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Symbols and Abbreviations

a lattice constant
Anoise noise amplitude
ATG Asaro-Tiller-Grinfeld
b length of Burger’s vector
BCC body centered cubic
BD Brownian dynamics
β (kBT )−1

c0 c(k = 0), related to compressibility κ−1 = (1 − c0) ρlkBT

c(1)(r) one-particle direct correlation function
c(2)(r1, r2) two-particle direct correlation function
c (k) Fourier transform of the direct pair correlation function
CNT classical nucleation theory
DDFT dynamical DFT
δ(r) Dirac-delta
∆ω thermodynamic driving force, grand potential density difference
δF [y(x)]/δy variational/functional derivative
DFT density functional theory
D diffusion constant
DPFC diffusive PFC
E Young’s modulus
EL Euler-Lagrange
ELE Euler-Lagrange equation
EOM equation of motion
ϵ PFC model parameter
η fractional density change
F Helmholtz free energy
FCC face centered cubic
Fex excess free energy
f lattice misfit, f = (σs − σf ) /σf
Fid free energy of ideal gas

5



6 Symbols and Abbreviations

FNH fluctuating nonlinear hydrodynamics
γ interface free energy
GFN growth front nucleation
G shear modulus
h epitaxial layer thickness
hc critical layer thickness
HPFC hydrodynamic PFC
HS hard sphere
INCA-HPFC incompressibly advected HPFC model
JMAK Johnson-Mehl-Avrami-Kolmogorov
κ compressibility, κ−1 = (1 − c0) ρlkBT

kBT average thermal energy
k, q wavenumber
KTHNY Kosterlitz-Thouless-Halperin-Nelson-Young
Λ thermal de Broglie wavelength
λ modulation wavelength
LJ Lennard-Jones
log natural logarithm
log 10 base-10 logarithm
MB Matthews-Blakeslee
MC Monte Carlo
MD molecular dynamics
MRCO medium range crystalline order
µ chemical potential
µB bulk viscosity
µS shear viscosity
ν Poisson’s ratio
Ω grand potential
ω ATG growth factor
OP order parameter
p momentum density
PBC periodic boundary condition
PB People-Bean
PDE partial differential equation
PFC phase-field crystal
PF phase-field
PFT phase-field theory
P pressure
ψ order parameter
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PY Percus-Yevick
q0 selected wavenumber
ql bond orientational order parameter
ql first neigbor averaged ql
Ra Rayleigh number
RDF radial distribution function
ρ∗ (r) density distribution at an extremum of a functional
ρ (r) number density
ρ0 reference liquid density
ρl average liquid density
RLV reciprocal lattice vector
RY Ramakrishnan-Yussouff
SG square gradient
SH Swift-Hohenberg
σ stress
σf lattice constant of unstrained layer
σs lattice constant of substrate
S(q) structure factor
Θ crystalline orientation in 2D
Tm melting temperature
v velocity field
VDM van der Merwe
V volume
V (x) external potential
Whet work of formation, heterogeneous nucleus
Whom work of formation, homogeneous nucleus
ξ number of solid bonds
Xmax final solid fraction
X(t) solid fraction in time
ζ noise term accounting for fluctuations
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Chapter 1

Introduction

1.1 Motivation
Behind the rising standards of living in modern societies, there lies a correspond-
ing increase in our understanding of the science of materials processing and also
an increase in diversity of engineered materials, which have little to no counter-
parts occurring naturally. The properties of such materials, ranging from their
mechanical strength to their electrical properties are intimately connected to their
underlying microstructure.

For example, the crystal structure and impurity content of a semiconductor
material determine its band structure and its electrical performance. Similarly, in
construction applications, weight-to-strength ratios are critical and high-strength
steels are required to withstand the enormous loads and stresses placed upon them.
In these situations, engineers turn to lighter alloys that are strengthened by pre-
cipitating second-phase particles within their original grain structure. These steels
typically contain a favorable combination of grain boundaries and a mix of refined
crystal grains, allowing them to maintain their strength, while also remaining duc-
tile. The development of perlitic steels (alternating layers of ferrite and cementite)
played a crucial role, for example, in the lengthening of bridge spans, allowing for
the construction of longer and more complex structures.

From a technological point of view, solidification is a key link in the materials
processing chain. This first order phase transformation starts with homogeneous
or heterogeneous nucleation. Although, this happens on the nanoscale, it usually
influences the grain-size distribution and the related physical properties on larger
scales. Accordingly, crystallization of molten materials is truly a multiscale process
both in time and space.

11
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The microstructure of materials develop through a variety of processes, in-
cluding solidification, solid-state precipitation and thermo-mechanical processing.
These processes are governed by the fundamental physics of free boundary dynam-
ics and non-equilibrium phase transformation kinetics. For example, in solidifica-
tion and re-crystallization, nucleation of crystal grains is followed by a competitive
growth of these grains under the drive to reduce the overall free energy of the sys-
tem. This process is limited by the diffusion of heat and mass, which itself depends
on thermodynamic parameters.

The driving forces can be identified in a range of phenomena, for example
they can result from the minimization of bulk free energy, anisotropic surface
energy or elastic energy. Elastic effects in strain-induced transformations during
heat treatment have profound consequences on the morphology and distribution
of second-phase precipitates and grain boundaries.

The modeling of the microstructure and the prediction of material properties,
has greatly benefited from recent advances in theoretical and numerical tools. A
variety of theoretical models have been developed to capture different aspects of
solidification. Particle based methods include ab initio computations, Monte Carlo
(MC) simulations and Molecular Dynamics (MD). Continuum based methods in-
clude the density functional theory of classical particles, coarse-grained phase-field
models and large scale sharp interface models.

Modern parallel computing now allows billions of atoms to be simulated for
nanoseconds, while various continuum and sharp interface methods have made it
possible to quantitatively model free surface kinetics responsible for microstructure
formation up to 100’s of micrometers.

Despite these advances, each methodology comes with its own advantages and
limitations. Accordingly, often a combination of models is required to address
specific problems. As a result, there is a constant need for new and innovative
techniques, to better understand the relationships between microstructure and
material properties.

It is clear, that the technological advancements of societies have often been
linked to their ability to engineer new materials and exploit their properties. From
the earliest days of human history to the present days, our understanding of ma-
terials science has allowed us to create new and exciting technologies that have
changed the world.
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Figure 1.1: Location of the PFC model according to the level of description in the
materials science modeling hierarchy.

1.2 Goals
In this dissertation, I am going to address crystal nucleation and growth phenom-
ena on the molecular scale. To accomplish this, I rely on the phase-field crystal
(PFC) [1] model (see Fig. 1.1, which can be viewed as a simple dynamical den-
sity functional theory (DDFT), which has been proposed in its simplest form by
K. R. Elder et al. in 2002. Its form is motivated on the basis of an approximation
procedure to classical density functional theory (DFT). Owing to its relative sim-
plicity, especially, when numerical simulations are considered, it rapidly became
fairly popular and has been employed to model a broad range of physical phenom-
ena, as it can address the simulation of fairly sizeable crystals (containing up to
several millions of atoms) on a diffusive time scale.

Although, in most cases, the PFC model can only be viewed as a qualitative
description of these phenomena, it contains naturally such features as crystalline
and amorphous structures, elasticity and crystalline anisotropies, among others.
In a few cases, attempts have been made (see Ref. [2]) to make advanced PFC
models even quantitative.

Herein, I am going to use the single-mode PFC model from Elder et al. to
address early stages of crystallization, including homogeneous and heterogeneous
crystal nucleation and strained heteroepitaxial growth. In its original form, it relies
on overdamped particle dynamics, a combination, which is expected to be reason-
able for colloidal suspensions. The simplicity of the PFC model makes it suit-
able for investigating the effect of different relaxation dynamics (hydrodynamic
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vs. diffusive) on crystallization. Along this line, I am going to present dynamic
extensions, that rely on hydrodynamic density transport, which is expected to ap-
proximate the behaviour of simple liquids, such as liquid metals. Relying on these
techniques, I investigate structural aspects of two-/multi-step nucleation and the
effect of the mode of density relaxation on such structures. I also attempt to answer
the question, whether the amorphous precursor based two-step nucleation reported
for diffusive dynamics (colloidal suspensions) can occur in the case of simple liq-
uids or metals, which may have practical significance. The present work opens the
way for developing improved models of nucleation. This work forms part of the
”Élvonal” Excellence Program of the National Agency for Research, Development
and Innovation, Hungary (NKFIH) under Contract No. KKP-126749.

1.3 Phase transformations
This thesis revolves around the topic of solidification. It is a subject of materials
science, which itself is the predictive study of the properties and behaviour of
homogeneous and heterogeneous phases of matter and the interplay between the
different phases of materials, in and out of equilibrium. The kinetics of phase
transformations form a significant part of this field, since in practice, materials
even in the long-time limit, rarely reach their theoretically possible, most stable
state. Rather, they tend to remain stuck in locally stable states, which include
defects and other inhomogeneities, that will determine their physical properties
and so their technological applicability.

The initial state of matter during solidification is usually structureless, e.g. a
molten liquid state. This initial thermodynamic state can be represented on the
phase diagram as a point, which can be made metastable, by changing certain
external thermodynamic variables, such as the temperature or pressure. Under the
relaxation time, the system reaches the values of the changed external parameters.
Metastability of a system means, that besides the current one, there exists another
state compatible with external conditions with a lower free energy. Metastable
phases act as equilibrium phases, they are stable against small perturbations, but
there exist certain large perturbations, which provide an irreversible path to the
preferred, more stable phase with lower free energy.

First order phase transformations start with nucleation, which is the formation
of a cluster of the more stable phase inside the metastable phase. These heterophase
clusters represent non-equilibrium states, which connect the metastable phase with
the stable one. Their work of formation exhibits an energetic barrier as the size
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of the cluster is increased. The nucleus is the state, located at the top of the
barrier. While the nucleus is associated with the maximum of the work of formation
wrt. cluster size, it still represents the lowest energy barrier in the space of all
possible fluctuations. In the free energy landscape, the nucleus is associated with
a mathematical saddle point. The process of nucleation is a thermally activated
process, because thermal fluctuations lead to the passing of this minimum energy
barrier.

Single phase systems can also be prepared in a thermodynamically unstable
state, which separates into more stable phases. In such unstable systems, any per-
turbation can initiate the transformation process unconditionally, this process is
called a spinodal decomposition. A closer analysis reveals, that in models, which ac-
count for thermal fluctuations, metastable systems close to the spinodal transform
via a so-called kinetic spinodal. It manifests, when the barrier of transformation
becomes comparable to kBT , the average thermal activation energy. In the phase
diagram, the spinodal lines meet the binodal lines (marking phase coexistence of
the stable phases) in a critical point.

In the case, when two coexisting phases are present and separated by a planar
interface, an infinitesimal decrease in the internal energy of the system will drive
a proportional increase in the solid fraction. This change in internal energy is the
latent heat, that is released during the transformation and which is a hallmark of
first order phase transformations. If the same amount of energy is absorbed by the
system, the solid fraction will return to its previous value.

This is an example of a reversible phase transformation, which is a quasi-static
process at a well defined temperature, pressure and chemical potential. However,
in practice, due to large driving forces, the phase transformation is often an ir-
reversible, non-equilibrium growth process, which takes the system closer to a
globally stable state. The resulting microstructure and the accumulation of de-
fects are determined by the path and velocity of transformation, that is realized
during non-equilibrium processing.

1.4 Levels of description
The empirical study of internal energy, work and heat transfer in real systems
paved the way to the foundation of thermodynamics. This was completed with
the discovery of entropy, an important, but concealed quantity, elaborated on in
App. A.1. The introduction of this additional state variable generalized the me-
chanical definition of internal energy to thermal phenomena. The mathematical
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framework of equilibrium thermodynamics serves as the basis for order parameter
theories of aggregate matter. The concept of irreversibility is closely linked to the
modeling of out of equilibrium systems. Time-dependent continuum theories must
provide a mechanism for dissipation or entropy production, which takes the system
closer to equilibrium. This mechanism is phenomenological in nature, it has not
been rigorously derived from microscopic theories with time reversal symmetry.

In materials science and especially in the study of the condensed phases of
matter, the basic interaction between atoms or molecules is of quantum mechanical
origin. Many contemporary phenomena cannot be understood on the sole basis
of classical mechanics. In most liquids, the thermal de Broglie wavelength Λ =
(2πβℏ2/m)1/2 is much smaller than the nearest-neighbor separation a ≈ ρ−1/3 so a
classical approximation can be adequate for the calculation of static properties at
not too low temperatures and not too high pressures. Much progress is possible,
relying on classical mechanics alone. The traces of quantum mechanics is found
in the exact form of the effective interaction potential between the constituent
particles. We are concerned with the description of matter composed of classical
particles, with a prescribed interaction between them. The temporal evolution of
such systems is determined by Hamiltonian dynamics, the direct numerical solution
of which is referred to as molecular dynamics (MD), this model serves as a means
for the validation of more coarse-grained, effective theories.

The classical approximation leads to the significant simplification, that the
thermodynamic effects that come from thermal motion can be separated from the
effects of interaction between the particles. This separation of the potential (V )
and kinetic (K) energy contributions also leads to a means of characterizing the
liquid state. In the gaseous phase the ratio K/V ≫ 1 and in the low-temperature
solid K/V ≪ 1 , while in the dense liquid phase K/V ≈ 1. If the system is
characterized by a length scale σ which corresponds to the range and energy scale
ϵ to the strength of the intermolecular forces, then the reduced density ρ∗ = Nσ3/V

and the reduced temperature T ∗ = kBT/ϵ are also of the order of unity. Thus in
liquids, collisions have a greater importance, than in dilute gases but they lack the
long-range positional order present in crystalline solids. The structure of liquids is
dominated by short-range positional order and by the so-called excluded volume
effect which is the result of close packing hard particles, that represents well all
elements beyond a certain density.

The study of phase transformations can happen on different levels of descrip-
tion, putting emphasis on different aspects of the processes involved. While in this
regard, MD forms the most fundamental, particle-based description, it is also the



1.4. Levels of description 17

computationally most expensive one. In reality and in MD simulations not too far
from equilibrium, a separation of timescales is observed. On the shortest timescale,
thermal motion of the particles can be discerned. This amounts to vibrations of
particle positions, around the average positions, determined by a slowly decaying
neighborhood of particles. On longer timescales, particles are able to exchange
positions with one another, neighborhoods dissolve and new ones form. A change
in the nature of aggregation can also be observed. On a still longer timescale,
not only mechanical, but statistical processes rooted purely in entropy are able
to equilibrate, e.g. compositional changes become salient. Finally, on the longest
timescale, parcels of liquid matter flow, obeying forces due to pressure gradients
and plastic deformations change the solid structure.

It is desirable, to carefully choose models, that operate on the relevant length
and timescales determined by the phenomenon under study. Comparing the two
extreme cases, one would rarely set out to study the velocity field and drag coeffi-
cient of an airfoil with the use of an MD simulation, since it operates on orders of
magnitude smaller length and timescales, compared to the effective theory of hy-
drodynamics. Much of the computational resources would be wasted on resolving
atomic vibrations, that do not bear significance to the fluid dynamics problem.

However, if the aim is to study the nature of the boundary condition, that
the airfoil’s surface imposes on the fluid, which is necessary to describe the flow
problem accurately or to calculate the transport coefficient, namely viscosity, that
enters the fluid dynamics problem, or to derive an equation of state between the
fluid pressure and density, the use of MD can be suitable or even invaluable. It is up
to the theoretician or computational experimentalist, to judge the appropriateness
of the level of description for the given problem.

In the end, though, some kind of averaging has to be applied in MD simula-
tions to provide a connection with experiments, which usually measure average
properties of systems. These average properties can sometimes be obtained in a
simpler way, than using MD for the solution of the trajectories of all the parti-
cles, by using for example, Monte Carlo (MC) simulations. These are probabilistic
methods, that set out to calculate equilibrium statistical averages of operators,
by sampling the configuration space of the system, according to a temperature
dependent Boltzmann weight.

A higher level of description is achieved, when the particle based picture is
dropped, in favor of a continuum based approach, the procedure of statistical
averaging is partially or completely replaced by the use of a free energy functional,
founded in thermodynamics.
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Most effective models are based around the notion of conservation laws, the
idea that certain quantities in the system can change only by related currents, that
transport said quantities. The trivial examples for this can be the conservation of
particle number and the conservation of momentum, the prime example of which
is the Navier-Stokes equation of hydrodynamics. On the largest of length and
timescales, the conservation laws are adequate for the description of the dynamics,
which basically form continuity equations for the densitites of these conserved
quantities. The propagation of change in these quantities are called the slow or
generalized hydrodynamic modes of the system, in contrast to those changes, which
are not associated with conserved quantities and thus do not obey a transport
equation.

The thermodynamic basis of the order parameter theories - like the Landau
theory of phase transitions - is the principle of free energy minimization. Given a
system at an equilibrium state, it can be taken out of equilibrium by changing the
external conditions, such as temperature. It takes the system a finite amount of
time, the relaxation time to reach the new equilibrium state, set by the changed
external conditions. During this time, the system cannot be described anymore
solely by the thermodynamic variables, that define equilibrium. A set of physically
motivated coarse-grained variables are introduced, called the order parameters, so
that the state of the system can be specified as precisely as desired during this re-
laxation period. Expressions for the free energy in terms of these order parameters
are suggested by various arguments. Dissipative processes take the system along
its non-equilibrium evolution to an equilibrium distribution of the order parame-
ter. This generalized free energy shows a minimum at the new equilibrium state,
where it becomes equal to its corresponding thermodynamic potential.



Chapter 2

The freezing transition

It is an experimental fact, that most simple substances at high enough densities
or low enough temperatures freeze into crystalline solids. Special precautions have
to be made to avoid this transition, either molecular rearrangements need to be
arrested (see glass transition [3]) or slowed down by polydispersity. Computer sim-
ulations - since they provide a well controlled playground for freezing experiments
- continue to greatly contribute to our understanding of the physics of the freezing
transition.

Probably the most noteworthy example of a simulated system is the hard sphere
(HS) system, in which particles interacting via a hard repulsive core, surpsrisingly,
crystallize into an FCC structure. Signs of this solid to liquid transition was demon-
strated in an early MD simulation by Alder and Wainwright in 1957 [4]. In time,
the HS system became an important reference system and the basis of perturbation
theories. It was confirmed also, that freezing takes place in classical monatomic
systems with repulsive two-body potentials of the form V (r) ∝ (r/a)−n with n

ranging from n = ∞ in the case of the HS system to n = 1 in the case of the
one-component plasma [5].

The common feature of classical liquids near freezing is the observed structural
similarity, manifested in the structure factor S (q) pictured in Fig. 2.1, which mea-
sures the strength of two-point correlations wrt. particle separation. These curves
near their first maxima, located at q = qm the most likely inverse separation, dis-
play high similarity and according to Verlet [6] take on a nearly universal value of
S (qm) ≈ 2.85 at freezing. The complementary melting criterion in the solid state
is the Lindemann rule [7], which states, that melting takes place, when the mean
square displacement scaled by the square of the lattice constant reaches a universal
value of ⟨u2⟩ /a2 ≈ 0.01. Freezing parameters, like the freezing temperature or the

19
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Figure 2.1: Typical liquid structure factor S (q) near freezing. The position of the
second reciprocal lattice vector (RLV) set for BCC and FCC structures are also
shown, location of the first peak is scaled to one.

volume change on freezing can vary from system to system significantly.

2.1 Early theories
The previously mentioned work of Lindemann was the first significant contribution
to the study of melting, based on the absolute instability of the solid phase. Given
the average square displacement ⟨u2⟩ the melting temperature Tm can be obtained
as a shear instability in a self-consistent phonon theory. However, for a first or-
der transition, this instability need not coincide with the relative thermodynamic
stability of the solid and liquid phases.

Another approach is the direct calculation of the free energy of a model liq-
uid and a model solid. At the melting temperature, these free energies become
equal, though an accurate calculation is needed, which was demonstrated in [8]
for the case of sodium. Unfortunately, this approach does not generalize well, the
underlying physics of the transition remains poorly understood.

Lennard-Jones and Devonshire came forward with a cell-like model [9] for the
liquid, which managed to reproduce the freezing transition, however the connection
to a real liquid was not clear at all.

Considering melting as an instability to the proliferation of defects in a perfect
crystal, a topological phase transition was identified as the mechanism behind
melting in 2D systems, called the KTHNY-theory [10].

An early theory of the transition is by Kirkwood and Monroe [11], who relate
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the appearance of the solid phase to an instability in the liquid. They have found
below a certain temperature solid-like solutions in the one-particle density distri-
bution ρ (r) by considering the coupling of one particle to the rest of the particles
as a coupling constant is turned on fully. The theory involves the atomic pair po-
tential and the radial distribution function for all coupling strengths. An important
drawback is, that since the theory is based on the pair potential, the transition
is not formulated in a way that is universal among liquids. Another downside is,
that the phase transition obtained for argon with FCC crystal structure, is close
to second order.

2.2 The RY theory
T. V. Ramakrishnan and M. Yussouff (RY) pusblished an article with the title
”First-principles order-parameter theory of freezing” in the journal Physical Re-
view B in 1979 [12], which gave the first systematic derivation of a rigorous order
parameter theory, that explained the first order solid-liquid phase transition with
a symmetry change.

Simlarly to the Landau theory of phase transitions, the aim of an order parame-
ter theory in statistical physics is to generalize the relevant equilibrium thermody-
namic potential in terms of a set of coarse-grained variables, so that the calculation
of equilibrium properties can be accomplished by free energy minimization. This
procedure is followed in the technical review of the RY theory in App. A.2.

The important feature of the RY theory, is that it handles the density distribu-
tion of both liquid and solid phases in the same thermodynamic framework. Since
the order parameter is the average one-particle density ρ (r) = ⟨∑i δ (r − ri)⟩,
without external potentials or walls the equilibrium liquid is represented by a con-
stant value of the density. However, in the crystalline state the one-particle density
is highly inhomogeneous. The critical realization in [12] is, that the density dis-
tribution of the crystalline state can be thought of as the density distribution of
a liquid placed in a highly inhomogeneous external potential. The quality of the
solid state and the solid-liquid transition is thus given in terms of the microscopic
properties of the homogeneous liquid state. One needs to remember, though, that
this fictitious external potential goes to zero in the equilibrium solid solution, the
solid properties do not depend on it.

The result of the calculations (Eq. A.9) is the grand potential difference between
solid and liquid phases at the same chemical potential and temperature
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β∆Ω ({ξj}) = N0

(∑
i

ξ2
i

2ci
− (1 − c0)

(
η + η2

2

))
, (2.1)

given in terms of the liquid response function c (k) evaluated at the RLVs of the
solid structure, {ci}. The order parameters {ξi} are related to the Fourier ampli-
tudes of the solid density pattern.

