× 25 sites, with an aim to host a single skyrmion. The
simulations were carried out ranging from low temperatures, where the number of
skyrmions is conserved up to the range, where skyrmions are constantly created and
destroyed by thermal fluctuations. Based on the time averaging of the number of
skyrmions they published a curve on the temperature dependence of ⟨Q⟩ at B = 1T
external field.

Spin model

In our study the magnetic structure of the system was modeled by the following
classical Heisenberg model:

H = −1

2

∑

i ̸=j

sTi Jijsj +
∑

i

λz(siẑ)
2 − µ

∑

i

siB , (4.10)

where the sums run through the Fe sites, Jij is the tensorial exchange, λz is an on-
site uniaxial anisotropy, ẑ denotes a unit vector parallel to the [111] normal direction
of the surface, and finally B = Bẑ is the external magnetic field perpendicular to
surface. The geometric structure and the exchange parameters were taken from Ref.
[169]. The parameters were obtained using the relativistic torque method and they
confirmed the spin–spiral ground state for the system.

Finite temperature simulations

The first, preliminary calculations were performed on a 128 × 128 lattice in terms
of traditional Metropolis MC simulations. The heat capacity (C) presented in
Fig. 4.5(a) predicts the critical temperature around 130K, which was found to be
constant in the range of B = 0.03 − 1T. The magnetic susceptibility (χ) is pre-
sented in Fig. 4.5(b). This quantity shows a peak at lower temperatures, and it
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highly depends on the value of external magnetic field B. In contrast to a second-
order phase transition, the difference between the maxima of the heat capacity and
magnetic susceptibility curves cannot be attributed exclusively to finite-size effects.
The heat capacity is maximal where short-range order is completely lost in the sys-
tem and localized objects may no longer be identified, where the rapidly changing
angles between neighbouring spins give rise to high energy fluctuations. On the
other hand the susceptibility depends on the fluctuation of the magnetization. In a
state where skyrmions and antiskyrmions are created and destroyed very rapidly by
the temperature, the susceptibility takes a large value, whereas the heat capacity is
still moderate due to the short-range order. As it was seen in Ref. [35], the energy
difference between field polarized and skyrmion states depends on the external mag-
netic field, this explains why the position of the peak is so sensitive to the value of
B. Note that similarly to the magnetic susceptibility (χ) one can define a skyrmion
susceptibility based on the topological charge:

χQ ∝
⟨Q2⟩ − ⟨Q⟩2

T
. (4.11)

The maximum of this quantity has the same position as χ has, since it is based on
the fluctuation of the number of skyrmions and antiskyrmions. At low temperatures
this suddenly becomes zero as the skyrmionic objects freeze in the lattice.
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Figure 4.5: (a) Heat capacity (C) and (b) magnetic spin susceptibility (χ) simulated on
a 128×128 lattice of (Pt0.95Ir0.05)/Fe/Pd(111) with external magnetic field B = 0.03−1T.

Next I investigated the topological charge of the system by using our metady-
namics Monte Carlo method. From this point the external field was chosen B = 1T
similarly to Ref. [35]. The temperature range of the metadynamics simulations
was set between 50K and 160 K. Below T = 48K the number of skyrmions did not



4.4. (Pt0.95Ir0.05)/Fe/Pd(111) 73

50 100 150

−10

−8

−6

−4

−2

0

T [K]

Q

Q0

⟨Q⟩

(a)

50 100 150

1.0

2.0

3.0

4.0

T [K]

µ
[m

R
y
]

µ−

µ+

(b)

Figure 4.6: Average (⟨Q⟩) and most likely (Q0) topological charge, and chemical po-
tential of skyrmions (µ−) and antiskymions (µ+) simulated on a 128 × 128 lattice of
(Pt0.95Ir0.05)/Fe/Pd(111) with external magnetic field B = 1T in the same temperature

range. The error bars are due to the insufficient statistics of the simulations.

change even for extremely long simulation times, and the free energy curve could
not be calculated. Figure 4.6(a) implies, that the average number of skyrmions ⟨Q⟩
(Eq. (4.6)) and its equilibrium value Q0 based on the minimum of the F (Q) curve
coincide well with each other. The shape of the Q(T ) curves is similar to the one
reported in Ref. [35], but the minimum of the curve is set to a higher tempera-
ture around 90K, instead of 75 K in Ref. [35]. Apparently, the topological charge
(Fig. 4.6(a)) and the magnetic susceptibility (Fig. 4.5(b)) have their extrema at
around the same temperature. Obviously, there is a proportionality between the
number of skyrmions and the size of the lattice. Simulations of the same system
using smaller (64 × 64) and larger (256 × 256) lattices showed that the topological
charge scales with the area of the lattice. Considering this scaling, this result is in
good agreement with Ref. [35].

Fig. 4.6(b) shows chemical potentials of skyrmions and antiskyrmions as defined
in Eq. (4.8). As explained before, this quantity was only measureable at low tem-
peratures, where we can assumed that only one type of topological objects, i. e. only
skyrmions or only antiskyrmions are created in the process, while the number of all
other topological textures is unchanged, preferably zero. This condition narrowed
down the temperature range between 50K and 80K. Above 75–80 K the parabolic
behavior illustrated in Fig. 4.4 becomes more pronounced in the F (Q) curves. Note
that the upper boundary of this temperature range coincides with the point, where
Q0 reaches its maximal value. As for the value of the chemical potential itself, it is
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clear, that in the whole temperature range, µ+ is larger than µ−, i. e., the cost of
creating an antiskyrmion is higher than that of creating a skyrmion.

4.5 Pd/Fe/Ir(111)

This section focuses on another skyrmion–hosting bilayer, namely Pd/Fe bilayer
on Ir(111) [27, 70, 171, 172]. In this material, Dzyaloshinky–Moriya interactions
competing with isotropic Heisenberg exchange, uniaxial anisotropy and Zeeman
terms lead to the formation of metastable isolated skyrmionic spin structures. Spin-
polarized scanning tunneling microscopy experiments [27] revealed that the ground
state of the system is a spin–spiral state. In the presence of small external mag-
netic field perpendicular to the surface spin–spirals and Néel-type skyrmions can
coexist. The increase of the external field above 1T leads to the disappearance of
the spin–spirals (SS), and to the emergence of a pure hexagonal skyrmion lattice
(SkL). Further increase of the magnetic field brings the system into a field-polarized
(FP) phase. The experimental results have been reproduced by Monte Carlo simu-
lations based on parameters obtained from first-principles density-functional theory
calculations [70, 172, 173].

Spin model

The magnetic structure was modeled by the same Heisenberg spin Hamiltonian as
for the previous system:

H = −1

2

∑

i ̸=j

sTi Jijsj +
∑

i

λz(siẑ)
2 − µ

∑

i

siB , (4.12)

where the sums also run similarly through the Fe sites, Jij is the tensorial exchange,
λz is an on-site uniaxial anisotropy, ẑ denotes a unit vector parallel to the [111]
normal direction of the surface, and finally B = Bẑ is the external magnetic field
perpendicular to to surface.

The geometric structure and the exchange parameters were taken from Ref. [174].
The parameters were obtained using the spin–cluster expansion technique and they
confirmed the spin–spiral ground state for the system.