2.3 Interpretation of results
The interpretation of the grand potential difference Eq. 2.1 is, that relative to the
homogeneous liquid state, there is a positive energy cost associated with the lattice
periodic density modulations ∝ kBT

∑
i
ξ2

i

2ci
, but at the same time condensation (an

increase in density) takes place, which increases the pressure by ∆P ≈ (∂P/∂ρ) ∆ρ
and helps to lower the overall energy cost by −V∆P = −kBT (1 − c0) η. Those
amplitudes will be most effective in lowering the energy, which cause the most
condensation, i.e. with a high value of the correlation function ci. So a high degree
of correlation is necessary to make ∆Ω = 0, i.e. to satisfy the freezing condition.

The input material property is a response function, the Fourier transform of
the direct pair correlation function c (k) of the homogenenous liquid. The zero
wavenumber mode c0 is related to the thermodynamic compressibility of the sys-
tem, while the rest of the {ci = c (Ki)} values characterize structural two-point cor-
relations. The compressibility is taken to be fixed near the transition temperature,
thus the freezing condition is expressed in terms of the degree of correlations and
not in temperature or pressure, this gives a kind of universality, system indepen-
dence to the theory. A separate model is required for the modeling of correlations
in terms of temperature or pressure.

2.4 Classical DFT
Classical density functional theory is the study of the statistical mechanics of
classical condensed systems, in particular inhomogeneous liquids. The theory is
formulated in terms of the excess free energy functional, which depends on corre-
lation functions of the homogeneous state. It is basically a response theory, which
predicts the inhomogeneous structure due to external causes, or in the case of the
freezing transition, due to internal causes. In the most advanced cases, the ex-
cess functional has been derived (Fundamental Measure Theory - FMT [13]) from
the known interaction between the constituent particles. Some advanced theories
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(Weighted Density Approximation - WDA [14]) carry the thermodynamic prop-
erties of the liquid phase through realistic equations of state. In the simplest of
cases, it is a low order approximation (RY [12]) and it is easily fitted to (computer)
experiments.

The RY expression of the grand potential difference is slightly reformulated in
the modern exposition of density functional theory (see Ref. [3]), where it is derived
based on the Helmholtz free energy of the system. The RY functional is obtained in
terms of the density field ρ (r) instead of the amplitudes of its Fourier modes, see
Eq. A.6. After the assumption of a perfect crystalline structure, the modern form
of the RY DFT Eq. 2.2 becomes equivalent to the RY result of Eq. A.8 in every
respect. I must mention, that the RY derivation (see App. A.2) is significantly
more illuminating, than the modern formulation.

The functional is the sum of two parts. The first is a purely entropic contribu-
tion from the ideal gas free energy

Fid [ρ (r)] = kBT

ˆ
drρ (r)

[
log

(
Λ3ρ (r)

)
− 1

]
,

where Λ = h/
√

2πmkBT is the thermal de Broglie wavelength. The second is due to
short range interactions of the particles, which can be approximated as a truncation
of a correlation function hierarchy. It is expressed in terms of δρ (r) = ρ (r) − ρl

and it is called the excess free energy

Fex [ρ (r)] = F (ρl) − kBT
´

drc(1) (r; ρl) δρ (r) −
−1

2kBT
´

drδρ (r)
´

dr′c(2) (|r − r′| ; ρl) δρ (r′) .

The grand potential difference is (formally) obtained through the Legendre trans-
form of the Helmholtz potential

∆Ω [ρ (r)] = Ω [ρ (r)] − Ω [ρl] =
= ∆Fid + ∆Fex − µ

´
dr [ρ (r) − ρl] .

Finally, for the grand potential difference we obtain

∆Ω [ρ] = kBT
´

dr [ρ (r) log (ρ (r) /ρl) − (ρ (r) − ρl) −
−1

2 (ρ (r) − ρl)
´

dr′c(2) (|r − r′| ; ρl) (ρ (r′) − ρl)
]
.

(2.2)





Chapter 3

The PFC model

Under practical conditions, the crystallization of supersaturated or undercooled
liquids starts by either heteroepitaxial growth or by heterogeneous nucleation on
surfaces, which can include container walls and foreign particles. Elastic stresses
can play a major role in determining the path to equilibrium in systems with
broken translational symmetry. The microscopic description of these phenomena
requires an atomistic approach. A theoretical modeling tool, called the phase-field
crystal (PFC) model [1] was developed for such purposes.

Since its inception in 2002, the PFC model has inspired many and brought
together an active community. It has become an umbrella term [2] for models that
work with an atomistic particle density as the order parameter and approximate
the Gaussian density distribution of single atoms in the crystal lattice with only
a couple of Fourier-modes. This is in contrast to density functional theory (DFT),
which aims to reproduce the Gaussian density profile closely, characterized by the
Debye-Waller factor.

The reduction of the Fourier-spectrum of the order parameter results in an enor-
mous computational advantage, when it comes to simulations. As an illustration,
let us consider a DFT simulation that represents the atomic maxima faithfully.
This might require 64 discretization points per unit cell, per dimension. The cor-
responding simulation in the PFC model requires usually only 8 points, thus in
three dimensions a reduction of a factor of (64/8)3 = 512 can be achieved in both
memory requirement and computational time.

Another advantage of the PFC model is, that it can address freezing on a
diffusive time scale [1] and can handle millions of particles easily [2]. However, to
address the crystallization of molecular fluids, a hydrodynamic theory based on
the PFC model has been put forward in Ref. [15], which we denote here as HPFC.

25
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The PFC model combines the continuum level description of matter with an
atomistic description of the ordered phases. It can be understood as a simple
DDFT of classical particles [2]. It has previously been applied to address crystal
nucleation [2, 16–19] and growth under various conditions [2, 20–23]. This model
incorporates the description of several crystalline structures (BCC, HCP and FCC
[23]), besides liquid and glass [24, 25] phases.

It is best to think of the PFC order parameter as a time averaged one particle
number density, which becomes necessarily homogeneous in the liquid state (with-
out external potentials), since liquids do not break translational symmetry. The
crystalline state, however, will possess a finite number of symmetries, fully deter-
mined by the first reciprocal lattice vector (RLV) set of the given crystal structure.
A finite amplitude of those Fourier modes will lead to a periodic pattern, whose
maxima are associated with the equilibrium atomic positions.

In the original version of the theory, density being a conserved quantity, the
time evolution of the closed system is described by overdamped diffusive dynamics,
which is appropriate for the modeling of colloidal aggregation. However, for the
study of equilibrium states or when the system is open for particle exchange, a
non-conserved equation of motion can be used as well, we call this the pseudo time
dependent Euler-Lagrange equation.

3.1 The origin of the PFC model
The Swift-Hohenberg (SH) equation [26], formulated for the study of the effect of
noise on the convective instability (which is known as Rayleigh-Bénard convection)
can be derived as a non-conserved Langevin-type evolutionary equation from a
Lyapunov free energy functional. It is a prime example of a spatially extended,
pattern forming dynamical system. Pattern formation in these systems is the result
of instabilities of spatial operators, while nonlinearities provide the mechanism
responsible for the saturation of the magnitude of the order paramter.

The PFC model was originally proposed based on the observation, that the
Swift-Hohenberg equation produces periodic patterns, which can be interpreted as
a collection of atoms. This periodic pattern minimizes the functional, which means,
that deviations from the solid-like minimum energy configuration, have a positive
energy cost. This is the reason, why the PFC model is capable of describing elastic
deformations.
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The SH form of the Lyapunov functional is the following

F [ψ] =
ˆ

dr
{1

2ψ
(

−ϵ+
(
q0 + ∇2

)2
)
ψ + 1

4ψ
4
}
, (3.1)

where the order parameter ψ (r) in the PFC model is interpreted as a scaled parti-
cle density, q0 is a wavenumber usually set to q0 = 1, which sets the periodicity of
minimum energy configurations and the model parameter ϵ can be related to ther-
modynamic variables such as temperature, to control the phase transition between
the liquid (homogeneous order parameter) and solid (periodic density). In the PFC
context, the Lyapunov functional takes the place of the Helmholtz free energy of
the system. The re-interpretation of the SH order parameter as a particle number
density, warranted the use of the simplest, conserved evolutionary equation, the
diffusion equation

∂tψ = D∇2 δF

δψ
,

in which the diffusion constant D is usually set to D = 1, as it only affects the
scaling of time.

In the case of the RB convection, the SH model describes a stationary, non-
equilibrium state, while in the PFC interpretation, the model describes an equilib-
rium configuration of atoms. In the SH interpretation, ϵ is related to the Rayleigh
number ϵ = Ra−Rac

Rac
, itself proportional Ra ∝ ∆T to the temperature difference of

the hot and cold plates. Convection and thus pattern formation is possible, when
ϵ takes on positive values. The use of this parameter regime was inherited in the
PFC model, solidification is modeled in the positive ϵ > 0 range of values.

3.2 As an approximation to RY theory
Conceptually, it is somewhat difficult to explain the solid-liquid transition in terms
of linear instabilities of a pattern forming model. Fortunately, an approximation
scheme was identified, that links the PFC model to the more rigorous framework
of the Ramakrishnan-Yussouff density functional theory.

In the grand potential difference Eq. 2.2 between a homogeneous liquid and a
highly inhomogeneous crystalline state, the fractional density change n is intro-
duced through ρ (r) = ρl (1 + n (r)), which becomes

∆Ω[n] = ρl

ˆ
dr

[
(1 + n (r)) log (1 + n (r)) − n (r) − 1

2n (r)
ˆ

dr′ρlc
(2) (r − r′) n (r′)

]
.

The RY DFT aims to succeed in a realistic description of the equilibrium solid-
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Figure 3.1: Comparison of direct correlation functions of the Percus-Yevick theory
(shown as black) and the PFC approximation to it (colored red). The right panel
is a magnified version of the left panel, to appreciate the oscillations around zero.
The location of the first maximum is scaled to be at k = 1.

liquid density gap and the prediction of the location of the phase transition in
terms of measurable correlations in the liquid state. The use of correlations as the
basis for the theory gives it a system independent nature, as the results are not
formulated in terms of pair potentials, which vary from system to system.

Two critical approximations set the PFC model apart from the Ramakrishnan-
Yussouff theory. The liquid structure function pictured in Fig. 2.1, is connected
to the direct correlation function through S−1 (k) = 1 − c (k). Theoretically, all
values of S (k) and conversely c (k) evaluated at the RLVs k = {|Ki|} of the
solid phase would contribute to the grand potential difference and determine the
location of the phase transition. The first approximation of the original PFC model
is illustrated in Fig. 3.1, the Fourier transform of the liquid direct correlation
function is approximated with a quartic expression

cPFC (k) = cq + (c0 − cq)
1 −

(
k

q

)2
2

. (3.2)

The location of the first maximum q and the value of c (k) at k = 0 and k = q can
be fitted in this way.

Liquid state theory is the first-principles approach to the calculation of the
equation of state of real liquids and the study of correlations in terms of the pair- or
multi-body potentials of the constituent liquid particles. The Percus-Yevick theory
gives the analytical direct correlation function of the hard-sphere (HS) system in
terms of its density. An important feature is, that as the density is increased, the
maxima and especially the first maximum of cPY (k) shifts to larger values of the
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wavenumber, also the peaks and troughs get more pronounced. The connection
between liquid density and the location and value of the first maximum in the
direct correlation function is entirely neglected in the PFC model. The fitting
parameters in Eq. 3.2 are handled independently from the liquid density, they
were once connected to.

The lower the liquid density is, the smaller the oscillations in the c (k) direct cor-
relation function are around the zero correlation value, beyond the first maximum.
The modeling of our ignorance of a system’s correlations would correspond to the
zeroing-out of the c (k) function above a certain q0 wavenumber, c (k > q0) = 0. An
approximation of this sort to the Ramakrishnan-Yussouff-type DFT theory exists
[12], that still reproduces realistic solid density distributions, compatible with the
wavenumber dependence of the solid Fourier-amplitudes log (AKi

) ∝ −K2
i , deter-

mined by a corresponding Debye-Waller factor. The quartic expression of Eq. 3.2
tends to c (k → ∞) → −∞ negative infinity, intead of zero for large values of the
wavenumber. Such a c (k) function in the grand potential (Eq. 2.2) would asso-
ciate an increasing energetic penalty to finite solid state Fourier-amplitudes for
wavenumbers even as small as the second RLV set. This would make the solid-like
local minimum in the grand potential disappear and forego the possibility of a
solid-liquid phase transition.

The second approximation of the PFC model destroys the physical con-
nection between the solid-like Fourier-amplitudes and the wavenumber, which
comes from the purely entropic, ideal-gas term in the grand potential. The
logarithmic expression is simply replaced with a fourth-order Taylor expansion
(1 + n) log (1 + n) − n → n2

2 − n3

6 + n4

12 and the real-space counterpart of Eq. 3.2 is
introduced with q = 1, ĉPFC = c1 + (c0 − c1) (1 + ∇2)2 which finally produces the
PFC form of ∆Ω

∆Ω[n (r)] = ρl

ˆ
dr

[1
2n2 − 1

6n3 + 1
12n4 − 1

2n

(
c1 + (c0 − c1)

(
1 + ∇2

)2
)

n

]
. (3.3)

The truncation of the Taylor expansion of the direct correlation function (which
amounts to a gradient expansion in real-space) together with the truncation of
the expansion of the ideal-gas term, makes solid-like solutions with only a couple
of Fourier-amplitudes possible. This approach eliminates the predictive nature of
DFT, though the PFC model still retains the essential features of the solid-liquid
transition, while also being computationally efficient at the same time.
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3.3 Clarification to the PFC functional
Order parameter (OP) theories postulate, that the OP completely determines the
state of the system. There is an associated, generalized thermodynamic potential,
which is a function of the OP. If the OP is a function of space (inhomogeneous
ground state), the thermodynamic potential takes on the form of a mathematical
functional, to account for the energetic contribution of spatial variations in the
OP. Possible thermodynamic potentials are mentioned in App. A.1.4 and their
physical meaning is discussed. The thermodynamic principle, which states that
entropy increases in an isolated system during spontaneous processes, can be used
to formulate the generalized thermodynamic potentials. Depending on which ther-
modynamic variable is kept fixed by external conditions, the entropic maximum
principle can be expressed as a free energy minimum principle, as explained in
App. A.1.6.

Let us take the RY theory as a concrete example. The expression Eq. 2.2
is a functional of the inhomogeneous density ρ (r). Equilibrium states of
the modeled system correspond to local or global minima of the functional,
variations in the order parameter around the equilibrium distribution ρ∗ (r),
do not change the value of the functional to first order δ∆Ω [ρ∗ (r)] =
limϵ→0 {∆Ω [ρ∗ (r) + ϵq (r)] − ∆Ω [ρ∗ (r)]} = 0. Aside from some other extrema,
such as maxima or saddle points, any other distribution of the OP corresponds to
a non-equilibrium state.

Exclusively at the minimum energy configurations does the functional become
equal to its corresponding thermodynamic potential. At these minima, the value
of the functional and so the thermodynamic potential is determined by the natural
variables of the potential, which are external constraints on the minimization.
It is important to realize, that these external thermodynamic variables control
the parametrization of the functional and thus remain constant during the non-
equilibrium evolution.

How do we know, that the RY theory is a model for the generalized grand
potential difference? Its order parameter is the inhomogeneous atomic number
density (N/V ), the conjugate variable of which is the chemical potential. It is the
grand potential, which has the natural variables (T, V, µ), thus Eq. 2.2 describes
an isothermal system, at constant volume and in contact with a particle reservoir
at chemical potential µ. In the RY model, the exact form of the c (k) direct cor-
relation function depends on these natural variables and so does the functional
∆Ω = ∆Ω [ρ] (T, V, µ). The functional connects the equilibrium liquid and solid
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minima at the same values of temperature and chemical potential. At these min-
ima the functional coincides with the thermodynamic definition ∆Ω [ρ∗] = −V∆P ,
i.e. the negative of the pressure difference, relative to the liquid pressure. The phase
boundary is signaled by the absence of this pressure difference, as all intensive ther-
modynamic variables between solid and liquid become equal.

The PFC approximation (Eq. 3.3) to the RY DFT preserves the aforemen-
tioned qualities, however these are not appreciated in the PFC community. Since
the SH form of the PFC functional [1] has appeared originally, the later discov-
ered connection to DFT (see Ref. [2]), possibly, was biased towards the previous
interpretation of the theory. The situation is such, that Eq. 3.3 is considered by
the community to be a functional of the generalized Helmholtz free energy. Due to
this misunderstanding, instead of searching for equilibrium solutions via δ∆Ω

δn
= 0

and changing the parametrization of c (k) to account for the (implicit) change in
chemical potential, the Euler-Lagrange equation is written in the form δ∆F

δn
= µ.

A free parameter, called the chemical potential is thus explicitly introduced.
A comparison of the SH form (Eq. 3.1) and the RY form (Eq. 3.3) initially

reveals differences in the coefficients of higher order terms, which are motivated (see
Ref. [2]) by the argument, that low order contributions of higher order correlations
(which are not taken into account in the formulation) influence these coefficients,
so these coefficients can be considered as fitting parameters. A closer look reveals
a strange correspondence between model parameters c1 − c0 ≡ 1, 1 − c1 ≡ −ϵ or
expressed differently

c0 ≡ ϵ, c1 ≡ 1 + ϵ .

Mentioned in Sec. 3.1 and as can be seen on the phase diagram in Fig. 7.7, the pos-
itive range of ϵ leads to the stability of periodic phases. The value of ϵ determines
the solid-liquid density gap and interface properties (see Sec. 3.4). Usually, the
interval ϵ ∈ (0, 0.75] is explored. These values of ϵ are in grave contradiction to the
physical meaning of the values c0, c1 of the direct correlation function. A couple of
examples from Ref. [12] for c0 = c (k = 0): c0 (argon) = −18.9, c0 (sodium) = −40
and c0 (HS) = −49, these numbers are mainly known from compressibility κ mea-
surements, since κ−1 = (1 − c0) ρlkBT . The other parameter c1 = c (k = kmax) is
the height of the first maximum, which is always less than one c1 < 1, otherwise
the structure factor S (k) would diverge, which is not compatible with a stable
liquid. The corresponding c1 values in the SH PFC model are always greater, than
one. The SH form connects these parameters through ϵ, however, physically these
two parameters c0 and c1 are not connected with one another directly.
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In the RY interpretation, the stable liquid phase always corresponds to the
order parameter value nl = 0 (zero fractional density change) and the (implicit)
chemical potential is controlled via the strength of the liquid phase direct correla-
tion c1, while c0 can be set to a constant value characteristic to the given liquid,
which changes little near the phase transition. The liquid density is present only
(implicitly) in the direct correlation function (calculated from liquid state theory)
c = c (k; ρl) as a parameter, solely the solid-liquid fractional density change and
the pressure difference is determined by the RY model.

However, in the SH interpretation, due to the presence of the free parameter
µ, it is possible to use unrealistic values of the direct correlation function (as
determined by ϵ) and still obtain solid-liquid phase coexistence. The connection
between the strength of correlations and liquid density is completely lost, instead
µ changes the liquid density. This is the reason, why the liquidus line is located
at negative fractional densities nl < 0. As the model parameter approaches zero
ϵ ≈ 0, the phase transition loses its first order character and ϵ = 0 denotes a
critical point. In the RY interpretation the phase diagram is one-dimensional, once
the compressibility is set via c0, the remaining parameter c1 tunes the pressure
difference between the equilibrium phases. The parameter c0 controls interface
characteristics and the equilibrium density gap.

Another important aspect of the RY theory is, that while it is a nonlinear the-
ory in the mathematical sense, meaning that the equilibrium solid order parameter
is the solution to a nonlinear integral equation, physically, it is the linear response
theory (see App. A.2.3) of the homogeneous liquid to an external potential, solely
characterized by its direct correlation function c (k). The RY level of approxima-
tion to DFT does not involve the equation of state of the liquid and the response
function of the theory, namely c (k) is independent of local density changes. More
involved density functional theories exist, such as the Weighted Density Approxi-
mation [14], which does build upon the equation of state of the liquid phase and the
Helmholtz free energy together with the chemical potential are actually accessible.
The PFC approximation obviously inherits the limitations of the RY theory, so one
needs to remember, that no thermodynamic insight can be gained by changing the
model parameter ϵ (which controls both c0 and c1) freely, without concern to the
liquid density and pretending that the model contains a liquid equation of state.
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Figure 3.2: Equilibrium crystalline density profiles, so called Wulff shapes, reflect-
ing the anisotropy of the crystal-liquid interface, shown as a function of the reduced
temperature ϵ, for the same crystalline fraction of 0.3. (a through h): ϵ = 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.325 and 0.35. The interface thickness decreases, while the
anisotropy increases with an increasing distance from the critical point (located at
ϵ = 0).

3.4 Solid-liquid interface anisotropy
In the PFC model, as reviewed in Ref. [2], the thickness and the anisotropy of
the solid–liquid interface vary with the reduced temperature ϵ, between essentially
an isotropic and broad interface (near the critical point, ϵ = 0) and a strongly
anisotropic and sharp interface (far from the critical point, ϵ > 0). Accordingly,
as seen in Fig. 3.2, the two dimensional equilibrium shapes vary between circular
and hexagonal. For the three dimensional equilibrium crystal shapes see Ref. [27].

As a result, by the choice of ϵ, one may select qualitative features characteristic
to different classes of materials. In the small ϵ range (> 0.25) the model provides
a small anisotropy and a broad solid–liquid interface, characteristic to metals. In
the large ϵ range (? 0.5), the interface is sharp on the atomic scale and strongly
faceted, mimicking covalent systems.
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Time evolution

Thermodynamic potentials, which are state functions of homogeneous matter, are
generalized in terms of order parameters (OPs), that drive the transformation
under fixed external conditions. The choice of the OP determines the kind of ir-
regularities and the possible local equilibrium states, that can be reached during
phase transformation. It is paramount, to be able to faithfully represent the im-
portant aspects of the microstructure and to use realistic time evolution equations,
since the final microstructure is often determined by diffusional and morphological
instabilities during non-equilibrium evolution. To account for this, while retaining
the essentially thermodynamic description, the concept of local thermodynamic
equilibrium is introduced.

This approach involves decomposing matter into macroscopically small, but
still microscopically large volume elements, that each behave according to their
thermodynamic state function. Inhomogeneities in the respective intensive ther-
modynamic variables generate currents proportional to gradients in the intensive
variables, as the system tends to a lower free energy state by elimination of inho-
mogeneities. However, the system may be trapped in various states, that represent
local minima of the free energy functional and the lowest energy state compatible
with the prescribed boundary conditions might not be reached. The choice of the
time evolution equation for the order parameter and other auxiliary fields is an
important one in the study of phase transformations and microstructure formation.

4.1 Euler-Lagrange equation
Stable equilibrium distributions of the order parameter ψ (r) correspond to minima
of the grand potential Ω [ψ (r)] = F [ψ (r)]−µ

´
drψ (r). At these states ψ∗, which

35
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are the solutions to the Euler-Lagrange (EL, ELE) equation (mathematically, a
boundary value problem), the first variation of the functional goes to zero

δF

δψ

⌈
ψ∗

− µ = 0 ,

signaling the lack of driving force. The chemical potential µ sets the average particle
density.

In several cases it is satisfactory to study the ELE exclusively, for example,
when

• locating the phase boundary, i.e. with changing model parameters finding
the coexisting densities,

• studying the equilibrium interface free energy between coexisting phases,

• finding the nucleus, the critical size cluster, which is associated with a saddle
point in classical nucleation theory (CNT).

In certain cases, besides the global minimum associated with the given boundary
conditions, the free energy functional also possesses local minima (related to the
so called free energy landscape paradigm [3]), thus it is physically motivated to
transform the boundary value problem of the ELE into an initial value problem. A
non-conserved evolutionary equation in fictitious time is constructed that follows
the steepest descent on the free energy landscape to a local minimum. In this way,
by carefully choosing the initial value of the order parameter field ψ0 (r) one gains
control over the selection of the equilibrium state. The ELE is thus given by

∂tψ (r, t) = −
(
δF

δψ
− µ

)
, ψ (r, t = 0) = ψ0 (r) (4.1)

It must be born in mind, that the above equation is non-conservative, meaning
that even if the order parameter ψ represents a conserved quantity (e.g. particle
number density) this equation in its evolution is not limited by the constraint of
local (and global) conservation of density. The parameter µ, which is the chemical
potential of the system sets the average density. This kind of equation is called
”Model A” in the Hohenberg-Halperin [28] classification.
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4.2 Diffusive equation of motion
When working with the atomic number density as the order parameter, the local
change in density being a conserved quantity physically can only happen via cur-
rents transporting matter from one volume element to a neighboring one due to
differences in the chemical potentials in these volume elements.

The simplest conserved equation of motion (EOM) is ”Model B” in the
Hohenberg-Halperin [28] classification. The chemical potential is introduced as
the functional derivative of the relevant free energy µ = δF

δψ
providing the local

driving force for mass transport, gradients in this chemical potential give rise to
currents according to linear response theory jψ = −D∇µ that transport the con-
served order parameter ψ through the continuity equation ∂tψ+ ∇ · jψ = 0, which
becomes the diffusion equation when the diffusion coefficient is a constant

∂tψ = D∇2µ . (4.2)

This EOM is an overdamped evolutionary equation, meaning it has been derived
for particles suspended in a carrier fluid, such as colloidal suspensions. This EOM
is also motivated on the ground that approximations to DDFT lead [2, 29] to this
equation. When coupled with PFC thermodynamics we frequently call this the
DPFC model.

4.3 Fluctuations in continuum models
The equilibrium order parameter distribution takes the free energy functional to
its minimum, where thermodynamic variables, which characterize the macrostate
of the system are well defined. However, the free energy functional is defined for
arbitrary distributions of the order parameter, where the value of the functional is
not related to thermodynamic macrostates, these are non-equilibrium states with
a driving force towards equilibrium.

Metastable phases are local equilibrium states of the functional. The order pa-
rameter characteristic to an undercooled liquid takes on a constant value, which
would remain unchanged indefinitely, as the system has no way of exploring its
order parameter space and leave the local minimum. Activated processes like nu-
cleation, that must cross an energy barrier do not take place in this uniform liquid,
unless thermal fluctuations are incorporated into the EOM in the form of Langevin
noise. Although, this approach emulates nucleation, it is not devoid of conceptual
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issues, as thoroughly discussed in the existing literature [30–32].
If we consider the particle density as a quantity that is averaged over an en-

semble, then the free energy encompasses all feasible fluctuations. Therefore, in-
troducing noise into the EOM implies that a portion of the fluctuations is counted
twice. However, if we presume that the number density is a quantity that is av-
eraged over time, then it seems rational to include noise in the EOM to simulate
thermal fluctuations. This way, both crystal nucleation and capillary waves at the
crystal-liquid interface are automatically taken care of.

The form of the Langevin-type diffusive EOM is the following

∂ψ

∂t
= ∇2

(
δF

δψ
+ ζ

)
(4.3)

where ζ represents a Gaussian random field with zero mean and correlation given
by

⟨ζ (r, t) ζ (r′, t′)⟩ = Anoiseδ (r − r′) δ (t− t′) .

It is worth mentioning, that in most dynamic PFC investigations, a spatially col-
ored noise is utilized in the EOM, obtained by filtering out the unrealistic atomic
level fluctuations of very short wavelength. The noise is generated in Fourier-space
and a high wavenumber cutoff is applied ζ̂ (|k| > k0, t) = 0, here k0 represents the
location of the maximum in c (k), the direct correlation function.

4.4 Generalized equations of motion
In the statistical mechanical description of condensed matter, the large number
of individual degrees of freedom evolving according to Hamiltonian dynamics, are
replaced with coarse-grained variables, that describe collective motions. In most
systems, a separation of timescales can be observed, collective motions usually
proceed on a longer timescale, because a large number of particles are involved or
because there are conservation laws associated with those coarse-grained variables,
like particle density, momentum density or energy density. The evolution equations
of such slow modes are termed ”generalized hydrodynamic” equations.

The evolution equation used with PFC functionals is primarily the diffusion
equation Eq. 4.2, sometimes simply referred to as EOM, which is applicable for
particles suspended in a carrier fluid, as it describes overdamped dynamics, when
particle acceleration is inconsequential and the slow, dissipative dynamics is of
primary interest. This EOM does not support propagating modes, except, that at
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large undercoolings, as the solid-liquid density gap approaches zero, the solid-liquid
front advances with ∝ t and a so-called ”fast growth mode” [2] can be observed.
This EOM does not fit the definition of a hydrodynamic equation.

To more closely model the time evolution of the particle distribution, when no
carrier fluid is present, as in the case of simple liquids, the momentum of parti-
cles cannot be ignored. Those equations, that contain in some form the velocity
or momentum field as a first class variable, are called hydrodynamic equations of
motion. In these dynamical equations the free energy does not approach equilib-
rium monotonously, the thermodynamic force acts as a reactive force instead of a
dissipative one and these equations support propagating wave phenomenon.

4.4.1 Coupling to propagating modes

The strong desire for the computational modeling of crystallization from the un-
dercooled melt on the molecular scale drives the development of models, that are
capable of addressing a multitude of phenomena at once. These include phase co-
existence, the realistic description of the solid-liquid interface and its anisotropic
surface free energy. The incorporation of fluctuations of the solid-liquid interface
and fluctuations in the bulk phases. The crystal carrying the proper symmetry,
without the prior prescription of possible atomic positions and having propagat-
ing phonon modes, without an explicit displacement field. Capability of describing
plastic deformations besides elastic ones. Possessing Galilean-invariance, which
aids the mobility of grains, because they are no longer coupled to a carrier fluid,
as opposed to the overdamped case.

The above requirements warrant an atomistic, free energy based description
of the crystalline phase, which is provided by classical DFT. Equilibrium, static
DFT was extended based on first principles to model the dynamics of Brownian
liquids and colloidal systems, see Refs. [30, 32–34], this was termed Dynamical DFT
(DDFT). Later in Ref. [35], the dynamics was generalized for dense atomic liquids.
A combined description of molecular fluids and colloids appeared in Ref. [36].
Hydrodynamic transport equations, without the nonlinear momentum advection
term have also been tried in Refs. [37, 38]

The high accuracy of DFT modeling carries a high cost of numerical compu-
tation. In the quest of modeling with as little resources as possible (which thus
increases problem size), the cost-effective PFC functional became the subject of
attempts in coupling atomistic thermodynamics to hydrodynamic density trans-
port. Some models use a second time derivative to model propagating modes, but
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without the complications of velocity or momentum fields, see Ref. [39]. A simple
advection model was coupled to the PFC functional in Ref. [40] to describe particle
motion in a carrier fluid. No comprehensive demonstration of growth and elastic
processes have appeared in the literature until the publication of Ref. [15].

4.4.2 Dynamical coarse-graining

The thermodynamic and hydrodynamic responses of fluids are frequently modeled
by the continuum theory of fluctuating nonlinear hydrodynamics (FNH) [41], which
is the extension of traditional compressible hydrodynamics to the mesoscale, by in-
corporating thermal fluctuations according to the fluctuation-dissipation theorem.
It is shown in Ref. [42], that FNH can be explicitly mapped to MD simulations.

The FNH equations are stochastic partial differential equations, that introduce
stochastic fluxes into the conservation equations of momentum and energy to rep-
resent fluctuations around averages. The incorporation of these fluctuations makes
it possible to study a diverse collection of mesoscopic phenomena, such as diffusive
mixing of miscible fluids, capillary waves at fluid-fluid interfaces, Rayleigh-Taylor
instability, droplet spreading or the dynamics of nanoparticles.

FNH forms the basis of the nonlinear hydrodynamic theory of crystallization,
published in Ref. [15]. However, only isothermal processes are considered, similarly
to basically all applications of the PFC model. Thus, the energy transport equa-
tion of the FNH model is neglected, the remaining conservation equations are the
following

∂tp + ∇ · (v ◦ p) = ∇ · [R (ρ) + D (v) + S] (4.4)
∂tρ+ ∇ · p = 0 .

Here, p denotes the momentum density, v the velocity field and ρ the particle
number density. The tensor R is the reversible stress tensor, it is responsible for
the reactive forces that drive the dynamics (normal modes propagate). Following
Ref. [43], thermodynamics is coupled through this term, via the equation

∇ · R = −ρ∇δF

δρ

where F = F [ρ] is the thermodynamic potential, a functional of the inhomoge-
neous density. In Ref. [15] a constant mobility approximation is introduced in the
above equation ∇ · R = −ρ0∇ δF

δρ
where ρ0 is a constant average density.
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The tensor D represents dissipative stresses, it is responsible for the approach
to thermodynamic equilibrium, the dissipation of the free energy (normal modes
decay). It is of the same phenomenological form, that is familiar from the Navier-
Stokes equation

∇ · D = µS∇2v +
(
µB − 2

3µS

)
∇ (∇ · v)

where the transport coefficients are the bulk µB and shear µS viscosities (these are
not related to the chemical potential). The momentum field is directly coupled to
a stochastic variable, the noise tensor S whose correlations follow the fluctuation-
dissipation theorem according to

⟨Sij (r, t) Skl (r′, t′)⟩ = 2kBTµS

[
(δikδjl − δjkδil) +

(
µB

µS
− 2

3

)
δijδkl

]
δ (r − r′) δ (t − t′) .

Physically, the Langevin-type noise S makes no sense on the sub-atomic scale.
Since in practice, S is generated in Fourier-space, it is easy to filter out components
above a wavenumber k0/2, related to the wavenumber of the atomic periodicity
k0, so the spectrum of S becomes zero above that S (|k| > k0/2) = 0.

The above equations describe the evolution of fluctuating fluid phases, when the
correct thermodynamic functional is selected (e.g. gradient-squared theory with a
double well potential). A serious difficulty hides in the above equations, when the
thermodynamics is taken to be the PFC equation of state. Because of the atomistic
nature of the order parameter (the density), the above equations would operate
on the atomic scale. According to Ref. [44] the length scale of the validity of the
Navier-Stokes equations is placed above a 100 molecular diameters. Below this
scale, the dissipation mechanism and the validity of the NS equations are highly
questionable.

Another issue is, that in DFT the equilibrium crystalline density is well ap-
proximated by narrow Gaussian functions, centered around the average position of
atoms. These functions are highly inhomogeneous and very close to zero halfway
between atomic positions. In the PFC model, while the solid solution contains fewer
Fourier-modes than in DFT, additional problems with the positivity of the density
arise. The usual connection between momentum density and velocity cannot be
inverted to get v = p/ρ.

The resolution comes in the form of a dynamic coarse-graining procedure, which
provides a more macroscopic derivation of the velocity field. The microscopic parti-
cle density ρ and momentum density p are coarse-grained, i.e. a volume averaging
is applied, thus the lattice periodic components are removed from their spectra.
The velocity field is constructed in terms of these coarse-grained quantities simply
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as
v (r, t) = ⟨p (r, t)⟩

⟨ρ (r, t)⟩ (4.5)

where ⟨.⟩ denotes the coarse-graining operator, which is implemented as a
Gaussian-filter in Fourier-space, it is equivalent to the real-space convolution of
its argument with a Gaussian kernel of variance σ = 2σ0 where σ0 = 2π/k0 is the
lattice constant.

The exact form of the PFC functional coupled with FNH is

F

n0kBT
=
ˆ

dV
[

1 − c0

2 n2 − a

6n
3 + b

12n
4 − C2

2 (∇n)2 − C4

2
(
∇2n

)2
]
. (4.6)

The order parameter is the fractional density change n = (ρ− ρ0) /ρ0, where ρ0

is a reference density. The parameter c0 is related to the compressibility of the
liquid κ−1 = (1 − c0) ρ0kBT and C2, C4 determine the crystalline elastic response
and lattice constant. In the small order parameter limit, the speed of sound cS is
given in the liquid phase by c2

S = (1 − c0 − an+ bn2) kBT/m0 with m0 being the
atomic mass, and a, b are free parameters and n is the average fractional density
change in the homogeneous liquid.

The merits of the above described model have been demonstrated in Ref. [15]
in simulations:

• Crystalline clusters, perturbed by a displacement field as the initial condi-
tion, have shown elastic behavior similar to a harmonic lattice. Vibrations
around the equilibrium atomic positions were observed, that slowly decayed
in time. The transversal and longitudinal phonon spectra were determined,
that showed excellent agreement with classical theory, for phonon wavelength
λ > 20σ0, i.e. above 20 lattice constants. Longitudinal wave propagation was
found to be

√
3 times faster than transversal propagation.

• Steady front propagation was observed. In this case, the solid-liquid density
gap requires density transport from the far field liquid. The velocity field,
generated through the long-wavelength equation of state is responsible for
the decrease of the far field density and the transport of matter to the so-
lidification front. This decrease in the far field travels at the speed of sound.
When the boundary of the simulation is reached, this travelling density gap
is reflected. After it has reached the solidification front, steady state growth
will proceed at a slower pace, since the front now needs to propagate in a
less dense liquid, this equals to lower undercooling.
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• The Fourier-transform of the interface position h (x, t) follows a wavenumber
dependent variance

〈
h (q)2

〉
= kBT

q2γ̃L
, where γ̃ is the interface stiffness. This is

the measure of the capillary wave spectrum, which has been determined from
simulations and showed good agreement with this theoretical expectation.

• In Ref. [45], the kinetic coefficient Ksol relating growth velocity vsol = Ksol∆µ
to temperature (thus undercooling), has been linked to the shear viscosity,
through the expression Ksol ∝ µ−ξ

s . What is more, it was suggested that the
exponent ξ is dictated by the fragility of the liquid. It was found, that the
greater the fragility, the larger the difference 1 − ξ. Fragility is a measure of
the deviation of the temperature dependence of the viscosity of glass forming
liquids from the Arrhenius-type behavior. The breakdown (ξ ̸= 1) in fragile
liquids between growth kinetics and viscosity has been subsequently linked
to the manifestation of heterogeneous dynamics in the supercooled liquids.
In Ref. [15] simulations confirmed a scaling close to Ksol ∝ µ−1

s over a large
range of shear viscosities. This indicates the lack of fragility in the type of
liquid the HPFC model manifests. A weak dependence of the growth velocity
on the bulk viscosity has also been measured, a change in bulk viscosity of
a factor of 16 resulted in a corresponding change in growth coefficient of a
factor of 2.5.

4.4.3 Incompressible density transport

Motivated by the desire to study nucleation and grain growth under convection (see
Sec. 6.3) we have experimented with the HPFC model of Sec. 4.4.2 to investigate
such a scenario. Our efforts in trying to establish a flow field, which would transport
single crystals in the liquid phase, have met with disappointment.

The use of hydrodynamic EOMs is preferred, mainly because it provides fast
relaxation of the density, due to not being limited by overdamped density trans-
port. We are seeking a model, in which the velocity field is a principal variable,
so that it would make the displacement of solid objects, like crystal grains in the
liquid possible. The failure of the HPFC model propelled us to formulate another
hydrodynamic equation of motion coupled to PFC thermodynamics, it was re-
cently published in Ref. [46]. We call our model here, the incompressibly advected
HPFC model, INCA-HPFC for short.

This new EOM is based on the convective formulation of the incompressible
Navier-Stokes equation. Unlike in the dynamical coarse-graining procedure as used
in the HPFC model to formulate a velocity field, we have based our EOM around
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an incompressible velocity, which is responsible for the large scale displacement of
the medium. A separation of currents were devised, based on the observation, that
the Navier-Stokes equation already accomplishes a scale separation in the form
of the incompressibility condition, as it excludes dynamical density variation. We
have separated the velocity field into two parts v = u + g, u is responsible for
the advection of the density distribution, while g carries out the local pattern
evolution and compressible microscopic density propagation.

We review its derivation briefly. First, we apply the Helmholtz decomposition
to the velocity field. Here, u denotes the divergence free vector field and g = ∇ϕ is
a rotation free field. Thus, the equation ∇·v = ∇2ϕ needs to be satisfied, which is
easily solved ϕ̂k = (k · v̂k) / (ik2) by Fourier transformation. The momentum den-
sity must have the form p = ρv when v is a proper frame velocity, or equivalently
p = ρu + ρg. Here, we make our first assumption, which is that ρg is replaced
with ρ0g, ρ0 being the average density.

The compressible Navier-Stokes equation (or the more microscopic description
of fluctuating nonlinear hydrodynamics) is a coarse-grained, local equilibrium de-
scription of matter (see the introduction in Sec. 4), which handles small variations
in particle density, the smallest of control volumes still contain a large amount of
particles. The coupled equation of state determines the thermodynamic driving
force towards homogeneity, i.e. the response function, compressibility determines
the scale of density fluctuations. In a microscopic theory, like DFT, the equilibrium
density distribution in the solid phase is highly inhomogeneous, Gaussian spikes
represent the probability density of atoms with a close to zero value between them.
In the PFC approximation of this density, represented by only a few Fourier modes,
values can become even negative between atoms. While in the overdamped limit
this causes no complications, an EOM based on Newton’s equation for a medium
suffers from the direct use of this approximated density. The solution to this prob-
lem is the reason behind the crude approximation of ρg → ρ0g, basically it is a
reinterpretation of the rotation free part of the velocity as a microscopic current,
responsible for pattern evolution and microscopic wave phenomena. In this way,
we can keep the correct definition between the momentum (p, a dynamic variable)
and the divergence free velocity (u, a kinetic variable) and more importantly, ρ0g

will not change sign, even where the density becomes negative.
With the previous definition, the continuity equation ∂tρ+ ∇ · p = 0 becomes

∂tρ = −∇ · (ρu + ρ0g), which can also be expressed as

∂tρ = − (u · ∇) ρ− ρ0∇ · g ,
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where the term (u · ∇) ρ is responsible for the divergence free advection of the
scalar function ρ and ρ0∇ · g drives pattern formation and elastic behavior on the
microscale.

The convective form of the standard incompressible Navier-Stokes equation is
used for the evolution of the total velocity field v, with the rate of dissipation
of energy controlled by the shear viscosity µS. The other necessary change we
introduce is, that the convective form of the equation requires the divergence
free velocity (instead of the total v) in the term (v · ∇) v, responsible for the
advection of the velocity field. We also add the possibility of fluctuations through
the Langevin noise term ζ, with these changes the dynamic equation becomes

∂tv = − (u · ∇) v + µS∇2v − ∇
(
δF

δρ
+ ζ

)
.

This model handles arbitrary pattern formation and propagating modes on the
microscale, while accomplishes incompressible large scale transport of fluid and
solid parcels.





Chapter 5

Precursor assisted nucleation

Crystallization is a first order phase transition, which in pure liquids happens via
homogeneous nucleation. Fluctuations in the undercooled melt are responsible for
the creation of crystal-like nanoscale clusters. Small clusters decay with a high
probability, though there exists a critical size (called the nucleus), beyond which
clusters grow with a high probability. This critical size depends on the solid-liquid
interface free energy and the thermodynamic driving force. During heterogeneous
nucleation, foreign particles or container walls promote nucleation as wetting sur-
faces. Nucleation plays a part in processes, that span a diverse selection of fields,
such as geophysics, materials science, physical chemistry, biophysics and in many
technological applications.

During the past decades, the knowledge gained on crystal nucleation and
growth by conducting experiments and molecular simulations grew spectacularly:
trajectories of colloidal particles in suspensions can be tracked by scanning confo-
cal microscopy, providing structural/dynamical information, comparable in quality
to the particle scale information from molecular dynamics or Brownian dynamics
simulations.

It has also been established, that two-step nucleation via dense liq-
uid/amorphous/metastable crystalline precursors is rather the rule, than the ex-
ception, a finding in accord with a range of experiments. These findings also in-
dicate the limitations of classical nucleation theory, which does not contain the
crystal structure explicitly. Optical experiments on hard-sphere-like colloidal sus-
pensions indicate, that the crystal structure plays an important role in heteroge-
neous crystal nucleation. To account for such effects, one needs a single model,
which naturally contains both the amorphous and crystal structures, crystalline
anisotropies and elasticity.

47
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5.1 Classical nucleation theory
The development of a nucleation theory dates back to the works of Gibbs, who
has studied phase stability. He has also realized, that there is a free energy penalty
associated with the creation of the interface between the two phases, called the
surface tension and it works against the driving force.

The first true nucleation theory, that managed to address transition rates was
put forward by Volmer and Weber [47] for condensation, then the classical nu-
cleation theory (CNT) by Farkas [48] (on the basis of an idea of L. Szilárd) and
in final form by Becker and Döring [49]. The CNT was adopted to transitions in
condensed matter by Turnbull and Fisher [50].

The long history of the research on crystal nucleation is reviewed in [51–56]. Dif-
ferent kinds of computational methods have been applied to its study. The discrete
atomistic ones include molecular dynamics (MD) [57–62], Monte Carlo (MC) [63–
65] and Brownian dynamics (BD) methods. Continuum models based on the square
gradient (SG) approximation include the van der Waals/Cahn-Hilliard/Ginzburg-
Landau type models [28, 66–68] and the more complex phase-field methods [69–
72]. While the most rigorous continuum model is based on correlation functions,
which is the classical density functional method [73–77].

5.1.1 Homogeneous nucleation

It is an experimental observation, that a quiescent, pure liquid can be cooled below
its melting point significantly. According to the CNT the formation of the nucleus,
a heterophase fluctuation of the critical size is needed to initiate crystallization.
The size of the nucleus depends inversely on undercooling R∗ ∝ (Tm − T )−1 and
diverges at the melting point. As the undercooling is increased the nucleus becomes
smaller and the chance of a nucleation event greater.

According to the classical picture, the heterophase fluctuations possess a spher-
ical shape and they are bounded by a sharp solid-liquid interface, this is called
the capillary approximation or the droplet model. It is also assumed, that these
fluctuations are able to grow or decay via single-molecule attachment or detach-
ment. The thermodynamically derived work of formation for these clusters is
Whom = 4πR3∆ω/3 + 4πR2γ. R denotes the radius of the droplet, ∆ω is the ther-
modynamic driving force, i.e. the grand potential difference between the solid and
liquid phases, which is negative for undercooling and γ is the solid-liquid interfacial
free energy. For small R the positive interfacial term dominates, while for larger
R the negative bulk term overcomes the surface term, thus the work of formation
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has a maximum at R∗ = −2γ/∆ω, where the barrier height is W ∗
hom = 16π

3
γ3

∆ω2 .
The cluster of this size is called the nucleus or critical cluster.