Finite temperature simulations

Previous spin dynamics [70] and MC simulations [172] distinguished three different
ground states depending on the magnitude of the external magnetic field B: spin–
spiral (SS) ground state below B = 1.4T, skyrmion lattice (SkL) between about
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B = 1.4T and B = 3T, and field-polarized (FP) state above B = 3T. These
phases are stable up to 100 K, where the system turns into a fluctuation-disordered
regime, which undergoes an order–disorder (paramagnetic) phase transition at about
250K independently of the external magnetic field. This enhanced complexity of
ground state configurations makes Pd/Fe/Ir(111) bilayer a more interesting object
of study.

As for the (Pt0.95Ir0.05)/Fe/Pd(111) bilayer the first step was to calculate thermo-
dynamic quantities, such as heat capacity and magnetic susceptibility via Metropolis
Monte Carlo simulations. For the studies we choose a B value corresponding to each
possible ground state configuration observed in this system [70]: B = 0.67T with
a SS ground state, B = 1.51T with a SkL ground state, and B = 4T, where the
system is expected to have a FP ground state. Fig. 4.7(a) shows the heat capacity
of the system calculated on a 128 × 128 lattice. Its peak is around 240 − 255K
depending on the magnitude of the external field, which is in good agreement with
the previous studies [70, 172]. Note that in Ref. [70] the same parameters were
used, whereas the results in Ref. [172] were based on a differently parameterized
spin model. Based on this result, we set the upper limit of the metadynamics simu-
lations to 370K. Fig. 4.7(b) presents the magnetic susceptibility curves. Similarly,
the peak is also at lower temperatures at around 140K, which can be explained in
a similar way.
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Figure 4.7: Temperature dependence of (a) heat capacity (C) and (b) magnetic spin
susceptibility (χ) simulated on a 128×128 lattice of Pd/Fe/Ir(111) with external magnetic

fields B = 0.67− 4T.

As can be seen in Fig. 4.6(a) the average number and the most likely value of
the topological charge coincide very well, so for the sake of simplicity only the latter
is presented for this system in Fig. 4.8(a) for the three chosen values of external
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magnetic field B. All three curves show maximal absolute Q0 in an intermediate
temperature range between 100K and 200K. This indicates that similarly to the
previous host system, the formation of skyrmions becomes energetically more fa-
vorable as the temperature is increased. This temperature dependence is in good
agreement with the results of Metropolis MC simulation in Ref. [70].
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Figure 4.8: (a) Temperature dependence of the most likely value of the topological charge
(Q0) simulated on a 128× 128 lattice of Pd/Fe/Ir(111) surface in the presence of different
external magnetic fields, 0.67T, 1.51T and 4.00T. (b) Temperature dependence of the
chemical potential of skyrmions (µ−) and antiskyrmions (µ+) on a 128 × 128 lattice of
Pd/Fe/Ir(111) surface with external magnetic field B = 4.00T. The error bars display the

uncertainty of the fitting parameters.

The case of FP ground state (B = 4T) is the most similar to the previous
system. The corresponding spin configurations indicated that at low temperatures
the topological charge exclusively corresponds to skyrmions with Q = −1. At higher
temperatures other minority skyrmionic textures appear such as antiskyrmions (Q =

1) and chimera skyrmions (Q = 0). As the temperature steps over the value set by
the maximum of the heat capacity curve, the short-range order vanishes, and the
topological charge, which approaches the zero value no more describes skyrmion like
spin structures.

The other two cases describe a bit different situation. For B = 1.51T, the
Q0(T ) curve reaches a similar maximal value around Q0 = −13, but already at a
lower temperature (≈ 120K) and the decrease of |Q0| is less pronounced. This is not
surprising, since the ground state is expected to be a skyrmion lattice. The third
curve, belonging to the B = 0.67T has a smaller maximum at a smaller temperature
close to the lower limit of our calculations. Theoretically the topological charge
should vanish in the zero-temperature limit, because of the spin–spiral ground state
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in this case. Note that the spin configurations at these two cases of external magnetic
field resemble space-filling networks of domain walls in the low-temperature regime.
Individual skyrmions are not stable at zero temperature at these low field values,
instead they fill up the whole space due to their strip-out instability. This means that
instead of the localized spin textures the topological charge is originated to the ends
of the intertwined spin–spiral segments. A very important consequence is that due
to the strong interaction between these elongated objects, the free particle picture
underlying the definion of the chemical potential in Eq. (4.8) is no longer valid,
and the free energy curves are parabolic. Therefore, as presented in Fig. 4.8(b)
the chemical potentials were only calculated for B = 4.00T. The linear fitting
around Q = 0 was possible up to the temperature where the most likely value of the
topological charge has its minimum at about 180K. As expected from the example
in Fig. 4.4(b), the free energy cost for the creation of antiskyrmions µ+ is positive,
while that of the skyrmions µ− is negative. This implies that in this temperature
region the formation of skyrmions with Q = −1 is energetically favorable, whereas
the formation of antiskyrmions with Q = 1 is highly unfavorable. As Q0 approaches
to zero at lower temperature, the linear regime for Q < 0 shrinks. This makes
the determination of µ− difficult based on the fitting procedure, when the slope is
close to zero. This is the explanation, why µ+ could be determined for a bit larger
temperature range below 100K, than µ− where the length of the fitting interval was
approaching zero. It is expected that the chemical potential changes sign in this
regime, leading to the field-polarized ground state at zero temperature.
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Chapter 5

Ground state magnetism of
nanoclusters

In this Chapter results on magnetic ground state configurations of atomic chains
deposited on nonmagnetic substrates are presented.

Atomic clusters are the youngest topic in the ab initio electronic structure calcu-
lations of solid state systems. Since freestanding chains are hardly accessible exper-
imentally, most interests are focused on deposited clusters. The substrate largely
influences the electronic structure of cluster atoms and these calculations require
the precise knowledge of the electronic structure of the host system before one could
even work with the cluster itself. The embedding scheme (see Sec. 2.1.4) relies on
the fact, that the electronic structure of the hosting substrate is known, and it is
only changed in the small vicinity of the cluster, which can be calculated site by site
to gain accurate description of the system. Once the electronic structure of a simple
– in most of the case ferromagnetic – magnetic configuration has been determined
there are two ways of obtaining complex magnetic ground state configurations. One
can fit the exchange couplings and anisotropy parameters to an appropriate spin
model and perform Monte Carlo or spindynamics simulations to find non-trivial
magnetic ground state. The obtained magnetic configuration is highly sensitive to
the underlying spin model. Introduction of higher order spin interactions, e. g. may
considerably change the ground state. In order to avoid this uncertainty we used an
ab initio based method described in Sec. 2.4.

The study of Fe clusters extended on 3 different substrates: (0001) surface of
Re, (111) fcc and hcp surface of Rh, and (110) surface of Nb. The study on Re
shows, how the ℓmax angular momentum cutoff in partial waves of the electronic
structure calculation affects the magnetic configuration. The chains on Rh were
used to compare the magnetic configurations from the optimisation scheme and the
same for spin dynamics simulations. Since the spin model-based calculation makes
possible to include or omit every term of the exchange coupling Jij tensor one by
one, their effect on the magnetic configuration could be separated. Finally Nb,
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similarly to Re was recently in the center of interest as hosting possible magnetic-
superconducting hetero-structures due to their possible applications in quantum
computing. Though here it has to be noted, that the calculations have been carried
out in the non-superconducting state, assuming that superconductivity does not
affect considerably the magnetic configuration [175].

5.1 Specialties of the conjugate gradient method

As it was presented in Sec. 2.4 we obtained the ground state magnetic configura-
tions after consecutive recalculations of the effective potentials Veff and exchange-
correlation field Bxc, and searched directions of the exchange correlation field si

at each site corresponding to the lowest free energy using the conjugate gradient
method. The accuracy of the direction was measured by summing the torque Ti

acting on each site (see Eq. (2.39)):

T =

√∑

i

T 2
i , (5.1)

where Ti is the magnitude of torque acting on site i. In all cases the optimization
procedure has been done until the relative error of the effective potential and of
the magnitude of the exchange-correlation field became smaller than 10−9 and 10−7,
respectively and the overall torque on the sites, T decreased below 10−2 mRy.

In practice, beyond the stable spin-moments of the magnetic cluster we also
included the induced moments of the non-magnetic host atoms in the minimization
scheme, if their value reached a predefined threshold value, usually chosen as 0.01µB.
If the spin moment on site i was smaller than this threshold value, the direction of
the local exchange field was set parallel to the direction of the magnetization in
the next iteration step. This simplification makes the calculations bearable, since
without it e. g on a typical triangular lattice, the inclusion of the first neighbourhood
of a magnetic chain into the optimisation scheme would increase the cluster size by
7 times, which would dramatically restrict the size of a manageable cluster, without
adding any significant accuracy to the solution. Note that this separation of small
and large magnetic moments was considered only during the optimization process,
in the electronic structure calculation the neighbourhood atoms were recalculated
as well as the magnetic sites.

Note that this method searching for a local minimum of the energy can result
in magnetic orientations sensitive to the initial configuration, especially in case of
complex magnetic structures. To overcome this problem I used configurations based
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on spin model calculations as starting magnetic orientations. Since all major inter-
actions are included into a spin model, these configurations were usually close, i. e
they followed the symmetry of the chain and the starting torque was small, but an
important obstacle was still to overcome. Symmetry group of spin chains deposited
on nonmagnetic substrate often contains only two operations: the identity and a
mirror plane perpendicular to the chain. Furthermore, the time reversal that turns
around the spin vectors is also a symmetry operation of these systems. Accordingly,
there exist two kinds of ground-state spin-configurations being invariant either un-
der the mirror transformation or under simultaneous action of mirror transformation
and time reversal. It then follows that the spin vectors can transform either as polar
or axial vectors under the mirror plane operation. The initial magnetic structure
necessarily follows one of these, and if the energy barrier is high enough this property
may not change, and the procedure can end in a metastable state. In order to find
the state belonging to lower energy the optimization procedure was to be repeated
using a starting configuration obtained by manually rotating the spin into the other
symmetry.

5.2 Fe nanoclusters on Re(0001)

Geometry and electronic structure

Rhenium (Re) is a transition metal, which crystallizes in hexagonal close-packed
(hcp) structure (space group P63/mmc) with lattice constant of aRe = 2.761Å, and
the inter-layer distance between the [0001] planes is 2.281Å. The geometric structure
of the Fe atomic chains on the Re(0001) surface has been investigated by Lászlóffy
et al. [77] using the Vienna Ab-initio Simulation Package (VASP) [75]. This work
considered the relaxation of distance between the surface Re layer and the plane of
the clusters on its top, and the distance between the two uppermost layers in the
Re substrate. These are 2.228Å and 2.160Å, respectively. In my work I used this
geometry, which is depicted on Fig. 5.1.

First the electronic structure of the host system was calculated using the SKKR
method. The Re(0001) surface was modeled as an interface region between a semi-
infinite bulk Re and vacuum consisting of eight monolayers of Re and four atomic
layers of empty spheres (vacuum). The iron chains were embedded into the low-
ermost vacuum layer in hcp positions along the [1000] (x) direction (see Fig. 5.1
right)
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Figure 5.1: Left: Side view of the Re(0001) crystal lattice, showing the different layers.
The layer in which the Fe atoms were embedded is shown with red, the underlying Re
atoms are shown with blue, and the empty vacuum positions with green spheres. The
layer–layer distances are obtained from [77]. Right: The concept of positioning Fe atoms

(red) into vacuum positions (opaque green) on the top of the Re substrate (blue)

Studying the effect of ℓmax

The electron configuration of Re is [Xe] 4f 14 5d5 6s2, and for the Fe is [Ar] 3d64s2.
As mentioned earlier the core f electrons of Re may influence the sufficient angular
momentum cutoff ℓmax of the partial wave expansion in KKR. Two sets of calcula-
tions were performed with different ℓmax values to test whether there is a significant
change in the magnetic ground state configuration due to the different cutoff.
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Figure 5.2: Different lengths (4, 5, 10, 15) of Fe chains on Re(0001) substrate, with
angular momentum cutoff ℓmax = 2. The x, y and z directions correspond to the [1000],
[1200] and [0001] directions, respectively. The red (unit)vectors show the direction of the
magnetization vector, while their magnitude is written inside the spheres in µB units. The
red spheres correspond to the Fe atoms, while the blue ones belong to the underlying Re

layer.

The comparison was performed on two shorter chains (4 and 5 Fe atoms), and
two longer ones (10 and 15 Fe atoms). All these chains were deposited in the
[1000] (x) direction, and the embedded system consisted of the Fe atoms and their
first neighbourhood in the Re substrate and in the vacuum region. The obtained
magnetic structure from the calculations using angular momentum cutoff ℓmax = 2

is in Fig. 5.2., and the one using angular momentum cutoff ℓmax = 3 is in Fig. 5.3.
The vectors represent the direction of the magnetic moment and its magnitude is
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Figure 5.3: Different lengths (4, 5, 10, 15) of Fe chains on Re(0001) substrate, with
angular momentum cutoff ℓmax = 3. The x, y and z directions correspond to the[1000],
[1200] and [0001] directions, respectively. The red (unit)vectors show the direction of the
magnetization vector, while their magnitude is written inside the spheres in µB units. The
red spheres correspond to the Fe atoms, while the blue ones belong the underlying Re

layer.

written inside of each atomic sphere for the Fe sites in µB units. For simplicity the
induced moments for the Re sites are not included in the figures, their value is about
0.1µB.

First consider the short chains (4 and 5). A general statement is that, the
magnitude of the magnetic moments is roughly the same through the chain, and
the edge atoms exhibit an enhanced moment, but it is significantly smaller in the
larger ℓmax calculation. It is also clear to see that the increase of ℓmax changes
the symmetries of both magnetic configurations, which suggests that an important
element is added to the calculation when ℓmax is increased. Note that, since the
essence of the method is finding a minimum of the band energy, it could have
happened that the optimisation procedure was stuck in a metastable state of the
opposite symmetry, if the initial configuration was far from the optimum as predicted
in the previous section. In order to exclude this possibility, multiple calculations were
performed with different initial configurations belonging to different symmetries. It
was found that regardless the choice of the initial configuration the result were
the same ones presented in Fig. 5.2 and Fig. 5.3. Thus the difference cannot be
originated to initial conditions, but to the higher expansion in the partial waves,
which fact has to be considered later in the following calculations.

The change of the symmetry does not occur in the case of the longer chains,
yet an important difference can be observed in the configurations: in the smaller
cutoff case the spins lie in the x − y ([1000] − −[1200]) plane, and for the larger
expansion in the x− z ([1000]−−[0001]) plane, which means that in the first case
the moments lie in-plane, whereas in the second one the spins are normal to the
plane of the substrate, which difference can be essential for applications.