This static picture is augmented with nucleation kinetics, which in the classical
picture relates the attachment/detachment rate of single molecules to the rate
of formation of critical clusters, i.e. to nucleation rate. A master equation has
been formulated to model the time evolution of the size distribution of n-molecule
clusters Nn according to

Ṅn = a+
n−1Nn−1 + a−

n+1Nn+1 −
(
a+
n + a−

n

)
Nn

with the special case for n = 1 that characterizes the time evolution of the number
of monomers, i.e. monomers are depleted by dimer formation and by attachment
to larger clusters and created through their inverse processes according to

Ṅ1 = a−
2 N2 − a+

1 N1 +
∑
n>1

(
a−
nNn − a+

n−1Nn−1
)

with
a+
n = OnΓ exp (− [Wn+1 −Wn] / (2kBT ))

and
a−
n = On−1Γ exp (− [Wn−1 −Wn] / (2kBT )) ,

that describe molecular attachment and detachment frequencies. The number of
surface sites on a cluster, that monomers can attach to is given by On = 4n2/3

and the timescale of this process is Γ = 6D/λ2. The self-diffusion coefficient is D,
which is often related to viscosity through the Stokes-Einstein formula and λ is
the molecular jump distance. The cluster formation energy Wn directly influences
the kinetics through the Boltzmann factors.

The above system of equations reach a steady state nucleation process after a
transient time τ ≈ Kλ2kBT (n∗)2/3 / (Dvm∆ω), here K is a geometrical factor, vm
is the molecular volume and n∗ denotes the number of molecules in the nucleus.
The steady state nucleation rate is given by

JSS =
( ∞∑
n=1

(
a+
nN

eq.
n

)−1
)−1

≈ J0 exp (−W ∗
hom/kBT )

in terms of the equilibrium population N eq.
n = ρ0 exp (−Wn/kBT ) and J0 =

ρ0On∗ΓZ is the pre-exponential factor of the nucleation rate, ρ0 is the number
density of the liquid and Z =

(
d2W
dn2

∣∣∣
n∗
/ (2πkBT )

)1/2
is the Zeldovich factor, which
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accounts for the decay of critical clusters.

5.1.2 Heterogeneous nucleation

In impure liquids, especially in non-laboratory environments, crystals usually nu-
cleate on preferred sites, i.e. the appearance of the crystalline fluctuations can be
aided by various heterogeneities, foreign particles dissolved in the liquid or even the
walls containing the liquid. In this case, depending on conditions, the nucleation
barrier can be significantly reduced Whet < Whom, which leads to higher nucleation
rates. Classical nuclation theory incorporates the effect of large heterogeneities on
nucleation via the spherical cap model, which is a geometrical condition between
the contact angle at the three phase boundary and the size of the truncated nu-
cleus. The contact angle θ is related to the mutual interface free energies of all
the phases, through the Young-Laplace equation γWL = γWS + γSL cos θ, which de-
scribes a force balance at the contact point of the three phases. The modified work
of formation becomes Whet = Whomf (θ) where f (θ) = (2 + cos θ) (1 − cos θ)2 /4 is
the catalytic potency factor.

5.2 Two-step nucleation
In agreement with theory [80], molecular dynamics simulations [65] and colloid
experiments [81–83], recent investigations relying on the PFC model have shown,
that at large undercoolings, crystal nucleation is a two-step process, i.e. an amor-
phous precursor assists the formation of the crystalline phase [2, 17, 19].

In the PFC model, crystal nucleation takes place in two steps at high under-
coolings: in the first step an amorphous precursor forms and helps the appearance
of the crystalline BCC phase [17, 19, 23] in the second step. Apparently, this
phenomenon is highly relevant not only for colloids [82–84], but for such simple
systems as the Lennard-Jones (LJ) fluid [80] and the hard sphere system [65],
raising the possibility, that the presence of an amorphous precursor might be a
general feature of crystal nucleation in highly undercooled liquids.

We have investigated the structural aspects of this process within the frame-
work of the PFC model. In doing this, we have relied on the bond order parameters
ql and ql introduced by Steinhardt et al. [85] and Lechner and Dellago [78]. The
bond order parameter ql considers the first neighbor shell around the particles,
whereas ql takes into account the relative orientations of atoms in the first and
second neighbor shells, they are defined in App. C.1.
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Figure 5.1: Snapshots of two-step nucleation in the PFC model at ϵ = 0.1684
and ψ = −0.25 at dimensionless times t = 70, 90, 110 and 1000, respectively.
Left panel: red (bbc-like neighborhoods) - q4 ∈ [0.02, 0.07] and q6 ∈ [0.48, 0.52],
white (amorphous) the remaining particles. Only the solid phase is visible. Right
panel: q4 vs. q6 bond-order parameter map (as defined by Lechner and Dellago
[78]). The circles on the right painted yellow, black, green and red indicate the
positions of the ideal icosahedral, BCC, HCP and FCC structures, respectively.)
Solidification appears to start with the nucleation of amorphous domains. Three-
dimensional visualization of atomic structure was accomplished with OVITO, the
Open Visualization Tool [79].
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(a) (b)

Figure 5.2: Comparison of the q6 vs. q4 bond-order parameter maps obtained (a) for
the Lennard-Jones system from molecular dynamics simulations (source: Ref. [78])
and (b) for the solidifying PFC system (the same as the second image from the
top in Fig. 5.1). Apparently, the structure of the amorphous precursor observed in
the PFC model is close to the structure of the bulk liquid in the Lennard-Jones
system.

The phenomenon of two-step nucleation is illustrated in Fig. 5.1 for in-
stantaneous quenching of the homogeneous liquid from above the liquidus line
(ϵ = 0.1336) to ϵ = 0.1667. The scaled density of the initial liquid was ψ = 0.25,
while the noise strength was Anoise = 0.42. In the left column of Fig. 5.1, the parti-
cles, that have BCC-like neighborhoods are painted red, whereas the rest qualifies
as amorphous (colored white).

Solidification starts with the formation of amorphous clusters and the BCC
structure appears later. In the right column of Fig. 5.1, the respective q6 vs. q4

bond-order parameter maps are shown, together with the points corresponding to
the ideal icosahedral, BCC, FCC and HCP neighborhoods. Indeed, the first appear-
ing solid is the amorphous precursor, represented by the purple nebula, positioned
slightly above and right of the lower left corner, whose amplitude (the amount of
the amorphous neighborhoods) first increases with time, but soon disappears as
BCC crystallization starts, with some remaining at the grain boundaries. Interest-
ingly, the structure of the amorphous precursor is close to that of the liquid in the
LJ system, as implied by the respective q6 vs. q4 maps (see Fig. 5.2).

Following the structural analysis employed in recent Brownian dynamics (BD)
simulations [86] and colloid crystallization experiments [84], we performed a similar
structural analysis for the amorphous (white) areas in Fig. 5.1. Analyzing BD sim-
ulations, Kawasaki and Tanaka arrived at the conclusion, that in the undercooled
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Figure 5.3: Structural analysis of two-step nucleation observed in the PFC simu-
lation displayed in Fig. 5.1. The coloring scheme proposed by Tan et al. [84] has
been used. (Here, the bottom row corresponds to dimensionless time t = 130, in-
stead of t = 1000.) Left panel: only MRCO and BCC crystals are shown. Right
panel: amorphous, MRCO and BCC domains are displayed. Coloring: green - BCC
crystal - q6 ≥ 0.27 and ξ ≥ 7, where ξ is the number of solid bonds; red - MRCO
- q6 ≥ 0.27 and ξ < 7, white - amorphous - q6 < 0.27. Apparently, MRCO and
the amorphous precursor appear roughly simultaneously (see Fig. 5.4), whereas
the bulk BCC structure forms later in contact with the MRCO domains. It seems,
that the MRCO domains evolve on the surface of amorphous domains, indicating
a process akin to heterogeneous nucleation.
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Figure 5.4: Time dependence of the fractions of particles having amorphous (black
solid line), MRCO (red dashed-dotted line) and BCC (green dotted line) neigh-
borhoods. Note the dominance of the amorphous structure at early times.

liquid the formation of a medium range crystalline order (MRCO) precedes crys-
tal nucleation. They have categorized atomic neighborhoods according to their q6

bond order value: q6 ≤ 0.28 qualifies as liquidlike, the range 0.28 < q6 < 0.4 qual-
ifies as MRCO, while q6 ≥ 0.4 is BCC crystalline. Assigning white, red and green
colors to the respective particles, they visualized the spatiotemporal evolution of
the undercooled liquid [86].

We have adopted a similar, but slightly different procedure by Tan et al. [84]
in analyzing the PFC simulations, where ξ has been introduced, see App. C.1
for its definition. It represents the number of solid bonds of an atom, calculated
from the bond order correlation between neighbors. The coloring scheme by Tan
et al. and also used in Fig. 5.3 is the following: white color represents amorphous
neighborhoods with a low value of q6 < 0.27. MRCO ordering is colored red and
it is indentified by a high value of q6 ≥ 0.27 but a low number of ξ < 7 solid
bonds, while the crystalline BCC order, colored green, belongs to a high value of
q6 ≥ 0.27 and a large number of solid bonds ξ ≥ 7.

We show the respective MRCO and BCC regions in the left column of Fig. 5.3.
The overall similarity between the BD and PFC simulations is fairly reasonable:
in both cases, appearance of MRCO regions precedes the formation of the BCC
crystals, which evolve inside/in connection with the MRCO domains. Remarkably,
however, in the PFC simulations a disordered (amorphous) solid appears first (see
Fig. 5.4), that is structurally similar to the liquid. Apparently, the white domains
in the first row of Fig. 5.1, can be divided into two types of subdomains, one
containing MRCO and the other, a solid state of liquidlike structure. We note,
that the latter has not been reported in BD simulations. One may speculate, that
in particle based simulations, the amorphous solid and the liquid regions might
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Figure 5.5: Radial distribution functions (RDFs), characterizing the amorphous
(top), MRCO (middle) and BCC (bottom) structures. Note the closeness of the
RDFs for the first two. The RDF for MRCO is in a good agreement with that of
the BCC-like precursor observed in colloidal systems [84].

be distinguished via investigating time correlations in the local structure, which
has yet to be performed for the BD simulations. The radial distribution functions
for the BCC, MRCO and amorphous structures are displayed in Fig. 5.5. The
RDFs predicted by the PFC model are close to those from molecular dynamics
simulations for undercooled and crystalline iron [87, 88], whereas the RDFs of
the amorphous and MRCO structures resemble closely the RDF of the BCC-like
precursor observed in experiments on colloids [84].

We have studied the structural signatures of the amorphous precursor assisted
crystal nucleation, that the PFC theory predicts at high undercoolings. An analysis
in terms of bond order parameters implies, that the structure of the amorphous
precursor is close to that of the LJ liquid, whereas the respective radial distribution
function resembles closely those from MD simulations of undercooled iron.

5.3 Contributions
I have performed instantaneous quenches in the PFC model, to study precursor
formation. Following the analysis of Tan et al., I have segmented the solid domains
into amorphous, MRCO and BCC atomic neighborhoods. By analyzing the solid
fractions of these species in time, I showed, that the first solid clusters are definitely
amorphous and BCC ordering appears later, as a consequence. MRCO regions
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are present mostly on the surfaces of the amorphous clusters and facilitate the
appearance of the BCC crystal.

I have presented structural analysis of the non-crystalline precursor clusters
in terms of the first neighbor averaged bond order parameters ql by Lechner and
Dellago, which places these clusters at the same region in the two-dimensional q6

vs. q4 histograms as the LJ liquid. I have shown good agreement between the RDFs
of the amorphous regions from PFC simulations and those from MD simulations
of undercooled liquid iron. The RDF of the BCC domains is virtually identical to
those from MD simulations of crystalline BCC iron.

In summary, I conclude, that dynamical mean field theories, such as the PFC
model are not limited by the assumptions of CNT and predict the non-direct ap-
pearance of the thermodynamically most stable solid phase at large undercoolings,
through an amorphous solid structure.
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Hydrodynamic EOMs

6.1 Crystallization kinetics
The PFC model succeeded in addressing the microscopic aspects of crystallization
[1, 2, 89] within the framework of continuum theories. Most PFC studies assume
overdamped particle dynamics, which approximates crystalline aggregation in sus-
pensions of colloidal particles reasonably well. In Ref. [15] a hydrodynamic theory
of freezing (HPFC) was proposed, that applies to solidification in molecular liquids.
The HPFC approach builds on the dynamical equation of fluctuating nonlinear hy-
drodynamics [41] and employs the free energy functional of the PFC model, as the
reversible stress tensor. A detailed review is available in Sec. 4.4.2.

The correct dispersion relation for long wavelength acoustic phonons is repro-
duced by the HPFC model, and it also supports a steady state front velocity vsol,
which is inversely proportional vsol ∝ 1/µS to the shear viscosity µS [45]. This
is quite different from the behavior observed with diffusive dynamics, in which a
depletion zone forms ahead of the solid-liquid interface, due to the fact, that the
crystal has a larger density, than the liquid. Matter needs to be transported to
the solidification front via diffusion and the front position evolves according to
∝

√
t as documented in Ref. [90], caused by a widening depletion zone. Although,

other PFC-based hydrodynamic models [91–93] have become available, it is only
the HPFC model, in which steady growth and the proper capillary wave spectrum
has been demonstrated.

The HPFC model also describes elastic stress relaxation reasonably well. The
thermodynamic force, as determined by the PFC functional, is the reactive force
in the model, which is contrasted to the diffusive case where the same functional
serves as the dissipative force. The HPFC model is expected to capture defect
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Figure 6.1: Phase diagram in the ϵ − ψ plane with corresponding growth forms
produced by the HPFC model without noise. The liquidus and solidous curves,
together with the liquid stability limit are plotted. Filled green dots denote the
location in the phase diagram of the corresponding growth forms.

formation and therefore produce polycrystalline growth forms on the nanoscale.
Structural aspects of crystal nucleation and growth in undercooled liquids are

explored, however, due to the computational cost, only two-dimensional problems
are considered. We first employ the HPFC model to show, that in this hydrody-
namic approach, homogeneous and heterogeneous nucleation processes are acces-
sible. Beyond that, the existence of growth front nucleation in highly undercooled
liquids is documented, which is the formation of grains with new orientation at
the solidification front.

6.1.1 Growth forms

We have started our investigations in the HPFC model by initiating growth with
an atom-size external potential well, at several points in the phase diagram, graph-
ically illustrated in Fig. 6.1. The driving force increases with an increasing distance
from the liquidus line, denoted by the thick red line in the figure. Thus, either in-
creasing the initial density (horizontal line) or increasing the reduced temperature
(vertical line) can be used to increase driving force. A clear trend is visible in terms
of interface properties. The vicinity of the liquidus line leads to rounded, circular
crystals, see Fig. 6.2(a). With increased driving force, the underlying hexagonal
symmetry of the crystal becomes visible in the growth form, edges of the closed
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(a) (b)

(c) (d)

Figure 6.2: Density map of the solid-liquid interface near the liquidus line (a,c) and
close to the liquid stability limit (b,d). Close-up views of the interface are shown
in the second row.
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(a)

(b)

Figure 6.3: Density profile along a line of atoms across the interface in figure (a).
Grain radius in time in figure (b). Blue lines belong to the rounded crystal (a) and
red lines to the hexagonal crystal (b) in Fig. 6.2.
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packed crystalline orientation appear with rounded corners. At still larger values of
the driving force the bounding edges turn to concave faces, see Fig. 6.2(b), the cor-
ners show the fastest growth wrt. orientation. With increasing driving force the SL
interface becomes more faceted and reduces in width, except near corners, where
long-range density modulations in the liquid develop. Close-ups of the interfaces
are visible in the second row of Fig. 6.2. The interface structure is analyzed further
in Fig. 6.3(a). The time evolution of the crystal radius is displayed in Fig. 6.3(b),
calculated from the enveloped area. The larger driving force (red line) corresponds
to faster growth and the radius clearly increases linearly in time, as expected from
the hydrodynamic density transport, see Sec. 4.4.2.

6.1.2 Solid fraction

The presence of thermal momentum fluctuations in the HPFC model gives rise
to density fluctuations, which ultimately lead to homogeneous nucleation in the
metastable liquid regime. We have investigated the time development of the crys-
talline solid fraction during polycrystalline solidification, at model parameters
ϵ = 0.1158 and ψ = −0.1982. The simulation from Fig. 6.4 is evaluated in Fig. 6.5.

Polycrystalline growth is frequently analyzed in the literature by way of the
Johnson-Mehl-Avrami-Kolmogorov [94] model, in terms of the time dependence of
the solid fraction. The JMAK expression

X (t) = Xmax

(
1 − exp

[
−
(
t− t0
τ

)p])

predicts the solid fraction (X) to satisfy a saturating exponential curve, where t0
is the incubation time, i.e. the time it takes for the first nucleus to appear in the
sample, τ is a characteristic time, related to the nucleation and growth rates and p
is the Avrami-Kolmogorov exponent. It is the result of an analytical model, which
considers the time dependence of the nucleation rate and the growth rate. Several
assumptions need to be made for its derivation: nucleation occurs homogeneously
in the liquid part of the material, growth rate is isotropic and independent from
the transformed fraction. The exponent changes, as the conditions of nucleation
and growth change. For example, large nucleation rate and small growth rate
produces small crystals in the final microstructure, while small nucleation rate
and large growth rate leads to large final crystals. Homogeneous nucleation and
steady growth predicts the exponent to be p = 1+D, where D is the dimensionality
of space.
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(a) (b)

(c) (d)

Figure 6.4: Voronoi analysis (see App. C.2) of a snapshot of a HPFC simulation
at large undercooling (ϵ = 0.1158 and ψ = −0.1982). The presence of momentum
noise in the undercooled liquid produces homogeneous nucleation and polycrystals,
that later impinge on one another. The middle portion of the density map is
pictured in Fig. (a), the Voronoi cells, colored according to the number of neighbors
is in Fig. (b), the argument of the complex hexatic OP can be seen in Fig. (c) and
the absolute value of the hexatic OP is visible in Fig. (d). The orientational color
scheme is illustrated in the bottom.
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(a) (b)

Figure 6.5: Quantification of polycrystalline growth kinetics from the simulation
displayed in Fig. 6.4. Figure (a) shows the number of atoms in the simulation
domain in time. Figure (b) shows the Avrami plot, which gives a close to linear
relationship with the fitted exponent of p = 3.31.

In Fig. 6.5(b) the data are transformed according to the expression

log log Xmax

Xmax −X (t) = p log (t− t0) − p log τ ,

so that a linear fit would give the desired exponent, which turned out to be p =
3.31. This value, together with the fact that crystal growth is linear in time in
the HPFC model, indicates, that the deviation of the measured p = 3.31 from the
expected value of p = 1 + D = 3 is the result of an increasing nucleation rate in
time.

6.1.3 Athermal nucleation

The free growth limited model [95, 96] of athermal nucleation describes a practi-
cally important mechanism, that helps in the understanding of the effect of un-
dercooling in melts with foreign particle additives. Athermal nucleation is a deter-
ministic, non-thermally activated barrier to free growth. The model predicts, that
the size of the foreign particles is the crucial parameter in determining the condi-
tion of free growth for a set undercooling. Wetting of the substrate by the crystal
induces the formation of some crystalline fraction on the surfaces of the foreign
particles at any undercooling. However, a critical undercooling is predicted, which
is a function of particle size, above which free growth of the crystalline phase takes
place.

We have created a HPFC simulation with a square lattice substrate intended
to mimick a foreign particle, modeled via an external potential as described in
Sec. 7.2.1. Different reduced temperatures were selected for the simulation, to



64 Chapter 6. Hydrodynamic EOMs

Figure 6.6: Voronoi maps of particle induced crystallization: the yellow areas indi-
cate the perfect triangular crystalline fraction, formed on a square lattice substrate.
Corners of the foreign particle induce grain boundary like lattice irregularities, due
to the mismatch of the triangular and square lattices. The average density is set
to ψ = −0.1982, while the reduced temperature is increased from left to right:
ϵ = 0.0932, 0.0941 and 0.0970. Left figure shows a stable, subcritical situation, the
middle figure is close to critical, while the right one shows free growth. There is an
increase in the curvature of the solid-liquid interface due to an increase in under-
cooling. The curvature is maximum, when the solid-liquid interface is a hemisphere.
Beyond that point, the onset of free growth achieves athermal nucleation.

account for an increase in undercooling. The results are summarized in Fig. 6.6,
which shows, that the HPFC model indeed reproduces a critical undercooling (for
fixed size of the foreign particle) beyond which, free growth sets in.

6.2 Polycrystalline growth forms
The formation of crystalline grains in the undercooled liquid via thermal fluctua-
tions, i.e. crystal nucleation, is essential [51] to the formation of polycrystalline and
nanostructured materials. The interaction of nucleation and the growth front plays
the determining role in the structure of polycrystalline growth forms, such as dis-
ordered dendrites [97, 98] and spherulites [99]. The mechanism behind the creation
of these complex polycrystalline growth forms, has been identified as growth front
nucleation (GFN) [100–103]. It describes the formation of grains of new orientation
at the propagating solid-liquid interface, the growth front.

These complex growth forms have been reproduced with conventional coarse-
grained phase-field modeling of microstructure evolution, via the incorporation of
an orientation field, which carries information on the local microscopic crystallo-
graphic orientation of the solid phase. However, to produce GFN, the definition
of the orientation field had to be extended also to the liquid phase. In the liquid
domain, the orientation field follows a uniformly distributed random variable on
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Figure 6.7: Orientation map from a phase-field simulation of spherulitic solidifica-
tion [86, 87].

the interval Θ ∈ [0,Θmax) where Θmax is determined by crystal symmetry, the
average of such a cyclic random variable bears no physical significance.

In phase-field modeling (PF), the formation of new grains at the front hap-
pens either by branching in the direction of low grain-boundary energies (at small
undercoolings) [102, 103] or by quenching in orientational defects into the crystal
(at large undercoolings) [101, 103]. Additionally, the effect of impurities, which act
as pinning centers for the orientation, can be modeled by fixing the value of the
orientation field at certain locations. A snapshot illustrating the polycrystalline
growth of an initially single crystal in a PF simulation can be seen in Fig. 6.7. The
formation of orientational defects at the solid-liquid interface is shown, that initi-
ate grains with orientations distinct from the initial crystal’s. Color corresponds
to a continuum of crystallographic orientations. Sharp changes in color stand for
grain boundaries (arrays of dislocations). Point-like orientation defects can be in-
terpreted as pinning centers (impurities with fixed orientation). The liquid domain,
where the value of the phase-field is close to zero is colored black.