Since the change of ℓmax has a direct effect on the electronic structure, we can



84 Chapter 5. Ground state magnetism of nanoclusters

x

y

z

−0.6 −0.4 −0.2 0.0
−30

−20

−10

0

10

20

30

40

FeE

E − EF [mRy]

D
O
S

ℓmax = 2
ℓmax = 3

−0.6 −0.4 −0.2 0.0

−10

−5

0

5

10 ReE

E − EF [mRy]

D
O
S ℓmax = 2

ℓmax = 3

−0.6 −0.4 −0.2 0.0

−20

−10

0

10

20

30 FeC

E − EF [mRy]

D
O
S

ℓmax = 2
ℓmax = 3

−0.6 −0.4 −0.2 0.0

−10

−5

0

5

10 ReC

E − EF [mRy]

D
O
S ℓmax = 2

ℓmax = 3

Figure 5.4: Up: Schematic view of the 15 atomic chain highlighting the atoms, where
the local density of state was calculated. The red and blue spheres correspond to the Fe
and Re atoms, respectively. Down: Local density of state for the end (E) and central
(C) Fe and Re atoms of the 15 atomic length chain of Fe lying in the [1000] direction
on Re(0001) substrate. The Fermi level is shifted to the zero level in both cases. The
two colors correspond to the two angular momentum cutoff values, and the positive and

negative value curves to the spin up and spin down components.

see how it changes the local density of states (LDOS) on a site. Figure 5.4 shows
the LDOS for the Fe and Re atoms lying at the end (E) and in the center (C) of the
15 atomic long chain. Though the change is not dramatic, there peaks is a slight
shift in the peaks to higher energies. It is more enhanced for the Re atoms, since the
presence of the f electrons. The relative magnetic properties of the central region
and at the end atoms are similar in both ℓmax cases.

Spin–spirals

Apart from being a good test system for this method, the rhenium as a substrate
owes its recent popularity to the possibility of being a superconducting host sys-
tem. Kim et al. [2] investigated Fe atoms, dimers and chains on superconducting
Re(0001) surface using scanning tunneling microscopy/spectroscopy aiming at the
discovery of Majorana bound states. By single-atom manipulation techniques they
artificially constructed a 40 atom-long-chain of Fe atoms, which exhibited a spin–
spiral state with a period of approximately four lattice constants. Lászlóffy and
coworkers modelled the same surface in their investigation of higher order spin–spin
interactions [77], and found a spin–spiral wavelength of 5 lattice constants. These
calculations were performed in the non-superconducting state of Re assuming, that
the superconductivity does not influence the magnetic ordering of Fe.

As an example Fig. 5.5 shows the magnetic ground state of the 15 atomic long Fe
chain positioned along the [1000] direction, which is a spin–spiral state, as expected.
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Figure 5.5: 15-atom-long Fe chain aligned in the [1000] direction showing spin–spiral
ground state on Re(0001) surface with ℓmax = 3. The side figure shows the view along the
chain direction. The red (unit)vectors show the direction of the magnetization vector, while
their magnitude is written inside the spheres in µB. The red and blue spheres correspond

to the Fe and Re atoms, respectively.

Since our investigations showed that the increase of the angular momentum cutoff of
ℓmax has a significant effect on the electronic and magnetic states, in the following we
only use the larger, ℓmax = 3 expansion when presenting results. The configuration
presented here can be compared to the one published in Ref. [77]. Both show a
spin–spiral state, though in our case the wavelength is smaller (discussed later). We
were able to reproduce the same chirality, which required higher order interactions
in the spin model study. This is not a surprise as we expect that the ab initio
description of the interactions should include all effects. A significant difference is
the plane of the spiral, which can be explained with the increase of ℓmax, as discussed
before.

The calculations were performed for different change lengths from n = 11 to
n = 19 Fe atoms. In order to estimate the spin–spiral wavelength, the rotation angle
φ was calculated between every neighbouring spin vector, defined as the following:

φj = arccos (sj · sj−1) , (5.2)

from j = 2 to j = n and φ1 = 0. Apart from the effect at the ends, the partial sum
of these angles up to the ith position shows a linear behaviour (see Fig. 5.6), and
the wavelength was estimated from the slope of the lines. The numerical results are
presented in Tbl. 5.1. The values are around λ = 3.4− 3.6 a2d which is close to the
λexp = 4 a2d experimental value in [2].

Table 5.1: The spin–spiral wavelength (λ) in a2d units for different lengths (n) of Fe
chains on Re(0001) substrate along the [1000] direction.

n = 11 n = 13 n = 15 n = 17 n = 19

3.42 3.56 3.40 3.64 3.52
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Figure 5.6: The cumulative relative rotational angle for every spin vector in spin–spirals
in Fe atoms on Re(0001) with different lengths (n) with respect to the first spin.

5.3 Fe chains on Rh(111)

Geometry and electronic structure

Rhodium (Rh) crystallizes in face-centered cubic (fcc) structure (space group: FM-
3m) with a lattice constant of aRh = 3.803Å, which implies that the inter-layer
distance between the Rh (111) planes is 2.196Å. The geometric structure of Fe
monolayer on Rh(111) substrate was investigated by Lehnert et al. [176]. They
found an inward relaxation of the Fe adlayer of 7.3%, setting the Fe-Rh inter-layer
distance to dFe−Rh = 2.057Å. The relaxation of the inter-layer distances between the
Rh layers was found to be 1% or less. In our calculations the geometry was based on
these numbers, but the change in the Rh inter-layer distances was neglected due to
their small size. The geometry of the layered system with the inter-layer distances
is shown on Figure 5.7 for fcc and hcp stacking positions of the first vacuum layer,
where the Fe is embedded. It should be noted that in Ref. [176] the Fe hcp stacking
position was found energetically slightly better than the fcc stacking. In Ref. [177]
it was demonstrated that the MAE is remarkably sensitive to the stacking position
of Fe and Co adatoms on Rh(111) and Pd(111) surfaces. Since the MAE and, in
general, relativistic effects are of great importance in determining the magnetic state
of supported nanoclusters, we investigated the magnetic ground state of Fe chains
both in fcc and in hcp stacking positions.

In the electronic structure calculations the Rh(111) surface was modeled as an
interface region between a semi-infinite bulk Rh and vacuum consisting of eight
atomic layers of Rh and four atomic layers of empty spheres (vacuum). The iron
chains were embedded into the lowermost vacuum layer denoted with red spheres in
Fig. 5.7, on the top of the rhodium. All calculations were performed using angular
momentum cutoff ℓmax = 3. The detailed calculations were extended to Fe chain
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Figure 5.7: The layered geometry of Fe atoms on Rh(111) substrate. The left figure
shows the fcc stacking positions of Fe, whereas the right one the hcp stacking on the fcc
bulk Rh. The underlying Rh atoms are shown with blue, the position of the Fe adatoms

with red, and the vacuum with green spheres.
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Figure 5.8: Fe chains of 4, 5, 6 and 7 atoms on Rh(111) surface with fcc stacking. The x,
y and z directions correspond to the [110], [112] and [111] directions, respectively. The red
(unit)vectors show the direction of the magnetization vectors, whereas their magnitude is
written inside the spheres in µB units. The red spheres correspond to the Fe atoms, while
the blue ones belong to the underlying Rh layer. The right side pictures show the views

along the chain direction.

of the length of 4, 5, 6 and 7 atoms deposited in the [120] direction in fcc and hcp
stacking positions.