While this approach, relying on a coarse-grained orientation field proved to be
quite successful in capturing rather complex solidification microstructures [101–
104], the microscopic kinetics of the GFN phenomenon remained largely hidden in
such coarse-grained models. While it is possible to gain insight into nucleation and
liquid ordering through molecular dynamics simulations, the study of GFN seems
to be out of reach of MD simulations.

It is desirable to clarify our understanding of GFN in atomistic continuum
studies, in which the order parameter naturally carries the symmetries intrinsic
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Figure 6.8: Single crystal growth in the diffusive PFC model, without fluctuations,
at model parameters ψ = −0.45 > −0.5

(
= ψc

)
, ϵ = 0.75. This set of parameters

corresponds to a part of the phase diagram, where the liquid is linearly unstable to
fluctuations. The solid-liquid interface is very broad and displays a one-dimensional
density modulation (similar to the lamellar phase), dislocations in the triangular
lattice and grains with orientations different from the initial one can be identified.
Initial crystal seed is located in the bottom left corner.

to a given crystal structure and no objectionable extension of a coarse-grained
orientation field to the liquid domain is necessary. We have set out to explore the
microscopic origins of polycrystalline growth by the formation of new grains at the
solid-liquid interface at high supersaturations, within the framework of the PFC
and HPFC models.

6.2.1 Investigations in the DPFC model

Previously, Gránásy et al. have attempted the modeling of GFN within the
DPFC model (unpublished work). They have observed, that an initial single
crystal seed developed into a polycrystalline structure, pictured in Fig. 6.8. The
EOM was solved without thermal fluctuations, model parameters were set such,
that the liquid was beyond its linear stability limit and growth was initiated by a
crystal seed of the triangular lattice. Eventually, the crystal seed developed into a
polycrystalline structure.

At these high supersaturations, density waves develop around the crystal, the
two-dimensional atomic density modulation turns into a one dimensional modula-
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(a) Defects freeze in causing polycrystalline
growth

(b) Satellite crystals form near the growth
front

Figure 6.9: Polycrystalline growth initiated from a single crystal seed, as evolves
in the HPFC model in the metastable liquid regime. The HPFC model takes
into account thermal fluctuations via momentum noise. Simulation parameters
are ϵ = 0.0923, ψ = ψc − 0.11∆ (∆ = ψc − ψL = 0.0028, liquidus ψL = −0.1982,
stability limit ψc = −0.1754). The number density map is shown, which displays
atomic maxima, along with fluctuations of the density field in the liquid domain.

tion at the solid-liquid interface, characteristic to the lamellar phase. It is followed
by the atomic density modulation in the bulk of the grain. In some directions,
determined by symmetry and the compatibility of the triangular lattice with the
concentric density modulation, a large number of defects appear.

While this incompatiblity mechanism might be viewed as a form of GFN, since
the liquid is unstable to density fluctuations in this regime, it cannot bear much
physical significance. The addition of thermal fluctuations to the simulation results
in the nucleation of polycrystalline grains in the whole of the liquid domain. They
have observed no sign of the formation of orientational defects during growth
happening in the metastable part of the phase diagram.

6.2.2 Investigations in the HPFC model

Tóth et al. in Ref. [15] have developed a hydrodynamic EOM (termed HPFC
here), built around the free energy functional of the PFC model and developed a
dynamical coarse-graining procedure, as described in Sec. 4.4.2 to provide density
transport beyond the overdamped limit of the usual diffusive EOM. We have em-
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ployed this model, in the hope, that it captures a certain way of density-amplitude
interaction, that would facilitate the GFN mechanisms.

This attempt proved to be fruitful at large undercoolings, simulations, that
were started from an initial single crystal seed, did develop a polycrystalline mi-
crostructure at later times. Displayed in Fig. 6.9, a simulation of the HPFC model
was initiated from a central seed of the triangular lattice. Initially, growth pro-
ceeds in an orderly fashion, however, at later times grain boundaries develop. This
indicates, that crystalline orientations different from the one in the seed have de-
veloped, a polycrystalline domain has formed.

In Fig. 6.9, at the cited model parameters the liquid is in the metastable regime,
i.e. stable against small fluctuations, which are incorporated via momentum noise.
Copious nucleation is not hindering the results, in contrast to the diffusive PFC
simulations with fluctuations.

To make the defect structure obvious, the results are analyzed with the help
of Voronoi tessellation, see App. C.2, to create non-overlapping polygons, that tile
the plane. In Fig. 6.10 at early times (a,c) clearly a single crystal grows without
defects, 6 sided polygons colored yellow tessellate the bulk of the crystal. As time
goes by (b,d), dislocations accumulate by the incorporation of inhomogeneities
at and beyond the growth front, these show up later as grain boundaries. Low
angle ones feature dislocations placed far apart, while high angle grain boundaries
consist of dislocations placed more closely together. A dislocation shows up as a
strongly bound blue-red pair of a 5 and 7 sided polygon.

Another way to quickly grasp the polycrystalline nature of the crystal grain, is
to look at the hexatic order parameter map, described in App. C.3. The hexatic
order parameter is sensitive to the natural ground state of the model, the triangular
lattice. The polygons in Fig. 6.10(c,d), resulting from the Voronoi tessellation are
colored according to the argument Θ of the complex hexatic order parameter.
Grain boundaries are now clearly visible as jumps in Θ, the local orientation of
the lattice.

6.2.3 GFN mechanisms

Analyzing the simulations, led us to recognize two scenarios, according to which
new orientations appear at the growth front. The first one is (i), when dislocations
enter the ordered crystalline lattice, initially at the corners and at the centers of
the bounding faces of the grain, later at the cusps of the solid-liquid interface.
These defects resemble misfit dislocations, resulting from the interaction of the
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(a) (b)

(c) (d)

Figure 6.10: Upper row: analysis of GFN with the Voronoi method, 6 sided poly-
gons, the natural ordering in two dimensions in the PFC model, are colored yellow,
while polygons with 5 sides are colored blue and polygons with 7 sides are colored
red. Lower row: analysis of GFN with the help of Θ = arg (ĝ6), the argument of the
complex hexatic order parameter, a cyclic color scheme based on color hue is used
to represent the orientation, which returns to its starting color after a maximum of
60◦. Right column shows the same crystal as the left column, but at a later time,
images are scaled to fit.
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Figure 6.11: Crystal nucleation near the solidification front, interfering with density
modulations of the interface and with those due to thermal fluctuations.

stress field and the fluctuations in the solidification front.
The other mechanism is (ii) the nucleation of small grains in the liquid do-

main, near the rough solid-liquid interface, which apparently are the result of the
interference of the density waves emanating from the solid-liquid interface and
the thermal fluctuations present in the liquid domain. This scenario is pictured in
Fig. 6.11. The first mode (i) of GFN generally results in less deviation from the
orientation of the bulk crystal, than the second mode (ii) of GFN, which essentially
produces independently oriented grains.

We have observed, that mechanism (i) is active over a broad range of undercool-
ings. The rate, at which dislocations form increases with increasing undercooling,
which suggests, that the increase in front velocity is connected to the creation of
these defects. Though the second mechanism (ii) is only expressed near the liquid
stability limit. For a fixed reduced temperature of ϵ = 0.0923, mechanism (ii) is
only active in the density range −0.1778 < ψ < ψc = −0.1754.

6.2.4 Stressed growth

Further deliberation is needed to understand the reasons behind mechanism (i) of
defect formation. The fact, that mismatched layers grow and the interface captures
imperfections of the lattice, hints at the importance of elastic effects. Similar be-
havior can be observed during strained epitaxial growth. The Asaro-Tiller-Grinfeld
mechanism (see Refs. [105, 106]) predicts an instability towards interfacial modula-
tions in coherently grown, strained layers. The ATG scenario assumes an initially



6.2. Polycrystalline growth forms 71

Figure 6.12: Single crystal grown in two dimensions at model parameters ϵ =
0.1158 and ψ = −0.1982 without thermal fluctuations. Upper left side shows the
coarse grained density map, obtained by low-pass filtering ψ (r) in Fourier space.
Upper right side shows the local lattice orientation, calculated from the hexatic
order parameter. In the lower row, bonds between first neighbors of atoms are
colored according to the difference of their lengths from the ideal lattice constant.
Red bonds indicate larger separation, while blue bonds indicate smaller atomic
separation, white is neutral.
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planar interface and an isotropic surface free energy, which is a good starting
point for epitaxial studies. Fig. 7.14 from the next chapter shows the evolution of
interface morphology of a strained crystal.

In the case of our investigation of GFN, a single compact crystal grows at early
times. For low undercoolings the growth form is isotropic (see (a,c) in Fig. 6.2) and
no irregularities appear in the lattice structure, even at late times. The situation
changes drastically for greater undercoolings, when GFN is observed: the growth
forms become somewhat faceted and highly anisotropic (see (b) in Fig. 6.2), mod-
ulations appear in the atomic positions close to the interface (see (d) in Fig. 6.2).

We have methods at our disposal to analyze irregularities in the perfect atomic
structure, even before defects accumulate. In the upper row of Fig. 6.12 on the right
side, the local lattice orientation is displayed for an anisotropic growing crystal.
While the lattice orientation appears homogeneous in the bulk of the crystal,
approaching the edge of the hexagon comes with a slight rotation of the lattice
towards the center of the edge. The oscillation in the local orientation correlates
with steps in the coarse-grained density, shown on the left side, in the upper row.
The minimum of the coarse-grained density is located in front of the middle of
the edge of the hexagon. Despite hydrodynamic density transport, this density
distribution is mimicking a depletion zone, characteristic to diffusion controlled
growth. Growth rate is slower in the middle of the edges, than at the corners of
the hexagon.

The variation in local orientation must be accompanied by anisotropic changes
in the lattice constant, thus stresses must be present already, in the coherent
lattice. A very telling picture is in the lower row of Fig. 6.12. Bonds between first
neighbors have been calculated and colored according to their lengths. White color
indicates the ideal lattice constant, red means bonds are longer than the ideal and
blue means shorter separations. While the neutral value used in the coloring is
possibly too large (too much blue color in the bulk crystal), there is clearly an
oscillation in the lattice constant, which increases in amplitude towards the edges
of the hexagon.

While no externally imposed stress is present in the case of single crystals, the
dynamic partitioning of the coarse-grained density can induce a surface stress. To-
gether with the anisotropy of the surface free energy in the case of large undercool-
ings, these effects result in heterogeneous growth conditions along the perimeter
of the hexagon. Even in the case without fluctuations, the formation of defects
is observed, above a certain size of the crystal, around 450 dimensionless units.
The inclusion of thermal fluctuations leads to defect formation at a much smaller
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size, around 150 units. It is conceivable, that an ATG-like instability develops in
the interface structure, which in the presence of fluctuations leads to an earlier
symmetry breaking and formation of misfit dislocations.

6.3 Heterogeneous nucleation in forced convec-
tion

In practical situations, nucleation is frequently a heterogeneous process, container
walls or other impurities lead to faster nucleation rates, than the homogeneous
nucleation path would have predicted. Even if foreign particles manage to reduce
the nucleation barrier, their crystal structure might not be compatible with that of
the nucleated crystal. The evolving clusters would experience stress, which could
influence further crystal growth.

This phenomenon is discussed in Ref. [107], where colloidal experiments and
Brownian dynamics simulations were analyzed in this regard. They have found,
that at first, clusters nucleate heterogeneously and grow on a seed particle, but as
soon as a critical size is reached, supposedly due to elastic stress they detach from
the seed particle. The detached crystals grow and remain close to the seed particle
and prevent further nucleation events. This finding made us wonder, whether the
presence of convection in the fluid would transport the nucleated and detached
cluster away from the seed particle and repeated nucleation events would occur.

The continuum modeling of these conditions warrant a hydrodynamic ap-
proach, combined with the possibility of heterogeneous nucleation. Because of the
transport of grains, the model must be able to support the displacement of solid
clusters without any ”drag” from the coordinate system. The HPFC model, as
described in Sec. 4.4.2 seems like the obvious choice for such a task. We have
faced with difficulties, however, when we tried to create a situation, in which solid
crystals would move under forced convection of the fluid. As it were, the periodic
pattern of the crystal was not affected by the velocity field of the medium.

We have recently formulated [46] another hydrodynamic extension of the PFC
model, called the incompressibly advected HPFC or INCA-HPFC model, described
in Sec. 4.4.3 to address these difficulties and for further study of complicated crystal
growth scenarios coupled to fluid flow. A situation similar to the one described in
Ref. [107] has been constructed. We have applied a fixed, external potential field
to represent the interaction with an unstructured circular substrate and set up
source terms in the INCA-HPFC equations to force convection on the edges of the
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Figure 6.13: Crystal nucleation on an unstructured circular substrate in the pres-
ence of fluid flow in the INCA-HPFC model. The downwind side of the substrate
provides the necessary circumstances for heterogeneous nucleation and growth.
After reaching a significant size, the cluster is broken off by the force from the
convection of the fluid domain and it is transported freely in the liquid.
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periodic domain of the simulation.
The setup is depicted in Fig. 6.13. A flow field develops around the substrate,

pointing, on average, from the upper left corner of the domain towards the lower
right corner. In time, the substrate accumulates crystalline ordering on its surface
and induces nucleation on its downwind side. As the nucleated crystal domain
grows, soon it reaches such a large extent, that the elastic force holding the cluster
attached to the substrate proves to be inadequate to hold the cluster in place. The
shearing force from the surrounding fluid parcels manage to break off the cluster,
free from the substrate. After this event, the cluster reaches the velocity of the
fluid and it is transported away from the substrate. Finally, the substrate is able
to facilitate further nucleation events. The above scenario is very likely to happen
during industrial solidification processing.

6.4 Contributions
I have studied crystallization kinetics in two distinct extensions of the DPFC
model, applicable to undercooled molecular liquids. In the HPFC model developed
by Tóth et al., I have documented a transition of growth forms from an isotropic one
at low undercoolings, to a highly anisotropic hexagonal one, at high undercoolings.
I have fitted the Johnson-Mehl-Avrami-Kolmogorov model to the time development
of solid fraction. The Avrami exponent turned out to be p = 3.31, which is larger,
than the expected value of 3, indicating an increasing nucleation rate in time. I
have studied athermal nucleation on a solid substrate, the results are in accord
with the free growth limited model of Greer et al.

I have observed in the HPFC model, that in the presence of momentum fluc-
tuations at large undercoolings, an initially single crystal develops new crystallo-
graphic orientations, which I have identified as GFN, the mechanism responsible
for the development of polycrystalline growth forms. I have described two distinct
underlying microscopic mechanisms: (1) dislocations entering the hexagonal crys-
tal along its perimeter, which appear to be misfit dislocations, (2) small crystallites
nucleating in the neighborhood of the solid-liquid interface, which emerge from the
interaction of the density fluctuations in the liquid and the solid-liquid interface.
The HPFC model appears to be the first atomic scale model, which supports GFN
in the metastable liquid regime. I have analyzed single crystal growth without
thermal fluctuations and showed clear evidence, that strain is present near the
perimeter of the anisotropic growth form. While the direct cause of this change
in lattice constant is not clear at the moment, I have concluded, that the first
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mechanism of GFN is clearly a result of internal stresses in the solidification front,
which results in the capturing of misfit dislocations during growth.

Due to a deficiency of the HPFC model, namely, that the derived velocity field
was not able to transport the atomic density pattern of the crystalline domains, I
have recently developed the so-called INCA-HPFC model to address the interac-
tion of the undercooled melt with a foreign substrate. I have shown, that forced
convection around a substrate in an undercooled melt results in heterogeneous
nucleation of crystalline clusters on the downwind side of the substrate. When
the crystal reaches a certain large size, the shearing forces from the fluid parcels
tear the crystal off of the substrate, which is transported away. Afterwards, the
substrate is able to facilitate further nucleation events. I have thus demonstrated,
that it is indeed possible to address in a single order parameter model stochastic
nucleation of crystals on foreign particles, elastic cohesion of crystalline particles,
plastic deformation when elastic forces are overcome, interaction between fluid and
solid parcels due to shearing forces and free advective transport.
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Epitaxial studies

The field of epitaxy is the study of nucleation and growth of crystalline mate-
rials on top of supporting crystalline substrates. When the new phase is of the
same material as the substrate, we talk about homoepitaxy, otherwise it is termed
heteroepitaxy.

Epitaxial growth plays a crucial role in the fabrication of advanced semicon-
ductor devices, as it is the fundamental process that enables the integration of
different materials with distinct properties into a single device structure. It is used
to deposit the active semiconductor layer on a substrate, allowing precise control
over its thickness, composition and doping profile, facilitating the production of
integrated circuits, light-emitting diodes, laser diodes, photovoltaic devices, many
electronic and optoelectronic components and other nanoscale structures.

Basically, it is the controlled growth of a thin crystalline film on a substrate,
where the film adopts the crystal structure and orientation of the underlying sub-
strate. This precise alignment between the film and substrate allows for the creation
of high quality, defect free films with tailored properties. By growing epitaxial lay-
ers of semiconductor materials with specific bandgaps and refractive indices, it
becomes possible to create efficient light-emitting structures, those used in the de-
velopment of optoelectronic devices such as LEDs and laser diodes. These devices
find applications in solid-state lighting, displays, telecommunications and optical
data storage.

Bulk thermodynamics determines the stability of different crystal structures
and phases under specific growth conditions, dictating the choice of growth pa-
rameters such as temperature and pressure. Kinetics, on the other hand, deals
with the rate at which atoms or molecules attach to the growing surface, processes
such as surface diffusion, nucleation and growth modes strongly influence the film’s

77



78 Chapter 7. Epitaxial studies

Figure 7.1: Illustration of growth modes, from top to bottom: layer-by-layer growth,
island formation and the mixed Stranski-Krastanov mechanism.

morphology, crystal quality and growth rate. Since epitaxial growth involves a sub-
strate and the growth of a controlled number of layers, it is inherently situated in
dimensionality between two and three, surface effects contribute generously to the
behaviour of such systems, thus surface science plays an important role in epitax-
ial growth, providing insights into surface structures, reconstructions and surface
reactions.

Experimental techniques, such as scanning electron microscopy (SEM), scan-
ning tunneling microscopy (STM) and reflection high-energy electron diffraction
(RHEED) are used to study surface morphology, surface diffusion and layer-by-
layer growth.

The PFC model of thermodynamic origin, extended with a Langevin-type mass
conserving equation of motion, occupies an ideal place of modeling hierarchy, for
the study of epitaxial phenomena. Since it resolves matter on the atomic scale
and its functional is minimized by periodic patterns of the desired symmetry,
elastic effects are naturally taken into account and coupling of the growth front
with external and internal stresses are accomplished without any complication.
The time scale of the model also means, that it is computationally efficient, since
atomic vibrations are averaged out, their footprints can only be discerned in the
shape of the atomic probability density distribution, similarly to vacancy and
interstitial concentration, that only affect the average density. Topological defects,
i.e. dislocations on the other hand appear as directly observable irregularities of
the crystalline atomic order.
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7.1 Growth mechanisms and defect formation
Epitaxial growth mechanisms are strongly influenced by the relative interaction
strength between adatoms and the substrate. In liquid phase epitaxial growth, the
determining factors are the relative surface free energies of the adjoining phases,
γCL of the crystal-liquid, γCS of the crystal-substrate and γLS of the liquid-substrate
interface. Young has studied the stability of planar interfaces in the absence of
elastic effects and concluded, that the necessary condition is γLS > γCL + γCS,
which leads to the complete wetting of the substrate. For non-complete wetting,
the contact angle Θ can be defined via cos Θ = (γLS − γCS) /γCL. With the help of
the expression ∆γ = γCL +γCS −γLS, three growth scenarios can be distinguished,
see Fig. 7.1:

• layer-by-layer growth occurs for ∆γ < 0, the Frank-van der Merwe mecha-
nism,

• island formation occurs for ∆γ > 0, the Volmer-Weber mechanism,

• layer-by-layer growth up to a critical thickness followed by island formation,
occurs for ∆γ ≈ 0, the Stranski-Krastanov mechanism.

A common occurrence during epitaxial growth is the presence of mismatch between
the crystal lattice of the substrate and that of the epitaxial layers. The simplest
way to quantify this mismatch is through the misfit parameter f = (σs − σf ) /σf ,
defined as the strain present in the coherent, stressed epilayers. Similarly to the
definition of elastic strain L−L0

L0
, it is expressed as the difference between the lattice

constants of the stressed layer (equivalent to σs of the substrate) and the unstrained
epilayers σf (that would grow on a perfectly matching substrate), relative to the
latter. This definition is unfortunately not consistently used in the literature, one
can come across expressions for the misfit parameter with the lattice constants
interchanged. This elastic strain has a strong influence on the growth morphology
and has a direct and indirect effect on the above pictured growth scenarios.

7.1.1 Heterogeneities during epitaxial growth

The properties of the epitaxial film, including its electronic band structure and
transport characteristics depend on the structural integrity of the film. It is recog-
nized, that if the mismatch between a substrate and the growing epilayers is suf-
ficiently small (f > 7% [108]), the initial atomic layers deposited will be strained
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Figure 7.2: Externally strained solid slab develops surface undulations to relieve
stress. The upper row shows the tensile, while the lower row shows the compressive
case. The middle row depicts the change in surface morphology of the initially
planar free surface of the epitaxial layers. Here, σ denotes the stress in the x-
direction without surface undulations and σxx denotes the stress in the presence
of undulations.

to conform to the substrate, resulting in the formation of a coherent interface. In-
homogeneities would act as scattering centers in applications, it is thus preferred
that films grow defect free and coherent with the substrate.

As the thickness of the coherently growing layers increases (the Frank-van der
Merwe scenario), the accumulated excess elastic stress energy becomes more and
more significant. Mechanisms have been discovered that act to reduce or eliminate
this excess energy.

7.1.1.1 The ATG instability

The equilibrium shape of an inclusion of one phase in another is the result of surface
free energy minimization, when the volume of the inclusion is kept fixed. Areas
of high curvature are avoided and faces with low values of the surface free energy
dominate the equilibrium shape. Planar boundaries between phases at equilibrium
tend to remain planar, since modulations in surface geometry have an associated
energy cost.

However, taking into account elasticity, leads one to conclude that a change
in surface geometry has an effect even on the bulk energy of a strained solid,
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thus surface morphology cannot be solely described by the minimization of the
surface free energy. Areas of high stress give rise to mass transport to areas of
low stress. A perturbation of a planar interface will generally increase the surface
free energy contribution and decrease the level of stress, thus the two effects will
compete with one another. A sufficiently large reduction in elastic energy will
overcome the increase in surface energy and leads to the morphological instability
of a planar interface, this became known as the Asaro-Tiller-Grinfeld (ATG) [105,
106] instability.

A transversal sinusoidal surface modulation h (x) along the x-direction is de-
picted in the middle row of Fig. 7.2, and the x-component of the stress tensor
σxx (x) is plotted in the upper and lower rows. The stress distribution is such, that
at the peaks of the modulation the stress level is closer to the unstressed state,
while at the troughs the stress level is the highest in absolute value.

When the total change in surface and elastic energy is calculated, e.g. as in
the review article by Müller and Saúl [109], one obtains that an overall free energy
reduction is possible when the wavelength of the modulation λ exceeds a critical
one λ > γπ

σ2
E

1−ν2 = λc where γ is the surface energy, E is Young’s modulus and
ν is Poission’s ratio. In this approximation the sign of the stress has no effect on
the instability. Thus ubiquitous thermal fluctuations in the shape of the interface,
above this critical wavelength, will be more pronounced.

The stress distribution in the interface as described above will also have an
effect on the growth velocity of the interface. The time evolution of the system
is driven by free energy minimization, the crystal (Fe) grows due to occupying a
lower free energy state ∆Fe = Fe − Fl < 0 than the liquid (Fl), and the growth
velocity as a first approximation is proportional vsol ∝ |∆Fe| to this free energy
difference. This difference |∆Fe| is largest for the unstressed crystal, and smaller for
crystals under stress (energy closer to liquid’s), thus areas of reduced stress (peaks
in the modulation) will grow at a faster rate compared to areas of increased stress
(troughs in the modulation). This effect will in time increase the amplitude of an
initially small modulation, as displayed in the series in Fig. 7.15.

The late time growth morphology of such an instability has been studied in
[110] with the help of phase-field modeling extended with linear elasticity theory.
It is notable that troughs of the modulation develop into deep, crack-like features.
This result is in contrast to PFC simulations that predict dislocation nucleation
at late times, thanks to the natural incorporation of the crystal lattice in the
modeling, as opposed to the lack of such lattice in the phase-field model.
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Figure 7.3: Dislocation lines running perpendicular to viewing plane, in the case
of an incoherent interface between substrate (A) and epilayers (B). Periodicity is
determined by the misfit parameter, as to fully relieve strain in the epilayers.

7.1.1.2 Formation of misfit dislocations

It has been observed, that during layer-by-layer growth of a mismatched, but
coherent epitaxial layer, elastic energy continuously builds up, until a point is
reached, when the system could attain a lower energy state by the creation of
a so called misfit dislocation and cease further accumulation of elastic strain in
successive layers.

van der Merwe (VDM) [111] was first, to develop a theoretical understanding
based on an energy balance argument. According to the geometry depicted in
Fig. 7.3, the interfacial energy between the substrate (A) and the epilayers (B)
was calculated for a given value of the misfit parameter f , meaning a constant
linear density of dislocations in the interface was presumed. With the help of a
harmonic lattice model the calculated excess interfacial energy is ϵI ≈ 9.5f Gb

4π2 , G
being the shear modulus, b is the length of the Burger’s vector, and (for later) ν is
Poisson’s ratio. This expression is independent of film thickness and is applicable
for small (f > 4%) misfits. This was contrasted with the case without dislocations,
i.e. a coherent interface between substrate and epilayers. The areal energy density
in this case becomes ϵH = 2G

(
1+ν
1−ν

)
f 2h which is naturally proportional to layer

thickness h and quadratic in the misfit, since f = 0 represents the lowest energy
possible for homogeneously strained layers.

Van der Merwe concluded that there exists a critical layer thickness, above
which it is energetically favorable to relieve further stress by the incorporation of
dislocations. The condition of total elimination of defects is obtained by equating
ϵI = ϵH the above expressions, the approximate critical layer thickness is given by

hc ≈ 0.13
(1 − ν

1 + ν

)
b

f
. (7.1)

Matthews and Blakeslee (MB) [112] conducted an experimental investiga-
tion of multilayered epitaxial growth, it was found that for a given misfit strain, the
multilayer structure was devoid of threading dislocation lines below a certain layer
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Figure 7.4: Side view of a multilayer structure on a scanning electron micrograph,
taken from Ref. [112], layer thickness is around 440Å, dislocation lines run per-
pendicular to the viewing plane and repeat in each layer.
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Figure 7.5: The graphical representation of a threading dislocation, originating
from the substrate (A) and running through the multilayer structure (of alternating
composition, B and C). Left panel is the same view as in Fig. 7.4 and the right
panel shows the section congruent with the dashed line.

thickness, while an array of dislocation lines appeared in the prepared samples as
shown in Fig. 7.4 above this critical layer thickness. The graphical representation
of the same view is seen on the left panel of Fig. 7.5, while the extent of the dis-
location line along the section indicated by the dashed line is seen on the right
panel.

MB have developed a more involved theoretical model than van der Merwe,
for the prediction of the critical layer thickness, to resolve the discrepancies be-
tween theory and experiment. They have approached the problem from a force
balance perspective. Fig. 7.6a depicts epilayers of different thickness (B) on top of
a substrate (A) with a threading dislocation already present at the beginning of
the growth process. The figure shows the progression of changes in the shape of
the dislocation line as the epilayer thickens. Starting from state (a), initially the
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Figure 7.6: Dislocations in an epitaxial layer, viewed from the same direction as
Fig. 7.5b. On the left side (a) the Matthews-Blakeslee force balance is illustrated in
the case of a pre-existing threading dislocation, originating in the substrate. Layer
thickness directly influences the force acting on the dislocation line, a - subcritical,
b - critical and c - supercritical case. For layer thicknesses larger than hb, the
dislocation spreads freely in the substrate-epilayer interface. On the right side (b)
a half-loop dislocation line is illustrated, which nucleated in the free surface of the
epilayer. The labels a,b,c belong to the same cases as on the left side, the same
explanation applies.

dislocation stays in place, the line tension (denoted by FD in the figure), which
is always present in a dislocation line is large enough to pin its position down.
However, there is already a force exerted on the dislocation line (FH) due to the
stress field, caused by the strain in the epilayer. As the thickness increases beyond a
threshold value, in this case denoted by hb, the stress induced force FH on the dislo-
cation line overcomes the pinning effect of the line tension, and the dislocation line
begins to grow in length, leaving misfit dislocations along the substrate-epilayer
interface, case (c) in the figure. MB have identified case (b) when the two forces
balance out, as the criterion for the appearance of misfit dislocations.

The line tension in Ref. [112] is approximated by the expression FD ≈
G
(

1+ν
1−ν

)
bhf . In the same work, the force acting on the dislocation line due to

the stress field is taken to be FH ≈ Gb2

4π(1−ν)

[
log

(
h
b

)
+ 1

]
. Force balance gives the

critical layer thickness approximately as

hc/b ≈ 1
4π (1 + ν) f

[
log

(
hc
b

)
+ 1

]
. (7.2)

The above picture depends on the presence of dislocations in the substrate, however
MB showed, that essentially the same force balance argument holds in the case,
when a dislocation nucleates in the free surface of the epitaxial layers, as illustrated
in Fig. 7.6b.

People and Bean (PB) [113] put forward yet another way to calculate crit-
ical thickness, motivated by the unsatisfactory results, trying to interpret their
experimental data according to the previously described results from both van der
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Merwe and Matthews-Blakeslee. Over a significant range of the misfit parameter,
severe deviations between the theoretical and the experimental curves for critical
thickness was observed.

Rather than considering mechanical equilibrium, PB’s argument is more in line
with that of van der Merwe. The thickness dependent stress energy is calculated
similarly, but instead of the approximation with a harmonic lattice model of the
interfacial energy between the substrate and epilayers, the self-energy of an isolated
dislocation is used in the determination of energy balance. The presumed position
of the dislocation is again in the interface between the substrate and the epilayers,
the areal energy density of an edge dislocation, a distance h from the free surface
is given by the expression

ϵD = (1 − ν)−1
(

Gb2

8πa
√

2

)
log h

b

with a being the lattice constant of the layers. The energy balance ϵH = ϵD can
be written in the following form

hc ≈ (1 + ν)−1 1
16π

√
2
b2

a

1
f 2 log hc

b
. (7.3)

The physical picture implied by the above explanation, is that the homogeneous
volumetric elastic energy density present in the coherent expitaxial layers, multi-
plying with the layer thickness, can be regarded as an areal energy density present
in the substrate-layer interface. Also, the volumetric elastic energy density of an
isolated dislocation line can be integrated in the perpendicular plane which results
in a line energy density, see e.g. Ref. [114], and it is hypothetically converted to an
areal energy density, by dividing it with the lattice constant a. Thus, the condition
of the appearance of a dislocation is that the surface energy from elastic stresses
at any point in the surface-epilayer interface be larger, than the energy density of
an isolated dislocation distributed over the width of the lattice constant.

Apparently PB (erratum in Ref. [115]) have found excellent agreement between
this theoretical result and their own experimental data over a range 1% > f ≤ 4%
of misfit parameter.

7.2 Two-dimensional PFC modeling of epitaxy
The PFC theory is an ideal tool for the modeling of epitaxial growth. The use of
the one-particle atomic number density as order parameter, inherited from classical
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density functional theory, means, that crystal symmetry and elasticity are modeled
with ease, these turn out to be essential for these studies. Changes in microscopic
structure are reflected as changes in free energy. The thermodynamic driving force
for crystallization is easily tuned by changing the chemical potential. Material
parameters, such as the elastic properties of the solid or the width of the solid-
liquid interface are easily adjusted with model parameters, which represent the
strength of correlations in the homogeneous liquid.

The diffusive dynamics is driven by free energy minimization, which has the
benefit of not resolving fast degrees of freedom associated with non-dissipative
processes, such as phonon propagation, since these do not contribute essentially to
the growth process. Time dependent studies are vital, since the final state of the
solidified pattern is path dependent, in many of the technologically important cases
the system will stay in a metastable local equilibrium, for a significant amount of
time.

7.2.1 Accounting for substrates

Different ways of constructing a substrate exist in the framework of the PFC
model. Depending on the specific needs of the study, technically simpler or more
complicated solutions can be selected. For example, if differences in properties
such as lattice structure, driving force, miscibility, diffusion constant between the
substrate and the crystal are important, one might use a two-component or binary
(see Ref. [1]) extension of the PFC model, which to our knowledge has not been
cosidered for the modeling of epitaxy.

Our investigations concern the effect of misfit strain on epitaxial growth, thus
from our perspective the most important aspect of a substrate is, that it strains
the growing layers along a selected dimension. The aim is to introduce an inert
substrate, that acts similar to a boundary condition for the evolution of the order
parameter. The substrate can be characterized by its crystal symmetry, lattice
constant and interaction strength. The tuning of these parameters are easily ac-
complished using an external potential, which are frequently employed in DFT
studies, set out to model the changes in liquid properties under conditions of con-
finement, often in porous media or in the presence of surfactants.

A spatially inhomogeneous external potential V (x) has the effect on the system
of changing the intrinsic chemical potential µ = δF

δρ
, i.e.

µtot. = µint. + µext. = δF

δρ
+ V (x) = δ

δρ

[
F +
ˆ

dxV (x) ρ (x)
]
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it thus appears as a linear coupling term in the free energy expression. In this
chapter, the external potentials used with the PFC model are constructed from a
one-mode solution of the PFC functional, as described in App. A.3.

In dynamical simulations, an initial condition for the density field needs to be
specified. Had we started the simulations from a liquid state of constant density,
since the diffusion equation’s eigenmodes relax with ∝ Dk2, it would have takes
a long time for the density to relax on the largest scales k ≈ 0 and attain a
minimum energy configuration as determined by the external potential. Our aim,
is to prepare an inert substrate, which is in equilibrium with the stable liquid.
This slow relaxation process to a new equilibrium due to the substrate is not
interesting from the perspective of epitaxial growth, it results from the means
of the incorporation of the substrate. It is therefore advantageous, to obtain an
initial density distribution for the dynamical simulations using the Euler-Lagrange
equation, described in Sec. 4.1. During this initial relaxation, the system is open
to particle transfer. As boundary condition, the chemical potential is specified at
such a value, that leads to the required far-field density. The model parameter ϵ is
chosen to represent (together with the far-field density) a stable liquid equilibrium
point in the phase diagram, outside the coexistence region, but as close as possible
to the value used later in the dynamical simulation, when undercooling is required
to initiate growth.

In our simulations, the substrate produces uniaxially strained epilayers. Only
one-dimensional strains are considered, much like in the previously mentioned
theories. In three-dimensional simulations (two-dimensional substrate-epilayer in-
terface) the possibilities for inducing strain are numerous and the problem can get
quite complicated due to three-dimensional crystal structures, but it is not clear,
whether that increased complication would lead to a better understanding of the
basic principles of defect formation.

7.2.2 Prior PFC studies

Since the inception of the diffusive PFC (DPFC) model [1], there have been nu-
merous studies on liquid phase epitaxy. As a first application of the PFC model
in Ref. [1] and later in Ref. [89] a good agreement with the theoretical and exper-
imental work of Matthews and Blakeslee [112] was obtained regarding the misfit
dependence of the critical layer thickness. The necessary qualities to successfully
model such behavior, namely the morphological instability to interface buckling
and the nucleation of dislocations, was demonstrated to be present in the frame-
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work of the PFC model. Additionally, compositional instability during heteroepi-
taxial growth, i.e. the effect of phase separation of multiple species during film
growth was addressed in Ref. [20], using the binary extension of the PFC model.

An inconsistency in definitions has to be pointed out. As described in Sec. 7.1,
the definition of the misfit strain is L−L0

L0
, L being the stretched or contracted

length, and L0 denotes the stress-free length. In the above cited works, an al-
ternative definition is employed, see Ref. [1], the misfit parameter is defined as
σfilm−σbulk

σbulk
in which σfilm stands for the unstrained (ideal) lattice constant of the

epilayer and σbulk for that of the substrate’s. Unwisely, in our publications [116,
117] the same convention was used. This oversight is corrected in this dissertation
and the definition f = σsubstrate−σfilm

σfilm
is used consistently.

7.2.3 Continuous cooling study

We have completed continuous cooling simulations, along the path denoted by
thick red bars in Fig. 7.7, in which the model parameter ϵ was increased in time,
from a lower value in the liquid part of the phase diagram, up to a higher value,
coinciding with the liquid stability limit. A square lattice substrate was employed,
whose lattice constant was varied according to the desired misfit. The change in
ϵ serves as a means to a constant, low rate of solidification. The density increase
upon freezing would cause the depletion of the liquid part of the domain and
ultimately decrease undercooling and solidification velocity, due to the local and
global conservation of density. The noise parameter was set to Anoise = 10−4 for all
the simulations, except the ones concerning Fig. 7.10, where the noise dependence
of the critical thickness was investigated explicitly.

7.2.3.1 Small interface anisotropy

The model parameter ϵ was increased from ϵ = 0.1 up to ϵ = 0.1875, this amounts
to low, metal-like anisotropy values. The cooling path during the simulation is rep-
resented by the thick red bar on the right in Fig. 7.7. Depending on the magnitude
of misfit, we have observed all three growth modes of heteroepitaxy (as described
in Sec. 7.1). The change in surface morphology is presented in Fig. 7.8, where
together with the atomic number density, the Voronoi cells, calculated from the
positions of the atomic density peaks are also shown. As described in App. C.2,
Voronoi analysis is a useful tool in two dimensions to visually differentiate regions
of intact ordering from defected ones. In the minimum energy state of the PFC
model, atoms occupy the vertices of a triangular lattice, while the geometrical dual



7.2. Two-dimensional PFC modeling of epitaxy 89

Figure 7.7: Phase diagram (from Ref. [116]) of the two dimensional PFC model in
the reduced temperature ϵ vs. reduced density ψ plane. The thin solid lines denote
the borders of the domains of stability: liquidus, red, 1st from left, solidus, blue,
2nd from left. The dashed line is the linear stability limit of the liquid

(
ϵ = 3ψ2),

beyond which it is unstable to fluctuations and unconditionally transforms to a
solid. ”L + T” stands for the coexistence region of the liquid and triangular phases,
”Triang.” denotes the triangular crystal structure, ”Stripe” stands for a striped or
lamellar phase, irrelevant from the point of view of this study, but can be reached
at large supersaturations, whereas ”T + S” denotes the coexistence domain of the
triangular and striped phases. The thick red bars indicate the cooling paths as
described in the text, the left for large and the right for small anisotropy.
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Figure 7.8: Change in surface morphology solely due to lattice mismatch, low
anisotropy. The substrate is a square lattice, of varying lattice constant. Model
parameters are ψ = −0.25, ϵ = 0.1 → 0.1875 (continuous cooling), top row: f = 0,
middle row: f = 0.07, bottom row f = 0.6. In the left column the atomic density
field ψ (r) is plottted, while in the right one, the Voronoi cells are shown. Polygons
are colored according to the number of their sides, with 6 sides, the natural ordering
in two dimensions of the PFC model are colored yellow, while polygons with 4, 5
and 7 sides are colored gray, blue and red.
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of this point set is a hexagonal lattice, in which each and every hexagon belongs to
a single atom and represents the space closer to that atom, than to any other. A
dislocation, which in two dimensions is the presence of an additional row of atoms
in a finite region of otherwise topologically perfect lattice, shows up as a pair of
5 and 7 sided (blue-red) Voronoi cells. Because of issues of numerical precision,
these do not show up as 5-7 pairs in every instant, but perturbations in the atomic
positions lead, on average, to the same statement.

All three theoretical results for the critical thickness, Eqns. 7.1,7.2,7.3 predict
a diverging thickness for f = 0 zero misfit, this coincides with the top row of
Fig. 7.8, where layer-by-layer growth is observed with a flat, but diffuse interface.
For small values of misfit, the vertical size of the simulation window limits the
largest observable critical thickness.

For large enough misfits (f = 0.07 in the second row of Fig. 7.8), an initially
flat interface grows, that develops undulations due to the Asaro-Tiller-Grinfeld
instability, as described in Sec. 7.1.1.1. The ATG interface modulation mitigates
stress, for the price of change in lattice constant in the interface. Crystal growth,
however, cannot proceed indefinitely with a lattice constant, that is different from
that in the bulk crystal. This is the reason, why the initially sinusoidal interface
modulation breaks down, as cusps form which shortly engulf dislocation cores,
that are not possible to remove due to their topological nature. On a long enough
timescale, the dislocations so nucleated proceed towards the substrate, since stress
in the coherent layers can be eliminated by the placement of the dislocations closer
to the substrate, dislocations screen the elastic field present in the coherent layers.
For even larger values of misfit (f = 0.6 in the third row of Fig. 7.8), layer-by-layer
growth is inhibited from the very beginning, only island formation is realized.

7.2.3.2 Large interface anisotropy

Next, we present the results of continuous cooling simulations of high anisotropy,
covalent-like materials, ϵ changes linearly, from ϵ = 0.4 to ϵ = 0.75, see the thick
red bar on the left in Fig. 7.7. It is again possible to influence the heteroepitaxial
growth mode by tuning the misfit parameter. A diverging critical thickness is
recovered for low misfit values, top row in Fig. 7.9, while beyond a larger value
of misfit than in the small ϵ case, island formation inhibits the determination of
the critical thickness. The amplitude of the ATG modulation at the time of defect
formation is significantly smaller, than in the small anisotropy case.
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Figure 7.9: Change in surface morphology solely due to lattice mismatch, high
anisotropy. The substrate is a square lattice, of varying lattice constant. Model
parameters ψ = −0.5, ϵ = 0.4 → 0.75, top row: f = 0, middle row f = 0.19,
bottom row f = −0.14. In the left column the atomic density field is plottted,
while in the right one, the Voronoi cells are shown. Polygons are colored according
to the number of their sides, with 6 sides, the natural ordering in two dimensions
of the PFC model are colored yellow, while polygons with 4, 5 and 7 sides are
colored gray, blue and red.
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Figure 7.10: Critical thickness plotted against the logarithm of noise strength, ex-
plained in Sec. 4.3. Critical thickness drops suddenly to a monolayer approximately
above the noise amplitude of 10−3.

7.2.3.3 Effect of noise strength on critical thickness

Apparently, the addition of noise to the EOM influences the onset of the ATG
instability, though the qualitative behavior remains the same in a broad range of
Anoise noise amplitude. The critical thickness has been determined for the case
of large anisotropy (ψ = −0.5, ϵ = 0.4 → 0.75), during continuous cooling. The
noise amplitude (described in Sec. 4.3) was varied in the range Anoise ∈ [10−7, 1],
the results are summarized in Fig. 7.10. Remarkably, over several decades, the
critical thickness decreases linearly wrt. log10 Anoise, whereas above Anoise = 10−3,
it drops suddenly to a monolayer. It is worth noting that in the latter regime,
defects appear directly at the substrate-crystal interface, from the very beginning.

7.2.4 Isothermal study

In addition to the continuous cooling studies, we have ivestigated the critical layer
thickness in isothermal simulations, which means that the reduced temperature
was set to a fixed value of ϵ = 0.18. Three values of the noise parameter were
also used, Anoise = (0, 10−4, 10−2). A typical situation is depicted in Fig. 7.11
where a crystal of 6 fold symmetry grows from right to left, on top of a square
substrate on the right hand side. The Voronoi analysis clearly shows a modulation
of 7λ = 92σfilm, i.e. λ = 13.143σfilm is the wavelength of the modulation expressed
in unstressed lattice constants. This differs from the number of periods, necessary
for total stress elimination, which would be 8λ = 92σfilm, i.e. λ = 11.5σfilm. In these
isothermal simulations, the divergence of the critical thickness, when approaching
zero misfit, is observed yet again.
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Figure 7.11: Consecutive snapshots of isothermal heteroepitaxial growth of a tri-
angular crystal in a PFC simulation at parameter values ϵ = 0.18, ψ = −0.25 and
Anoise = 0, growing on a square lattice substrate. Substrate is on the right hand
side, periodic boundary conditions apply in the vertical direction. The simulation
cell size in the y-direction is Ly = 100σst = 92σfilm, i.e. the lattice constant of the
substrate is smaller than that of the unstressed film’s, initially the film is under
compressive stress. Calculated misfit is f = −0.08 = −8%, there are 8 additional
atoms present in the substrate and in the coherent layers. It is remarkable, that
only 7 defects form, instead of the 8 expected from the number of extra atoms.

7.2.5 Critical thickness vs. misfit

Simulation results from Secs. 7.2.3,7.2.4 are collated in Fig. 7.12. Looking at the
figure, it is obvious that noise has a significant overall effect on the scale of the
variation in hc, also confirmed in Fig. 7.10. The amplitude of the Langevin noise
has the effect of shifting the equilibrium phase diagram, but from experience, in
the range of Anoise ∈ [0, 10−2] explored in Fig. 7.12, this effect should be negligible.

In the works mentioned in Sec. 7.2.2, in Refs. [1, 89] and in our own work in
Ref. [116], the results for hc were interpreted in light of the Matthews-Blakeslee
theory for epitaxial defect formation (Par. 7.1.1.2). Based on the MB formula (see
Eq. 7.2) hc/b ≈ 1

4π(1+ν)f

[
log

(
hc

b

)
+ 1

]
, when the expression

[
log

(
hc

b

)
+ 1

]
b
hc

is
plotted against the misfit f , a linear relationship is expected. The results of this
transformation are displayed in Fig. 7.13b.

The MB transformation in some cases clearly does not result in a linear rela-
tionship, the smaller the noise amplitude, the worse the correlation becomes. More
importantly, the MB expression predicts a diverging critical thickness when zero
misfit is approached, however these plots in almost all cases violate the require-
ment, that straight lines should go through the origin.