Magnetic configurations

Fig. 5.8 shows the magnetic ground state of chains stacked in fcc positions. The
magnitude of each magnetic moment is written inside the corresponding sphere, the
values are roughly constant, a small oscillation of 0.01µB can be observed, while
the edge moments are slightly enhanced. The magnitude of the nearest induced
magnetic moments in the Rh substrate in around is around 0.2µB. The 4- and 7-
atom-long chains show polar-vector symmetry, while the magnetic moments in the 5-
and 6-atom-long chains behave as axial vectors. A tempting assumption is, that the
building blocks of these configurations are pairs of spins being aligned closely parallel
to each other (↑↑), while these dimers seem to be coupled antiparallel to each other
resulting in a pair-wise antiferromagnetic state (↑↑ ↓↓). This structure is particularly
apparent for the chains containing even number of magnetic atoms, i. e. the even
chains. In case of chains containing odd number of Fe atoms – the odd chains, as
abbreviated later – the ↑↑ ↓↓ alternation is necessarily broken, which gives rise to
more noncollinear spin configurations. This can be explained with the fact that the
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Figure 5.9: Fe chains of 4, 5, 6 and 7 atoms on Rh(111) surface with hcp stacking. The
x, y and z directions correspond to the [110], [112] and [111] directions, respectively. Out
of the two 7-atom-long chains the upper one with axial vector symmetry is the ground
state, while the lower one with polar-vector symmetry is a metastable state. The red
(unit)vectors show the direction of the magnetization vectors, whereas their magnitude
is written inside the spheres in µB units. The red spheres correspond to the Fe atoms,
whereas the blue ones belong the underlying Rh layer. The right side pictures show the

views along the chain direction.

central spin in an odd chain must be aligned either normal to the chain i. e. polar-
vector symmetry or parallel to the chain i. e. axial-vector symmetry. Apparently,
noncollinearity of the spins is present in the even chains too. Furthermore, all ground
state spin configurations are coplanar with the planes tilted to the z axis by roughly
the same angle: 22◦ for the 4-atom-long chain, and around 27◦ for the longer chains.

Fig. 5.9. shows the magnetic ground state of chains stacked in hcp positions. The
magnitudes of the spin moments are very similar to those obtained for the chains
with fcc stacking. Concerning the ground state spin configurations, the double
pair-wise AFM structure keeps dominating, and the collinearity is much enhanced
for the even chains. As in case of fcc stacking the odd chains with hcp stacking
show a largely non-collinear magnetic ground state, while the plane of the magnetic
moments is almost normal to the surface. For the 7-atom-long chain the magnetic
ground state shows axial-vector symmetry. In addition, we also found a metastable
state with polar-vector symmetry depicted in the last entry of Fig. 5.9, which is
by 16.3meV higher in energy than the ground state. These two configurations are
related to each other by about 90◦ global rotation around the normal of the plane of
the spins, while the metastable configuration is slightly tilted from the z axis. Note
that both configurations have right-handed chirality.
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Table 5.2: The most significant Ji,j isotropic exchange couplings between at sites i and j
in fcc (left) and hcp-stacked (right) Fe chains of n atoms in mRy units. (only independent

ones)

fcc stacked hcp stacked
i− j 4 5 6 7 4 5 6 7
1− 2 0.604 0.572 0.686 0.605 0.437 0.339 0.378 0.363
1− 3 -0.562 -0.624 -0.614 -0.599 -0.527 -0.599 -0.546 -0.573
2− 3 0.114 0.331 0.558 0.322 0.186 0.288 -0.163 0.076
2− 4 -0.441 -0.456 -0.406 -0.370 -0.357 -0.347
3− 4 1.181 0.227 -0.117 -0.190
3− 5 -0.420 -0.363

Spin model calculation

The main features of the ground state spin configurations for the different chains
can be understood in terms of a bilinear spin model:

H = −1

2

∑

i,j

siJi,jsj +
∑

i

siKisi , (5.3)

where i and j are restricted to the Fe sites, and the Ji,j and Ki are generated from
the potentials which are converged in respect to the whole embedded region, using
the SCE method (see Sec. 2.2.2).

The leading terms in the spin model are the isotropic exchange interactions. The
nearest-neighbour (NN) and next-nearest-neighbour (NNN) isotropic interactions
between the Fe atoms are presented in Tbl. 5.2 for both Fe stackings. First let us
discuss the fcc stacked case. Apparently, the NN and NNN isotropic interactions are
ferromagnetic (FM) and antiferromagnetic (AFM), respectively. These interactions
are consistent with the alternating ↑↑ ↓↓ structure seen as the dominant feature of the
even chains. The largest FM coupling is between the inner atoms of the n = 6 chain,
which further stabilizes this spin structure. In the case of odd number of atoms this
pair-wise AFM configuration is obviously broken. Note that the comparison from
the data of chain 4 and 6, or 5 and 7 shows, that the ferromagnetic coupling is
stronger with the increase of the length, which foreshadows that for a much longer
chain the pair-wise AFM behaviour may vanish.

The right side of Tbl. 5.2 shows the isotropic interactions for the hcp-stacked
case. The FM coupling within the dimer elements is weak, indeed it becomes antifer-
romagnetic for the middle atoms in the longer chains. The AFM coupling between
the NNN atoms is roughly unchanged, the 1–3 term is dominating in all cases and it
is strong enough so that the same pair-wise antiferromagnetic orientation appears.
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Here it should be noted that a ↑↑ ↓↓ double-row-wise AFM structure has been the-
oretically predicted [178] and experimentally observed [179] in an Fe monolayer on
Rh(111). While the emergence of such a spin structure in a monolayer requires the
presence of higher-order (in particular, three-site four-spin) interactions [179], for a
chain of finite length it can be stabilized by the inhomogeneous bilinear isotropic
interactions only.

Spin dynamics simulations

The effect of different kinds of exchange interactions in the formation of the magnetic
ground state is demonstrated for the fcc-stacked cases of the shorter, 4- and 5-atom-
long chains. For this reason – in three consecutively simulations – three sets of spin
model parameters were considered: (a) isotropic interactions and on-site anisotropy
matrices, (b) the previous spin model extended by DMI and (c) the spin model
with full tensorial interactions as in Eq. 5.3. The obtained spin configurations are
presented in Fig. 5.10.

(a)

x
y
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(b)

(c)
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z
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Figure 5.10: Ground state spin configurations of 4-atom-long and 5-atom-long Fe chains
in fcc-stacked position on Rh(111) surface from spin dynamics simulations. The three
subfigures show simulations with different spin models: (a) with only isotropic exchange
coupling and onsite anisotropy, (b) the previous one extended with DMI, (c) the whole
Jij exchange tensor is included. The right side images show the views along the chain
direction. The x, y and z directions correspond to the [110], [112] and [111] directions,

respectively.