Confronted with such discrepancies, in Ref. [117] we have applied the People-
Bean theory of defect formation, the expression (see Eq. 7.3) f vs.

√
b
hc

log hc

b
is

used for the transformation, pictured in Fig. 7.13c. Overall, the plots are closer to
straight lines, however most of them still miss the origin, thus we cannot escape
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Figure 7.12: Critical layer thickness hc (measured in the number of layers) vs.
misfit f . Compressive strain (f < 0) is shown in red, while tensile strain (f > 0) is
colored blue. Symbols have the following meaning: asterisks denote the continuous
cooling studies with Anoise = 10−4, the line on the right at high positive misfits is
the high anisotropy case, while the other two, at lesser misfits, belong to the low
anisotropy case of Sec. 7.2.3. Isothermal studies are plotted according to the value
of the noise parameter Anoise, triangles for Anoise = 0, circles for Anoise = 10−4 and
squares for Anoise = 10−2.
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Figure 7.13: Transformation of the critical thickness values, according to the (a)
van der Merwe, (b) Matthews-Blakeslee and (c) People-Bean expressions. Linear
relationships were expected, that go through the origin. In (c), data points from
the continuous cooling study (asterisks) are not connected, because they no longer
”guide the eye”.
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the conclusion, that the diverging layer thickness is not associated with the zero
value of misfit. The results from the isothermal simulations in the zero noise limit
for tensile stresses achieve the best fit.

For completeness, in Fig. 7.13a the van der Merwe expression (see Eq. 7.1)
f vs. b

hc
is applied as the transformation, unfortunately the graphs are far from

straight lines.

7.2.6 Critical assessment of misfit dislocation formation in
the PFC model

The theoretical results of Sec. 7.1.1.2 all have in common, that they are based on
a static, energetic argument. The Matthews-Blakeslee force balance reasoning can
be expressed too, as an energetic extreme value problem, see Ref. [112]. Interface
kinetics, i.e. the growth velocity and the development of the ATG instability, do
not influence the results of Eqns. 7.1,7.2,7.3. Surprisingly, material properties, such
as the shear modulus drop out of the expressions, only the length of the Burger’s
vector and Poisson’s ratio remain. What is more, even the effect of thermodynamic
stability is missing, through which temperature could have played a role. It is hard
to incorporate the kinetic picture of defect formation into this fully equilibrium,
path-independent picture.

In Sects. 7.2.3,7.2.4 we have presented simulations, in which for a set misfit
and undercooling, liquid phase epitaxial growth initiates on top of a substrate. It
is not immediately obvious, how would these energy balance considerations from
Sec. 7.1.1.2 help in explaining the kinetics of defect formation we see during growth
in the PFC model. Compared to experiments, in a simulation we have significantly
more freedom to isolate distinct phenomena and look for an explanation. If defect
formation in the PFC model depended chiefly on layer thickness, and not the
kinetics, then starting the simulation with different number of epitaxial layers, as
long as the initial layer thickness was below the critical thickness, we should be
observing defect formation at around the same thickness. Going further with this
train of thought, we can actually prepare close to equilibrium initial conditions,
with zero growth velocity of the strained, coherent crystal. The free energy of the
strained crystal relative to the unstrained one ∆Ω = ΩC (f) − ΩC (f = 0) ∝ f 2

is proportional to the strain squared. The undercooled liquid occupies a higher
free energy than the crystal ΩL > ΩC , the difference is termed the driving force
of crystallization. For a fixed misfit and reduced temperature ϵ, we can find the
appropriate reduced density ψ so that the strained crystal is in thermodynamic
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Figure 7.14: Snapshots from EL simulations. Simulation time increases from top
to bottom, same system per column. Initial strained layer thickness increases from
left to right. The coarse-grained amplitude field (described in App. C.4 is color
coded, blue indicates the liquid domain where the amplitude is zero, while in the
crystal it reaches a finite, large value. The interface between liquid and crystal
shows up as a white stripe in this color scheme. Black dots indicate the position of
atoms, the size of the dots correlate with the value of the maxima in the density
field. Model parameters are ϵ = 0.12, ψ = −0.2157, the strained crystal is in
equilibrium with the liquid. Compressive strain on the system was induced by an
additional 17 atoms over the 200 in the ideal lattice, this amounts to a misfit of
f = −7.8%.



7.2. Two-dimensional PFC modeling of epitaxy 99

equilibrium with the liquid. This point in the phase diagram would correspond
to an undercooled state (finite growth velocity) as far as an unstrained crystal is
concerned.

If the static energetic scenario is responsible for defect formation in PFC simu-
lations, it should be adequate to study the pseudo time dependent Euler-Lagrange
(EL) equation from Sec. 4.1, which describes the time evolution of a hypothetical,
open system, in which the chemical potential is kept fixed. We have simulated
the change of interface morphology in time. Simulations started from a different
number of coherent epitaxial layers, were compared in terms of the time necessary
for defect formation. The findings are displayed in Fig. 7.14, in each column the
same system is shown at increasing simulation times, from the top to bottom. In
the rows, different systems are compared at the same simulation time, initial layer
thickness increases from the left to the right.

The effect of strain is clearly visible in the color coded amplitude field (described
in App. C.4), blue indicates liquid regions where the amplitude is zero, while the
crystal reaches high values of the amplitude. Black dots show the atomic positions,
the larger the dot the greater the maximum is in the order parameter at that atom.
The unstrained crystal after defect formation clearly reaches higher values in both
the amplitude and the atomic maxima.

The main takeaway from this series is, however, that we see no correlation
between initial layer thickness and the time and quality of defect formation, which
validates the argument that morphological changes in the solid-liquid interface are
not connected directly to the ”build-up” of stress energy in the epitaxial layers, as
expounded in Sec. 7.1.1.2. It is also clear, that the front velocity has no direct effect
on interface morphology, the ATG instability and later, interface buckling happens
even at zero growth velocity, although past defect formation a finite growth velocity
is observed as expected, since the unstrained crystal experiences a driving force
wrt. the unchanged liquid.

To appreciate more the kinetics of defect formation, in Fig. 7.15 a series of
snapshots are presented, which display the evolution of a single misfit dislocation,
initially in (metastable) thermodynamic equilibrium. After some waiting time,
which depends on the amplitude of noise, the ATG interface modulation of a
certain wavelength becomes visible. The peaks of the modulation experience a
driving force for crystallization, which induces morphological changes beyond the
applicability of the ATG linear stability analysis. The interface then buckles and
peaks fuse together, covering over a misfit dislocation. Growth then proceeds with
the ideal number of atoms per row.
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Figure 7.15: Close-up view of single defect formation (dislocation) in an equilibrium
EL simulation. Model parameters are ϵ = 0.12, ψ = −0.2157. Compressive strain
of f = −7.8% is applied. A small portion of the simulated domain is displayed.
Time progresses from left to right and top to bottom. Some noise is present in
the system, the ATG instability is responsible for the selection and amplification
of a certain wavelength of interface modulation. Atomic neighborhoods near the
peaks in the modulation of interface position experience a smaller (absolute value)
of strain, while neighborhoods near the troughs are strained more, the resulting
inhomogeneity in the driving force of crystallization means, that peaks are able
to grow, accentuating the initial morphological instability. Eventually the peaks
fuse and grow over a defected region of the lattice and the dislocation begins to
migrate towards the substrate.
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Figure 7.16: ATG growth factor ω vs. the wavelength of the modulation. In figure
(a) the case for a closed system while in figure (b) the case for an open system is
shown. The difference between the two comes from an extra factor of k2 coming
from the diffusive mass transport in the case of the conserved dynamics.

Whether the coherent epitaxial layers experience a driving force or not, the
dynamical process of the formation of defects starts with the ATG instability.
A theory of the critical layer thickness must contain some elements of this phe-
nomenon. We are thus motivated to take a look at the ATG result, once again. In
the article by Müller and Saúl [109], linear elasticity coupled to a surface curvature
dependent chemical potential in a sharp interface model is reviewed, the prediction
for the time evolution of the amplitude h (t) of a surface modulation of wavelength
λ is

h (t) = h0 exp [ωt] , ω = γDsnsΩ2

kBT

(2π
λ

)4 (λσ2

πγ

1 − ν2

E
− 1

)
.

Both thermodynamic and elastic parameters, γ the surface tension, kBT the tem-
perature, E Young’s modulus appear in ω, the growth factor. In the above result
the growth prefactor

(
2π
λ

)4
depends on the constraint of mass conservation at the

modulated interface (surface diffusion results in a factor of
(

2π
λ

)2
). In an alternative

derivation of the growth factor in Ref. [109], when only the free energy difference
of the perturbed and unperturbed interface is considered, this energy difference
becomes

∆F = −γh2

4

(2π
λ

)2 (λσ2

πγ

1 − ν2

E
− 1

)
.

In our simulations modeling an open system (not limited by surface diffusion),
driven by the Euler-Lagrange equation, the time derivative of the amplitude of the
modulation is proportional to the negative of the chemical potential, which is the
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derivative of the free energy wrt. the changing quantity

∂th ∝ −∂∆F
∂h

= γ

2

(2π
λ

)2 (λσ2

πγ

1 − ν2

E
− 1

)
h = ωh .

The important message is, that a perturbation will grow as long as the wavelength
of the modulation λ > E

1−ν2
σ2

πγ
is above a critical one. The growth factor is plotted

in Fig. 7.16a for a closed system, the factor λ−4 severely limits the growth rate for
large values of the wavelength. The same plot for an open system is displayed in
Fig. 7.16b.

In the PFC simulations our experience is, that during strained growth, almost
as many dislocations form as necessary for total elimination of stress. In Ref. [111]
van der Merwe has calculated the interface energy due to the presence of disloca-
tions in the substrate-epilayer interface. He has used the hypothesis, that a given
misfit f leads to a linear density of dislocations, that perfectly eliminate the elastic
stress in the upper layers. We use the same hypothesis, which in our simulations
has some empirical justification. Thus, a direct connection between misfit and the
modulation wavelength can be established at this point, since the defintion of
misfit f = σst−σf

σf
can be inverted, using the relation λ = nσf = (n± 1)σst (+ for

compressive, − for tensile stresses) as n = (f + 1) / |f |. This expression determines
the wavelength of the modulation in units of the layer’s ideal lattice constant. It
is plotted in Fig. 7.17 according to the absolute value of the strain |f |, so that we
can see the asymmetry between compressive (red) and tensile (blue) strains. This
asymmetry is often seen in experiments, however, the theories in Sec. 7.1.1.2 are
completely symmetric in the sign of the strain.

The growth factor for an open system with this choice of λ and with the stress
expressed as σ = E

1−νf can be rewritten in the following form

ω ∝
(

|f |
f + 1

)2 (
σfE

πγ

(1 − ν2)
(1 − ν)2 (f + 1) |f | − 1

)
. (7.4)

The constant σfE

πγ

(1−ν2)
(1−ν)2 = χ in Eq. 7.4 can be calculated from model parameters.

From Ref. [89] we know, that ν = 1/3, Young’s modulus is E = A2
t/6 where the

amplitude of the triangular single-mode solution is At = 4
5

(
−ψ + 1

3

√
15ϵ− 36ψ2

)
,

the interface free energy from Ref. [27] at ϵ = 0.12 and ψ = −0.2157 is γ = 0.0011,
so after substitution χ ≈ 50 results. In Fig. 7.18 we have plotted the results of
several Euler-Lagrange simulations, like the one in Fig. 7.15. The strained epitaxial
layers were prepared in thermodynamic equilibrium with the liquid, this meant
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Figure 7.17: The criterion of total elimination of stress, connecting the strain with
the wavelength of modulation λ = nσf = σf (f + 1) / |f | results in an asymmetry
for compressive (red) and tensile (blue) strains, missing from the basic theories of
defect formation, that are symmetric under change of sign.
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Figure 7.18: Waiting time T (in arbitrary units) for the creation of misfit dislo-
cations during equilibrium (zero growth velocity), in strained triangular epilayers
vs. initial strain. The Euler-Lagrange pseudo time dependent equation was solved
at a reduced temperature of ϵ = 0.12, average density was set according to the
condition of zero growth. The free parameter K was fit in the expression T = K

ω
,

with ω from Eq. 7.4 and χ = 50. The red line represents a fit for compressive
strains and the blue line is a fit for tensile strains. Green vertical lines mark the
positions of critical misfits, present in Eq. 7.4.
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that the average density needed to be changed according to the misfit parameter.
The morphological instability of the interface resulted in surface undulations, close
to the previously calculated wavelength corresponding to total stress elimination.
The smaller the strain was on the system, the longer it took for defects to form.
The time T it took the interface to overgrow a misfit dislocation is plotted on the
T -axis in the figure. The exponential time evolution equation for the amplitude of
the modulation (strictly applicable only for small amplitudes) h (t) = h0 exp [ωt]
can be used to obtain an approximate time for defect formation, when we assume
that a defect is formed when a certain value of the amplitude is reached. We obtain
T =

log h(T )
h0
ω

for the defect creation time. This expression is fitted to the data in
Fig. 7.18 using the expression for the growth rate from Eq. 7.4 and the value of
χ = 50, thus only the scale of the T -axis was changed during the fitting procedure.
Because we decidedly wanted the fit to err on the side of low misfits (where the
input has larger variance), the fit was done after a logarithmic transformation of
the data.

The growth rate expression, Eq. 7.4 contains two relevant divergences, one
at positive and one at negative misfits fcrit = 1

2

(√
χ±4
χ

− 1
)

which for χ = 50
is around |fcrit| ≈ 0.02, shown as vertical lines colored green in Fig. 7.18. The
calculated model parameter χ clearly overestimates the size of this critical misfit,
otherwise Fig. 7.18 shows a good agreement with theory, considering that it is only
a one parameter fit.

7.2.7 Interpretation of results

The investigations published in Refs. [116, 117], expounded in Secs. 7.2.3,7.2.4,
along with publications made by other authors, namely Refs. [1, 89] share several
traits. One of them is that defect formation was studied during a non-equilibrium
simulation while epitaxial growth took place. They acknowledge the presence and
importance of the ATG interface instability, which is the reason why small per-
turbations in interface position grow to significant sizes and eventually lead to
the incorporation of defects. However, the theoretical results in light of which the
simulations were interpreted, contained no mention of the ATG phenomenon. This
seems like an omission, and necessitated further deliberation on the subject.

The explanation for the EL results in the previous section illustrated that
when the interface free energy anisotropy (i.e. the reduced temperature ϵ) is small
and thus the solid-liquid interface is wide, the ATG instability with its growth
factor clearly determines the time it takes for defects to form. There is no direct
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dependence of the critical thickness on the misfit in this case, since defects form
even at an equilibrium, stationary solid-liquid interface. The growth velocity clearly
has a large impact on the critical thickness, since that is the determining factor
in the number of epilayers the crystal can accumulate in the amount of time, that
the instability takes to fully engulf a misfit dislocation. In an isothermal, closed
system such an epitaxial front proceeds with ∝

√
t (Ref. [117]), while in the case of

continuous cooling (Ref. [116]), the effect of the growth inhibiting density depletion
zone can be somewhat mitigated and growth rate can approach ∝ t, not unlike in
situtations when the crystal-liquid density difference is accounted for in the fashion
of a moving boundary condition (Ref. [89]). Thus the quality of front dynamics
and the kind of EOM the PFC functional is coupled with makes a difference in
the comparability of results of critical thickness.

Another complicating factor is, that for larger values of the interface free energy
anisotropy, which means large reduced temperature ϵ and a thin, faceted interface,
the front growth mechanism changes drastically. New layers do not form by the
uniform adsorption of atoms over the whole solid-liquid interface at once, rather
the new layers form by surface nucleation at random sites, followed by the in-plane
completion of layers.

EL simulations show, that at large anisotropy (ϵ = 0.45) the equilibrium, sta-
tionary interface remains stable against the ATG instability, while at increased
undercoolings, during front growth the instability develops. The explanation for
this could be, that the growth of each layer needs to proceed via surface nucleation
which itself resembles an undulation in the surface position and further nucleation
sites will more easily develop at the peaks of the modulation where the driving
force for growth and nucleation is larger. This mechanism can overcome the sta-
bilizing force of the larger surface free energy and its anisotropy, a.k.a. surface
stiffness.

The plausibility of the ATG scenario of defect formation is further supported,
when we consider the dependence of the critical thickness on the noise amplitude,
that was applied in the simulations. According to the initially exponential growth
model of the ATG interface modulation Ac (T ) = A0 exp [ωT ], the amplitude of
the modulation reaches a large value of Ac (T ) at time T , when defects are fully
formed. These modulations, however, start from a small value, which is related to
the perturbations present in the simulation A0 ≈ Anoise, i.e. the noise amplitude. In
Fig. 7.10 the critical layer thickness hc is plotted against log10 (Anoise) obtained in
continuous cooling simulations. The interface position vs. time relationship is close
to linear in this case, hc ∝ T . Thus we can establish an approximate relationship
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Figure 7.19: Critical thickness vs. noise amplitude, as predicted by the ATG
scenario of defect formation. Red line is the fit of the expression hc = K1 −
K2 log10 Anoise.

between critical thickness hc and the noise amplitude Anoise in these simulations
as

hc ∝ log10 Ac (T ) − log10 Anoise .

We have illustrated the logarithmic dependence of hc on the noise ampliude in
Fig. 7.19, using the dataset from Fig. 7.10, extended with a fit of the above formula.
For small values of the noise amplitude, the data follows the prediction, however,
there is clearly a mechanism, that breaks down this prediction for large values
of the noise, as it leads to defects appearing immediately on the surface of the
substrate.

In the adaptation of the ATG growth factor to the EL simulations, we recog-
nized a non-zero critical misfit. Simulation data are compatible with the assertion,
that (at least for stationary or slow fronts) there exists a critical strain |fc|, both
tensile and compressive, below which the interface instability does not develop.
This result is in stark contrast with the theories from Sec. 7.1.1.2, which all place
the divergence of the critical thickness at zero misfit. The conclusion we are able to
draw from all this, is that those theories of defect formation all relate to situations
in which the ATG instability plays no role in the creation of defects, for exam-
ple when dislocations are already present in the substrate. Otherwise, the kinetic
pathway to defect formation must be considered for a complete analysis.
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7.3 Contributions
I have performed systematic investigations in two dimensional PFC simulations
of the heteroepitaxial critical thickness hc, on top of a square lattice substrate, in
the section perpendicular to the substrate-epilayer interface. I have showed, that
hc increases with decreasing strain. This is in qualitative agreement with exper-
iments and static, energy-balance based approaches, such as the van der Merwe
(VDM), the Matthews-Blakeslee (MB) and People-Bean (PB) models. However,
I have found large discrepancies when the simulation data from the hc vs. strain
relationship is analyzed in terms of the theoretical results from the VDM, MB and
PB models.

For the resolution of this issue, I have investigated the mechanism behind defect
formation from the kinetic perspective, based on the Asaro-Tiller-Grinfeld (ATG)
instability. I have simulated open systems in equilibrium in PFC simulations and
showed, that the formation of misfit dislocations is governed by the growth factor
of the ATG instability and not by the number of epitaxial layers, indicating, that
the dynamics of defect formation and solidification velocity does play a decisive
role in the determination of hc. I have showed, that basing the estimation of hc
on the ATG growth factor, leads to the divergence of hc for non-zero values of
strain, this important fact being the reason, that expressions of the static models
when applied to the simulation data miss the origin. Positive and negative values of
strain lead to distinct values of hc, this can be observed experimentally as well as in
my simulations. Static theories, however, are symmetric in the sign of strain. Thus,
I have recovered the asymmetry, due to the assumption of total stress elimination,
since this leads to distinct values of the periodicity of the appearance of defects
for positive and negative strains.

The ATG growth scenario can also be used to recover the logarithmic noise
strength dependence of hc, which I have observed in my numerical simulations. I
have thus concluded, that hc is more than likely determined by the ATG mecha-
nism, thus defect formation kinetics cannot be neglected.
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Theory

A.1 The equilibrium framework of thermody-
namics

The study of aggregate matter is the purview of thermodynamics. During the 19th
century, this branch of physics experienced a great deal of development, in parallel
with the foundation of the modern form of classical mechanics. Newton’s formally
simple equation of motion provided the basis for the mathematical description of
celestial motions. Used in a more mundane and practical context, it also provided
the solution for the trajectories of projectiles.

It soon became evident, that knowing the exact equation of motion of classical
bodies, led only to complications further down the road. While there exists a
general analytical solution for the case of two gravitating bodies, it is not the case
even for three bodies. The study of the infamous three-body problem led to the
understanding, that even simple mechanical systems behave chaotically, i.e. they
show an extreme sensitivity with respect to initial conditions. This has to do with
the fact, that the dynamical system that represents matter as a collection of atoms,
does not possess attractors, i.e. the microscopic nature of equilibrium is such, that
atoms remain in motion, energy is passed between kinetic and potential degrees
of freedom indefinitely.

Classical mechanics describes the energy transfer between mechanical degrees
of freedom, i.e. the rate of change of the momentum of every particle, equals
the gradient of a potential energy function. Irrespective of the complexity of the
system under study, total energy is conserved, when the system is isolated from its
environment. In general, the change of internal energy of a system equals the work
exerted on it, by its environment. When the microscopic details of the system are
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not of concern, it seems prudent to study its energy balance.
However, the mechanical energy balance equation for aggregate matter was still

not complete. An everyday observation is, that bodies can also exchange energy
simply by coming into contact with each other, without any kind of mechanical
work taking place. Another effect, that showed the limits of mechanical concepts
is related to temperature: gases become warmer, when work is exerted on them
in a short amount of time. These phenomena could not be understood on the sole
basis of mechanical concepts.

Thermodynamics was born out of the study of this other kind of energy
transfer, called heat. The complete energy balance equation takes on the form
dU = d̄W +d̄Q, where an important distinction is made between the exact dif-
ferential of internal energy and the other inexact differentials. Internal energy is a
property of the system, something it possesses. On the other hand, work and heat
represent path dependent changes of internal energy, something that is experienced
by the system.

Thermodynamics builds on the concept of state variables, which are well defined
in equilibrium. In general, transitions between different states of the system can
happen in various ways. An important concept is the quasi-static process, which
proceeds arbitrarily slowly and the system goes through equilibrium state points,
thus it can be represented as a continuous trajectory in the space of state variables.
For general processes, such a trajectory does not exist, this fact is represented by
the use of the inexact differentials in the internal energy equation.

The quasi-static mechanical work exerted on the system by its environment
can be expressed in terms of state variables as dW = −pdV . The question arose,
whether there is an analogous expression for the case of the heat transfer, in terms
of state variables. Through the study of cyclical thermodynamic transformations, it
was found, that the ratio of the exchanged heat to the temperature Q/T remained
unchanged. This result means, that this quantity behaves like a state function.
With this discovery, the formalism of thermodynamics was finally complete.