In case of the 4-atom-long chain – the left panel of Fig. 5.10.–, when only
isotropic exchange interactions (see Tbl. 5.2) and on-site anisotropies are present,
the simulations resulted in to a nearly collinear double-pair-wise (←←→→) AFM
configuration along the chain direction due to an easy x-axis anisotropy. This con-
figuration clearly respects a polar-vector symmetry. The y-components of the DM
vectors introduce non-collinearity of the spin structure in the x–z plane by keeping
the polar-vector symmetry. In addition, the plane of the spins is slightly rotated to
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x
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Figure 5.11: Ground state spin configuration from spin dynamics simulations for 4-
, 5-, 6-, and 7-atom-long Fe chains in fcc-stacked position on Rh(111) surface The spin
model included the whole Jij exchange tensor. The right side images show the views along
the chain direction. The x, y and z directions correspond to the [110], [112] and [111]

directions, respectively.

the y axis, which shows the preference of the y axis with respect to the z axis by
on-site anisotropy (for a discussion of the tilting of spin–spiral states see Ref. [77]).
Switching on the symmetric exchange anisotropy does not have considerably effect
on the spin configuration.

In case of the 5-atom-long chain, – right panel of Fig. 5.10. – , the frustration
of the isotropic exchange interactions (see Tbl. 5.2) causes a strongly non-collinear
spin arrangement, with the middle spin oriented along the chain, again due to easy
x-axis anisotropy. Thus the ground state exhibits an axial-vector symmetry. The
views along the chain direction of the spin configurations show that the plane of the
spins is slightly tilted away from the x–y plane of the substrate, which is mainly
attributed to the nonvanishing xz components of the on-site anisotropy matrices Ki.
Switching on the DMI further stabilizes this configuration by just slightly changing
the relative angles between the spins. On the other hand, the plane of the spins is
tilted much closer to the x–z plane which can be attributed to large y components of
the DM vectors [77]. As found for the 4-atom-long chain, including the symmetric
exchange anisotropy has negligible effect on the magnetic ground state configuration.

The ground state configurations from the spin dynamics simulations of all fcc-
stacked Fe chains are shown in Fig. 5.11. The configurations obtained from ab
initio optimization (Fig. 5.8) and the ones based on the bilinear tensorial spin
model (Fig. 5.11) compare remarkably well. However, in particular, for the longer
chains larger differences occur mostly at the ends. In order to quantify the differences
between the magnetic configurations obtained from these two methods we use the
average mean deviation of the spin vectors ∆, the square of which is defined as

∆2 =
1

n

n∑

i=1

(smi − sai )
2 , (5.4)

with smi and sai being the spin vectors at site i obtained from the spin dynamics
simulation and the ab initio optimization, respectively.
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Table 5.3: The mean deviation ∆, defined by Eq. (5.4) between the magnetic ground
states of fcc- and hcp-stacked Fe chains with atomic lenngth n on Rh(111) obtained from

ab initio optimization and from the spin dynamics simulations based on Eq. (5.3).

n = 4 n = 5 n = 6 n = 7

fcc 0.332 0.417 0.297 0.601
hcp 0.244 0.366 0.650 0.716

x

z

y

z

Figure 5.12: Ground state spin configuration from spin dynamics simulations for 4-, 5-,
6-, and 7-atom-long Fe chains in hcp-stacked position on Rh(111) surface The spin model
included the whole Jij exchange tensor. The right side images show view along the chain
direction. The x, y and z directions correspond to the [110], [112] and [111] directions,

respectively.

The mean deviations for both stackings and all considered chains lengths are
summarized in Tbl 5.3. It is apparent – more enhanced for the fcc-stacked case –
that the agreement between the magnetic ground states based on ab initio optimiza-
tion and on the spin model is significantly better for even chains, which might be
attributed to the missing geometrical frustration, thus the reduced non-collinearity
in these systems. The 6-atom-long hcp stacked chain shows an especially large de-
viation in comparison to the fcc-stacked one. This is visually also conspicuous by
comparing the ab initio optimized (Fig. 5.9) and spin model-based configurations
(Fig. 5.12). The coplanar chain in the x–z plane is perfectly reproduced by the
spin models, but the spin dynamics forces the chain into a spin–spiral like config-
uration, which was not as apparent after the optimization. The evaluation of each
contribution showed, that this effect can be traced back to the DM interaction.

5.4 Fe chains on Nb(110)

Geometry and electronic structure

Similarly to the Re(0001) surface the deposited magnetic atomic chains on Nb(110)
are supposed to host Majorana edge states [2–4]. Bulk Nb has a bcc structure with
lattice constant of aNb = 3.3004Å. Using the Vienna Ab-initio Simulation Package
(VASP) [75] Lászlóffy et al. [180] found that by putting an Fe adatom on the (110)
surface of Nb, the average vertical distance of the atoms in the two uppermost Nb
layers decreases from the bulk value of 2.3337Å by 3.4% to 2.2542Å, while the
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vertical distance between the Fe adatom and the closest Nb atoms was found to be
1.9868Å. In our calculations we used these values as the interlayer distances between
the uppermost two Nb layers, as well as between the Nb surface layer and the first
two vacuum layers, in which the Fe atoms were embedded [180], respectively.

Niobium bulk

Niobium

Iron adatoms

Vacuum

Vacuum bulk
2.333 Å

1.987 Å

1.987 Å

2.254 Å

[110]

[001]

Figure 5.13: The layered geometry of Fe atoms on Nb(110) substrate. The underlying
Nb atoms are shown with blue, the position of the Fe adatoms with red, and the vacuum

with green spheres.

The ground state in Ref. [180] – determined from spin model calculations –
was found to be FM/AFM – depending on the sign of NN isotropic coupling –
parallel to the z direction in the case of Fe chains deposited along the [001] and
[111] directions. The chains deposited along the [110] direction exhibited a spin–
spiral with a wavelength of λ = 3.39 ax, where ax =

√
2aNb is the distance between

the two subsequent Fe atoms in the chain.
The substrate was modeled by eight Nb layers and four empty sphere layers

sandwiched between semi-infinite bulk Nb and vacuum regions. Similarly to the
previous substrates an angular momentum cutoff of ℓmax = 3 was used in the cal-
culations. The Fe atoms were embedded in the lowermost vacuum layer along the
most promising [110] direction, as shown on Fig. 5.14.

Magnetic structure

The study included the optimization of the magnetic ground state of 5-, 10- and
15-atom-long Fe chains deposited along the [110] direction. Similarly, to Ref. [180],
we found that the ground state of these chains is a spin–spiral. Fig. 5.15 shows

x

y

z

Figure 5.14: The top view of Fe atoms positioned on the top of Nb(110) surface along the
[110] direction. The Fe and Nb atoms are denoted by red and blue spheres, respectively.
The x, y and z directions correspond to the [110], [001] and [110] directions, respectively.
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Figure 5.15: Magnetic ground state of of 5-, 10-, and 15-atom-long Fe chains (red) along
the x direction on Nb(110) substrate (blue). (b1) is a metastable and (b2) is a ground
state for the 10-atom-long chain. The x, y and z directions correspond to the [110], [001]
and [110] directions respectively. The magnitude of each magnetic moment in inside the

sphere in µB units.

the obtained configurations. For the 10-atom long chain two optimized magnetic
configurations are presented. Due to the fact that the hard axis of the system is y,
the spins rotate perfectly in the x−z plane as can be observed at the side subfigure of
Fig. 5.15. Using the same method as for the Re substrate, the spin–spiral wavelength
is estimated from the rotation angles of the spins with respect to the x axis (see
Eq. (5.2)), and presented in Tbl. 5.4. Apart from the 5-atom-long chain, where the
effect from the end of the chain is most enhanced, the results differ by about 15%

as compared to Ref. [180].

Table 5.4: The spin–spiral wavelength (λ) in ax units for different lengths of Fe chains
on Nb(110) substrate along the [110] direction.

n = 5 n = 10 n = 15

2.19 2.90 2.84

The metastable (Fig. 5.15(b1)) and ground state configuration (Fig. 5.15(b2)) of
the 10-atom long chain have opposite rotational sense. The ground state is lower in
energy by 1.7meV than the metastable state, converted into about 0.08meV/atom,
which is indeed in the energy range of the DMI of these chains [180]. It is pointed
out in Ref. [180] that the frustrated isotropic interactions and the relatively strong
anisotropy can stabilize spin–spirals with opposite chirality for longer chains. Here
should be noted, that all ground state spin–spirals obtained from the ab initio op-
timisation have a left-handed (anti-clockwise) rotational sense as opposed to those
obtained from the spin model [180], which have a right-handed (clockwise) rotational
sense. This discrepancy might be attributed to the higher-order chiral spin—spin
interactions [77, 181], which are missing in the spin model used in Ref. [180], but
their effect is included in the fully ab initio optimization used here.
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Chapter 6

Summary

In this Thesis I covered 3 different topics. The first one is related to the tempera-
ture dependent magnetic anisotropy energy (MAE) and temperature induced spin
reorientation transitions (SRT) in magnetic ultrathin films, which have technologi-
cal importance in the magnetic data storage. The second one is the thermodynamic
properties of skyrmionic structures, such as the number of skyrmionic objects in
equilibrium, and their respective chemical potentials in two ultrathin skyrmion–
hosting films. The third, and final topic is the magnetic ordering of spin chains of
Fe atoms on nonmagnetic heavy metal surfaces.

The temperature dependent magnetism of ultrathin films was investigated using
well-tempered metadynamics Monte Carlo simulations. The essence of the method
is to add a biasing potential to the energy of the system and thus enable the it to
overcome the energy barriers between different local energy minima. This way the
global energy extremum of the system can be found, and by bookkeeping the biasing
potential the whole free energy surface can be mapped. The key physical property
in the calculation of MAE is the orientation of the magnetic moment. This is the
reason why the normal-to-plane component of the magnetization vector was chosen
as a collective variable in the metadynamics simulations, and the MAE could be
calculated as the energy difference of two points of the free energy surface.

First I worked with model systems. I investigated the MAE originated from
the on-site anistropy and from the two-site anisotropy, and I found a comforting
agreement with the previous work of Callens [108]. The SRTs can be explained by
the change of the easy direction of magnetism due to an external effect, usually
film thickness and temperature [6]. My studies showed that the MAE contributions
originated from different sources have different temperature dependence, thus by
using a well-chosen anisotropy constants in the model, the competition of two oppo-
site terms can bring forth a spin reorientation transition. I was able to induce this
phenomenon in model monolayers and bilayers too. In the latter case the numerical
results were reinforced by a theoretical study on the ground state and a mean field
estimation of the reorientation temperature. I was able to draw the phase diagram
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of the reorientation transition with respect to the anisotropy parameters. Interest-
ingly I found that the course of the process depends not only on the value of the
anisotropy, but also on its distribution in each layers: if the anisotropy agrees in
the two layers, then the transition will be of second order, yet if all anisotropy is
attributed to a single one of the two layers, then a first order phase transition is to
be observed. This discovery is due to the fact, that the metadynamics simulation
not only gives back the MAE, but the whole free energy surface. The shape of these
curves clearly shows the evolution of extrema, and thus the order of transition can
be read.

The investigation of MAE was extended to the studies of real, experimentally
motivated [19, 64] systems, where the magnetic interactions were based on ab initio
calculations. The study on Fe adlayers on Au(001) showed that the simulations are
still feasible if the number of coupling parameters is increased by orders of mag-
nitudes compared to the model study. The simulations in line with preliminary
expectations showed that a bilayer has easy-axis and a trilayer has an easy-plane
magnetization, and the thickness driven spin reorientation happens between these
cases. The more detailed study of the bilayer gave back the expected temperature
dependence of the MAE, and the interplay of the anisotropy contributions can be
discovered in the MAE of the trilayer. The study on Fe bilayer on W(110) focused
on the temperature driven SRTs. The speciality of this system is that the newly
discovered DMI induced anisotropy term [155] plays a decisive role in the transi-
tion. The metadynamics MC simulations showed that a normal-to-plane to in-plane
spin reorientation transition happens around Tr = 350K. The omission of the DM
term from the exchange couplings resulted in the disappearance of the phenomenon,
which foreshadows that the DMI gives an in-plane anisotropy term to the MAE.
This energy difference could be well estimated by a spin–spin correlation function.
Understanding SRTs is essential in engineering to set the thickness of the layers in
heterostructures for stable room–temperature spintronic applications.

I modified the well-tempered metadynamics MC code to use the topological
charge as the collective variable governing the simulation. This made possible to
enforce the systems into states where nontrivial topological objects, i. e. skyrmions
and antiskyrmions appear, and the bookkeeping of the bias potential made possible
to estimate the optimal number of these structures. Though there is no clear corre-
spondence between the topological charge and the number of skyrmionic particles in
the system for general B-T parameters, yet at low temperatures with a low density
of skyrmionic objects one can suppose a non-interacting picture, where the overall
free energy of the lattice is only proportional to the number of skyrmions or anti-
skyrmions. This appeared as a linear region of the free energy F (Q) curve around
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the Q = 0 point. Here the respective chemical potential of skyrmions and anti-
skyrmions could be defined from the slope of F (0) in the Q < 0 and Q > 0 regions.
This definition is highly dependent on the free particle picture. As the temperature is
increased more and more skyrmionic objects appeared on the lattice, and after reach-
ing a certain density their interaction cannot be neglected anymore, since the energy
contribution originated from the skyrmion-skyrmion interactions distorted the linear
F (Q) function to a parabolic one. I studied two heavy metal/iron skyrmion–hosting
bilayers, namely (Pt0.95Ir0.05)/Fe/Pd(111) and Pd/Fe/Ir(111). In the former one I
reproduced the ⟨Q⟩(T ) behaviour published in Ref. [35]. The extension of the cal-
culation for multiple particles made possible to obtain the chemical potential of the
skyrmionic particles. The later system has a richer choice of ground states depending
on the external magnetic field, namely the spin–spiral, the skyrmion lattice and also
the field polarized ground state appear as the external magnetic field B is increased.
For all instances I obtained the ⟨Q⟩(T ) curve, which was in good agreement with
Ref. [70]. For the first two cases I found that at low temperatures the skyrmions are
not stable objects, and the lattice is filled with extensive domain walls instead. Since
here the topological charge is originated from the ends of the intertwined spin–spiral
segments, and not from independent particles, the chemical potential could not be
defined. In the field polarized ground state, where skyrmions can appear freely in
a ferromagnetic background, the result was similar to the other hosting system.
An important difference of (Pt0.95Ir0.05)/Fe/Pd(111) and Pd/Fe/Ir(111) is that in
the first system both skyrmions and antiskyrmions have positive chemical potential,
meaning they have positive energy cost in a field-polarized ground state and thus
their creation is highly unfavourable, but for the B = 4T case in Pd/Fe/Ir(111) the
one belonging to the skyrmions is negative, meaning that the formation of Q = −1
skyrmions is energetically favourable. Interestingly in all cases I found that the
chemical potential belonging to antiskyrmions is larger than that of the skyrmions.

I used the ab initio optimization method used in Ref. [55] supplemented with
the conjugate gradient method to obtain the magnetic structure of atomic chains.
Today, when more and more studies show the necessity of higher order spin interac-
tions in the precise description of the magnetic structure, the usage of this kind of
method can avoid the necessity of permanent supplementation of the spin models.
I investigated Fe chains on nonmagnetic heavy metal surfaces, such as Re(0001),
Rh(111) and Nb(110). The studies of Fe chains on the (0001) surface of Re with
different lengths showed an outstanding importance of the choice of the angular
momentum cutoff ℓmax in ab initio electronic structure calculations. This result is
a sign, that the core f electrons influence the electronic structure in a way that
has a significant consequence on the magnetic structure, which has to be considered
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in future calculations. Furthermore I was able to reproduce the spin–spiral state
for atomic chains of length between 10 and 20 atoms with a wavelength close to
the experimentally measured value on a 40 atom-long chain in Ref. [2]. Using this
higher ℓmax in the partial wave expansion in the electronic structure calculation, I
was able to reproduce the spin–spiral configuration found in Fe chains deposited in
the [110] direction on Nb(110). Interestingly for the 10 atomic-long-chain I found a
ground state with opposite chirality in contrast to the spin model-based results in
Ref. [180]. I made a detailed analysis on the comparison of the ab initio optimised
and the spin model-based magnetic configurations on Rh(111) surface. The different
spin models, based on the separation of the different terms in the Jij coupling tensor,
showed the contribution of each interaction in the formation of the final configura-
tion. The two-atom wide stripes found in an Fe monolayer on Rh(111) [178, 179]
clearly appeared as strong ferromagnetic nearest-neighbour and antiferromagnetic
next-nearest-neighbour couplings in the spin model. In the even-atomic-long chains
this interaction manifested as a double-pairwise pattern both in spin model-based
and ab initio optimized configurations. In the odd-atomic-long chains this effect
caused the frustration of couplings, and such a pattern could not appear. The dif-
ferent configurations for hcp and fcc stacked chains showed that the stacking has an
influence on the orientation of the magnetic moments. All these results, which are
in good agreement with previous experimental observations, show that the ab initio
method I used can describe the magnetic structure with good accuracy, and it can
also be used effectively in later research.

My studies showed that the metadynamics method is a very efficient tool in the
research of ultrathin magnetic films. Although the standard Monte Carlo simulation
is useful to obtain the ground state of a simple system, it can fail if many metastable
states are possible. This can be avoided with a good choice of an external parameter
as collective variable in a well-tempered metadynamics MC simulation, and in addi-
tion the free energy surface can be mapped too, to compare different configurations.
Since the choice of the CV can be easily changed depending on the emphasis of
the study, many seemingly different arrangements such as ferromagnets, skyrmions
and spin–spirals can be investigated. As for chains the ground state configurations
are much more important, and that is the reason why our ab inito optimisation
scheme can be a very useful complementary tool beside the spin dynamics simula-
tions. Although perpendicular magnetic anisotropy, skyrmions and Majorana modes
in magnetic chains are important in different materials, but all these effects are the
foundation of possible data storage techniques, which will be important to address
humanity’s continously increasing demand for larger information storing devices.
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Thesis Statements

1. First I used the well-tempered metadynamics method on model spin Hamil-
tonians describing magnetic thin films. I investigated the temperature depen-
dence of the magnetic anisotropy energy in the case of purely on-site and purely
two-site anisotropies and found a good agreement on the magnetic anisotropy
energy with the Callen–Callen theory. I found that these two terms have a
different temperature dependence, which can lead to a spin reorientation tran-
sition (SRT) due to the competition of the two. This phenomenon has been
demonstrated first in a single monolayer. In the case of a bilayer system the
richer behaviour of the phase transitions have been found, namely first and
second order phase transitions were discovered depending on the distribution
of the anisotropy of the system.

These results are discussed in Sec 3.3 and Sec. 3.4, and they are published in
Pub. II.

2. I studied the magnetic anisotropy of Fen/Au(001) (n = 2, 3) and Fe2/W(110)
using well-tempered metadynamics method.

For the first system, I calculated the magnetic exchange parameters for differ-
ent Fe-Au layer-to-layer distances, then I used a selected one in the simulations
to calculate the temperature dependent magnetic anisotropy energy. I showed,
that this system fulfills the Callen–Callen theory. The investigation of free
energy surfaces showed that a thickness driven spin reorientation transition
happens between n = 2 and n = 3.

The Dzyaloshynsky–Moriya interaction (DMI) plays a crucial role in the spin
reorientation transition taking place in the Fe bilayer on W(110). I showed
that at finite temperature an additional anisotropy term appears, which can be
explained by the arising finite temperature fluctuations in the system. I proved
that without the DMI, the spin-reorientation transition would not happen in
the system.
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These results are shown in Sec 3.5 and in Sec 3.6, and they are published in
Pub. I., II. and III.

3. I further developed the well-tempered metadynamics code to use the topo-
logical charge as a collective variable. With this modified version I investi-
gated the temperature dependence of creation and annihilation of skyrmionic
objects in heavy metal/iron bilayers, namely (Pt0.95Ir0.05)/Fe/Pd(111) and
Pd/Fe/Ir(111). I found that at the low temperatures in a low density the
skyrmions and antiskyrmions act as particles, thus their respective chemical
potential can be defined. Finite temperature chemical potential curves showed
that for the investigated (Pt0.95Ir0.05)/Fe/Pd(111) bilayer both skyrmion and
antiskyrmion creation is energetically unfavourable, but for Pd/Fe/ Ir(111)
in a magnetic field range, where the ground state is field polarized I found
negative chemical potential for skyrmions, showing that their formation is a
favourable process, i. e. with the given B − T parameters their creation from
the field polarized background is a favourable process.

The corresponding results are in Chapter 4, and published in Pub. V.

4. I used ab initio optimization to obtain the ground state magnetic configura-
tion of Fe chains on different heavy metal substrates. The calculations on
Re substrate highlighted how the choice on the angular momentum cutoff in
the electronic structure calculation can influence the magnetic structure. I
reproduced the experimentally measured spin–spiral states in the Fe chains
on Re(000) and Nb(110), with a good agreement on the wavelengths. The
extensive study on Fe atomic chains on Rh(111) showed how the stacking can
influence the magnetic configuration, and the comparison with spinmodel sim-
ulations pointed out how each term of the exchange coupling contributes to
the formation of the magnetic configuration.

The results are in Chapter 5 and they are published in Pub. IV.

Publications related to the thesis statements

I B. Nagyfalusi L. Udvardi and L. Szunyogh, First principles and metadynamics
study of the spin-reorientation transition in Fe/Au(001) films, IOP Conf. Ser.:,
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II Nagyfalusi, L. Udvardi and L. Szunyogh, Metadynamics study of the temper-
ature dependence of magnetic anisotropy and spin-reorientation transitions in
ultrathin films. Phys. Rev. B 100, 174429 (2019)
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an ultrahin Fe film on W(110) induced by Dzyaloshinsky-Moriya interactions,
Phys. Rev. B 102, 134413 (2020)

IV B. Nagyfalusi, L. Udvardi and L. Szunyogh, Magnetic ground state of sup-
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