This new state function was coined entropy. It does not have a direct mechanical
analogy. The reversible heat transfer could thus be written as dQ = TdS. The
crucial difference between energy and entropy is, that the former is conserved when
the system and its environment as a whole is considered, irrespective of processes.
Total entropy, on the other hand, is only conserved in reversible processes, by
definition. In irreversible processes entropy is created, and the ”universe” cannot
go back to its previous state. Thus, in a general process, one can only make the
statement, that the heat transferred serves as a lower bound for the change in
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entropy dQ ≤ TdS.
Thermodynamics is broadly the study of bulk, aggregate matter, the study of

transitions between phases of substances and the study of chemical reactions. The
framework is general, in the sense, that it has to be augmented with experimental
measurements or microscopic calculations to account for the details of specific
systems, in the form of response functions. Even the very existence of atoms were
debated, when thermodynamic concepts emerged.

Entropy is a quantity that cannot be directly measured, but has to be accounted
for. Sometimes a fuzzy concept of the degree of disorder is associated with it. It
became clear, that some microscopic details of the system had to be considered
for progress to be made, in relation to entropy. The turn came with the real-
ization, that a thermodynamic macrostate is compatible with many microstates
of the system, states that differed in the exact microscopic properties of the con-
stituent particles. Boltzmann realized, that the more microstates were available for
a given macrostate, the larger its entropy was. From the necessity of extensivity
of the entropy, followed its definition in statistical mechanics as S = kB lnW . The
new study of aggregate systems in a combinatorial way is aptly named statistical
physics. Thermodynamics took the role of an asymptotic limiting case for this new
field.

A.1.1 The fundamental equation

The particular properties of a system are carried by the functional dependence
of the internal energy U (S, V,N) on its natural variables. In the thermodynamic
limit the boundary effects are not taken into account, the internal energy and
its natural variables are all extensive quantities, i.e. they scale with system size.
Partial derivatives give the connection to intensive variables

dU = ∂U

∂S

∣∣∣∣∣
V,N

dS + ∂U

∂V

∣∣∣∣∣
S,N

dV + ∂U

∂N

∣∣∣∣∣
S,V

dN

where ∂U
∂S

∣∣∣
V,N

= T is the temperature, − ∂U
∂V

∣∣∣
S,N

= p is the pressure and ∂U
∂N

∣∣∣
S,V

= µ

is the chemical potential. The first term on the RHS describes the change in internal
energy due to heat transfer, which really is just energy transfer, without change in
volume or the number of particles. The second term describes change in internal
energy due to volumetric work, while the third term describes the change in internal
energy due to the change in the number of particles. Since the natural variables
of energy are all extensive quantities, this function describes a closed and isolated
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system, neither energy nor particles can be exchanged with the environment.

A.1.2 Entropy

There is a profound difference between entropy and other extensive thermody-
namic quantities. The internal energy U , the volume V and particle number N
are connected to conserved mechanical variables. This is not the case for entropy,
which has no mechanical analogue. From the celebrated hypothesis of statisti-
cal mechanics, it is clear that entropy is related to the way energy is distributed
among microscopic degrees of freedom, thus entropy is intrinsically statistical in
nature. When certain conditions apply, namely processes progress infinitely slowly
(in a quasi-static process) and differences in relevant intensive thermodynamic
variables between the equilibrating bodies are infinitesimal, total entropy remains
unchanged. However, most processes in nature are not like this, spontaneous pro-
cesses result in an overall increase in entropy, thus in general dS ≥ 0 applies. Of
course, the entropy of a body can be decreased, but only at the expense of an
equal or larger increase in the entropy of the surrounding environment.

A.1.3 Equilibrium between bodies

Thermodynamic equilibrium is based on the concept of the maximization of en-
tropy, which results in the homogenization of intensive thermodynamic variables.
When heat transfer is allowed between bodies, the difference in temperature deter-
mines the tendency for the hotter body to lose energy to the colder one. Similarly,
when volumetric work is allowed between bodies, the one with the higher pressure
will do work on the one with the lower pressure. Particles will be exchanged be-
tween bodies, when the chemical potential is different between them. Thus, the
thermodynamic equilibrium condition is, that the respective intensive variables be
equal, when transfer of the corresponding extensive variable is allowed between
them.

When two phases of the same material are in equilibrium with one another, it
means that all of their intensive variables p, T, µ are equal and homogeneous, since
they must be free to exchange energy in all ways possible, without restriction.

A.1.4 Thermodynamic potentials

Thermodynamic properties of a system in equilibrium are fully determined by the
internal energy function U , expressed in terms of its natural variables (S, V,N).
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The internal energy is an example of a thermodynamic potential, it describes a
closed system with no contact with its environment, since it is expressed in terms of
extensive variables. Extensivity is formulated mathematically as U (λS, λV, λN) =
λU (S, V,N), which means that the internal energy is a homogeneous function of
degree one and as such, differentiation wrt. λ lets us express the internal energy
as

U = ∂U

∂S

∣∣∣∣∣
V,N

S + ∂U

∂V

∣∣∣∣∣
S,N

V + ∂U

∂N

∣∣∣∣∣
S,V

N ,

where we can identify the partial derivatives from the fundamental equation, thus
we get the Euler equation

U = TS − pV + µN .

The internal energy is manifestly the sum of three enegy terms. If we imagined, that
the system was brought into existence in a constant T temperature environment,
then its entropy would correspond exactly to a change in internal energy of TS.
The internal energy less this heat obtained from the environment at a constant
temperature T , gives rise to a variation of the internal energy, which does not
include the heat energy freely supplied from the environment. This energy, F =
U − TS is called the Helmholtz free energy and it is the thermodynamic potential
of a system, that can exchange heat with its environment. The change in this
quantity

dF = dU − TdS − SdT = −SdT − pdV + µdN

implies, that it is F = F (T, V,N) a natural function of the more familiar temper-
ature, instead of entropy.

A similar argument leads to the identification of the term −pV with the change
in internal energy of the system due to change in volume in a constant p pressure
environment. Subtracting this from the internal energy gives the enthalpy H =
U + pV with natural variables H = H (S, p,N).

A very useful potential is the Gibbs free energy G = U − TS + pV , which
is the internal energy of a system, with the heat and volumetric work removed,
i.e. a system created at constant T, p, with natural variables G = G (T, p,N). An
interesting property of the Gibbs free energy is that G = µN , thus the Gibbs free
energy per particle is actually the chemical potential.

Another combination, which will come handy later on, is the grand potential
Ω = U − TS − µN , which subtracts the energy due to particle exchange with a
constant chemical potential environment from the Helmholtz free energy, so its
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natural variables are Ω = Ω (T, V, µ).

A.1.5 Thermodynamic degrees of freedom

The Euler equation, when differentiated

dU = TdS + SdT − pdV − V dp+ µdN +Ndµ

after substitution of the differential form of the fundamental equation, yields

0 = SdT − V dp+Ndµ ,

which is called the Gibbs-Duhem relation. It connects changes in the intensive
variables of the system. It is clear, that this equation represents a constraint on
the changes in intensive variables, any two variable will fix the state of a one
component system, for example µ = µ (T, p).

A.1.6 Irreversible processes

In general, we need to take into consideration, that the change in entropy dS ≥
δQ/T can bn your search, and export your marked results in BibTeX format.e
larger, than the transferred heat in the corresponding process, thus for irreversible
processes the fundamental equation changes to

dU + pdV − µdN ≤ TdS .

Considering a closed system (dN = 0) in an isothermal, isochoric (dV = 0) process,
the inequality can be expressed through the Helmholtz free energy as

d (U − TS) = dF ≤ 0

which states, that during an irreversible process under such conditions, the
Helmholtz free energy tends to a minimum. Again, considering a closed system in
an isothermal, isobaric (dp = 0) process, the inequality can be expressed through
the Gibbs free energy as

d (U − TS + pV ) = dG ≤ 0 .
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It is preferable, to study phase transitions in terms of the intensive control variables
of temperature and pressure, thus the minimization of the Gibbs free energy is often
considered.

A.1.7 Phase diagrams

At any given point in the space of extensive thermodynamic parameters, the equi-
librium state of a system is not necessarily homogeneous. It is perfectly possible,
that two adjoining phases of a given material coexist with one another. Equilibrium
means, that both phases have reached the same values of the intensive variables
T, p, µ, thus total entropy is maximized.

Phase diagrams are a way to visually organize in the space of thermodynamic
variables, the global stability of phases. It is advantageous to illustrate this in
the space of intensive variables, we take a p − T diagram, for example. As each
point represents a state in p, T space, states of phase coexistence appear as lines.
These lines separate regions, where different phases attain absolute stability. The
chemical potential µ which is the Gibbs free energy per particle, is minimized as a
two phase system is subjected to conditions of constant p, T , thus in homogeneous
regions of the phase diagram, the phase with the lower chemical potential will be
most stable, while at lines representing phase boundaries, the chemical potentials
of those adjoining phases are the same.

A.1.8 Equilibrium phase transformations

For the sake of concreteness, let us take the example of a liquid-gas coexistence.
When the two phases are in equilibrium, no phase transformation is taking place.
There is a difference in internal energy per particle between the two phases. If
we wish to increase the liquid fraction (i.e. condense the gas) we need to extract
energy from the system (latent heat of transformation), so that particles of the
gaseous phase will become liquid particles with less internal energy (more bound
state). This transformation process, by controlling the rate of heat transfer, can
proceed arbitrarily slowly, thus it is a quasi-static process, during which the in-
tensive variables will remain close to their equilibrium values. If energy is still
extracted, after all the gas has turned into liquid, the thermodynamic variables of
the system will change according to the liquid’s equation of state, thus the system
leaves the coexistence line.
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A.1.9 Special lines and points

If one considers a system of a single phase, then the phase boundary in the phase
diagram does not denote special states, there are no singularities or discontinuities
in the thermodynamic variables. The phase boundary merely means, that the
chemical potential of the other phase will be lower on the other side of the phase
boundary.

Phase boundaries in a p−T phase diagram can end in a critical point for phases
with only quantitative differences. This signifies, that phase separation is no longer
possible. The quantitative differences, between the phases on either side of the
coexistence line cease to exist, jump quantities tend to zero, when approaching
such a point.

A.2 Brief derivation of the RY theory

A.2.1 The RY order parameter

A classical system ofN particles occupying volume V described by the Hamiltonian
HN formally has the grand canonical potential

ZG = exp (−βΩ) = Tr exp [−β (HN − µN)]

where the trace goes over the particle number, all the momenta and coordinates of
the particles, β = 1/kBT and µ is the chemical potential. The density operator is
ρ̂ (x) = ∑N

i=1 δ (x − xi) with its Fourier transform as ρ̂q = ∑N
i=1 exp (iq · xi). The

equilibrium average ρ (x) = ⟨ρ̂ (x)⟩ of the density operator has finite lattice peri-
odic Fourier components in the crystalline phase with amplitudes ⟨ρ̂q=Ki

⟩ ≡ ⟨ρ̂i⟩
at the reciprocal lattice vectors (RLVs) Ki, while they vanish in the liquid state.
Thus it makes sense to express the grand potential in terms of order parameters
{λi} related to the Fourier amplitudes ⟨ρ̂i⟩. For the calculations the RLVs of the
crystal structure need to be specified apriori.

The order parameters {λi} are introduced with the help of the normalized
Gaussian integrals

ˆ
Πi

(
dλi
π

)
exp

(
− |λi − ϵiρ̂i|2

)
= 1 (A.1)

the parameters ϵi are real constants determined later, and the integration is over
the whole number line in the real and imaginary components of the λi. The above
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indentity operator is inserted into the expression for the grand potential

exp (−βΩ) = Tr
{ˆ

Πi

(
dλi
π

)
exp

(
− |λi − ϵiρ̂i|2

)
exp [−β (HN − µN)]

}

by interchanging the integration over the order parameters {λi} and phase space
the previous expression is rewritten as

exp (−βΩ) =
ˆ

Πi

(
dλi
π

)
exp (−βΩ ({λj}))

with the help of

exp (−βΩ ({λj})) = Tr
{

exp
(

−
∑
i

|λi − ϵiρ̂i|2 − β (HN − µN)
)}

which is exactly the desired expression for the conditional grand potential, as the
exact result holds

ϵk ⟨ρ̂k⟩ = exp (βΩ)
ˆ

Πi

(
dλi
π

)
λk exp (−βΩ ({λi})) = ⟨λk⟩ (A.2)

that shows the expectation value of the Fourier amplitudes of the density is related
to the expectation value of the order parameters.

Next, it is argued that for stable equilibrium systems the conditional free en-
ergy Ω ({λj}) must possess minima at the order parameter values {λj} =

{
λmj
}
,

but in the thermodynamic limit the lowest minimum becomes overwhelmingly
more important than other ones, thus a saddle point approximation is employed,
the fluctuations in the order parameter {λi} are ignored and equilibrium statisti-
cal averages are replaced with values evaluated at the lowest minimum

{
λlmj

}
of

Ω
({
λlmj

})
.

When the lowest minimum corresponds to
{
λlmj

}
≡ 0 according to Eq. A.2 the

Fourier amplitudes represent the liquid phase, otherwise the system is a crystalline
solid. As the undercooling increases the lowest minimum corresponding to the liq-
uid phase will switch to that of the crystal’s, the phase transition point is signalled
when the two minima have the same value of the thermodynamic potential.

To proceed further, the expression |λ− ϵρ̂|2 is approximated by introducing the
average value (fixed by the set of order parmeters {λj}) of the operator ρ̂ with the
indetity ρ̂ = ⟨ρ̂⟩ + (ρ̂− ⟨ρ̂⟩) and keeping terms up to first order in the deviation
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(ρ̂− ⟨ρ̂⟩) the square of the operator ρ̂2 is approximated as follows

ρ̂2 ≈ ⟨ρ̂⟩2 + 2 ⟨ρ̂⟩ (ρ̂− ⟨ρ̂⟩) = 2 ⟨ρ̂⟩ ρ̂− ⟨ρ̂⟩2 .

Ramakrishnan-Yussouff assumes ⟨ρ̂⟩ , λ ∈ R holds in a centrosymmetric potential,
so that

− (λ− ϵρ̂) (λ∗ − ϵρ̂∗) = −λλ∗+ϵρ̂λ∗+ϵρ̂∗λ−ϵ2ρ̂ρ̂∗ ≈ −λ2+ϵ2 ⟨ρ̂⟩2+
(
2ϵλ− 2ϵ2 ⟨ρ̂⟩

)
ρ̂

With this, the equation for the conditional grand potential becomes

exp (−βΩ ({λj})) ≈ exp
[∑

i

(
−λ2

i + ϵ2
i ⟨ρ̂i⟩2

)]
·

·Tr {exp (−β (HN − µN) +∑
i (2ϵλi − 2ϵ2

i ⟨ρ̂i⟩) ρ̂i)}

after taking the logarithm

Ω ({λj}) = kBT
∑
i

(
λ2
i − ϵ2

i ⟨ρ̂i⟩2
)

−
−kBT log Tr {exp (−β (HN − µN) +∑

i (2ϵiλi − 2ϵ2
i ⟨ρ̂i⟩) ρ̂i)}

thus the grand potential formally is the sum of two terms, the first one disappears
at the minimum of the grand potential and the second one is the grand potential
of a fluid that has been placed in a periodic external potential

v (r) = kBT
∑
i

2
(
ϵ2
i ⟨ρ̂i⟩ − ϵiλi

)
exp (iKi · r) . (A.3)

Taking the derivative of Ω ({λj}) wrt. the order parameter λk the following general
result is obtained

− ∂

∂λk

(
βΩ ({λj}) −

∑
i

λ2
i

)
= 2ϵk ⟨ρ̂k⟩ (A.4)

thus once the Fourier amplitudes {⟨ρ̂i⟩} are known for a given {λi}, i.e. for a fixed
external potential v (x) the grand potential can be calculated by integrating the
amplitudes wrt. the order parameters.

It is important to note that in classical systems the average density ⟨ρ̂ (x)⟩
can always be written in the following way ⟨ρ̂ (x)⟩ ∝ exp (−βveff (x)) where the
effective potential veff (x) = v (x)+vresp (x) is the sum of an external potential and
the response potential of the system. This response potential will be calculated as
a functional of the density change (⟨ρ̂ (x)⟩ − ρ0). At equilibrium, at the minimum
of the grand potential Ω ({λj}) the expression ϵk ⟨ρ̂k⟩ = λmk holds, so the above
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external potential Eq. A.3 becomes zero, thus if the response potential is nonzero
vresp (x) ̸= 0 the system is stable and the density has lattice periodic components,
i.e. a crystalline solid is formed. The system does not experience any external
potential at the fluid or solid minima, the freezing criterion is obtained without
an artificial construct and involves properties of the actual fluid.

A.2.2 Fluid in an external potential

It is the purview of liquid state theory to calculate the change in density of a
homogenenous fluid when placed in an external potential, such as a confining wall.
Another well established situation is when a test particle is fixed at the origin that
imposes an external potential on the rest of the fluid with the same pair potential
that acts between all the particles. In this case the resulting density modulation
will correspond directly to the two-body density correlation function, or radial
distribution function g (r) in the liquid.

Several approximation schemes exist for the calculation of such problems, the
two major ones are the Percus-Yevick (PY) and the Hypernetted Chain (HNC) ap-
proximations. The PY scheme results when [ρ (r) exp (βv (r)) − ρ0] is expanded as
a functional Taylor series in the density change [ρ (r′) − ρ0] and only the first term
is kept. The HNC scheme on the other hand expands log [ρ (r) exp (βv (r)) /ρ0] as
a functional Taylor series in [ρ (r′) − ρ0].

According to the argument of Ramakrishnan-Yussouff the external potential
v (r) which appears in the above problem is smoothly varying, long range and not
too large, around ≈ kBT thus the HNC approximation scheme is more appropriate
to calculate the inhomogenenous density ρ (r).

A.2.3 The pair correlation approximation

As previously stated the HNC approximation expands log [ρ (r) exp (βv (r)) /ρ0]
in terms of the density difference [ρ (r′) − ρ0] (relative to the unperturbed fluid)
evaluated at a different point, in terms of a hierarchy of n-point direct correlation
functions. In the Ramakrishnan-Yussouff model the expansion stops at the two-
particle level, thus in the equation

log [ρ (r) exp (βv (r)) /ρ0] = −β [veff (r) − v (r)] ≈
ˆ

dr′c (r − r′) [ρ (r′) − ρ0]
(A.5)
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the two-point direct correlation function

c (r − r′) = (∂ log [ρ (r) exp (βv (r)) /ρ0] /∂ρ (r′))ρ(r)=ρ0

is taken from the homogeneous fluid state with ρ0 density. This makes the theory
manifestly a linear response theory in the density change.

Physically, the Fourier transform of the direct pair correlation function c (q)
originates, through the Orstein-Zernicke (OZ) equation, from the liquid structure
factor S (q) = (1 − c (q))−1, which is accessible experimentally.

A.2.4 The density ansatz

As the order parameters are related to the Fourier transform of the average density,
it is advisable to look for a solution of the inhomogeneous density in terms of an
explicit Fourier series also, thus

ρ (r) = ρ+ V −1∑
i

⟨ρ̂i⟩ exp (iKi · r) = ρ0 (1 + η) + ρ0
∑
i

µi exp (iKi · r) (A.6)

where the fractional density change upon freezing η = (ρ− ρ0) /ρ0 and new
amplitudes µi = ⟨ρ̂i⟩ /N0 (unrelated to the symbol of the chemical potential)
are introduced. The Fourier series of the direct correlation function is c (r) =
N−1

0
∑

q cq exp (iq · r) and the potential Eq. A.3 are used as well to write Eq. A.5
as

log [ρ (r) /ρ0] = c0η +
∑
i

[
µici − 2ϵ2

iN0µi + 2ϵiλi
]

exp (iKi · r) . (A.7)

In this equation the average density ρ (r) depends explicitly on the order param-
eters {λi} as well as implicitly through the Fourier amplitudes η, {µi}, thus the
coupled equations A.6 and A.7 would need to be solved self-consistently.

Ramakrishnan-Yussouff argues that this problem can be avoided by choos-
ing the so far unspecified constants {ϵi} appropriately. In the expression
[µici − 2ϵ2

iN0µi + 2ϵiλi] the choice ϵ2
i = ci/ (2N0) eliminates the Fourier ampli-

tudes altogether. The reduced equation looks like

log [ρ (r) /ρ0] = c0η +
∑
i

λi
√

2ci/N0 exp (iKi · r) .
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By inverting the log and plugging in the Fourier series of the density

1 + η +
∑

i

µi exp (iKi · r) = exp [c0η] exp
[∑

i

λi

√
2ci/N0 exp (iKi · r)

]

we arrive at closed equations for the amplitudes, which can be solved for, after an
inverse transformation

1 + η = exp [c0η] V −1
ˆ

dr exp
[∑

i

λi

√
2ci/N0 exp (iKi · r)

]

µk = exp [c0η] V −1
ˆ

dr exp (−iKk · r) exp
[∑

i

λi

√
2ci/N0 exp (iKi · r)

]
(A.8)

because on the LHS only the amplitudes while on the RHS only the order param-
eters appear.

A.2.5 Solving for the amplitudes

New variables ξi = λi
√

2ci/N0 are introduced and the function

ϕ ({ξi}) = V −1
ˆ

dr exp
[∑

i

ξi exp (iKi · r)
]

is defined so the equation for the fractional density change is reduced to 1 + η =
exp [c0η]ϕ ({ξi}), but since η ≪ 1 is a small quantity the approximation 1 + η ≈
exp η turns it into η = log ϕ ({ξi}) / (1 − c0) an explicit equation for the fractional
density change. Taking the derivative of ϕ ({ξi}) wrt. ξk generates equations for
the amplitudes, which can be used to our benefit

µk = 1 + η

ϕ

∂ϕ

∂ξk
= (1 + η) ∂ log ϕ

∂ξk

thus the scalar quantity ϕ plays a central role in the solution. We are in a position
to finish the expression Eq. A.4 for the grand potential, plugging in the amplitudes

− ∂

∂λk

(
βΩ ({λj}) −

∑
i

λ2
i

)
= 2ϵkN0 (1 + η) ∂ log ϕ

∂ξk
.

However, the RHS is not in the form of a total derivative yet. Let us take the
derivative of the expression (logϕ)2

2(1−c0)

∂

∂ξk

(log ϕ)2

2 (1 − c0)
= log ϕ

(1 − c0)
∂

∂ξk
log ϕ = η

∂

∂ξk
log ϕ
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Figure A.1: Bravais-cells of one-mode test functions. Left panel shows in two di-
mensions the triangular lattice (upper image) and (two cells) of the square lattice.
Right panel shows a contour surface of the three-dimensional BCC test function.

which can be used in the equation for the grand potential

− ∂

∂λk

(
βΩ ({λj}) −

∑
i

λ2
i

)
= 2ϵkN0

∂

∂ξk

(
log ϕ+ (log ϕ)2

2 (1 − c0)

)

and the connection between the derivatives ∂ξi =
√

2ci/N0∂λi finally give

− ∂

∂λk

(
βΩ ({λj}) −

∑
i

λ2
i

)
= N0

∂

∂λk

(
log ϕ+ (log ϕ)2

2 (1 − c0)

)

which when integrated results in

βΩ ({λj}) − βΩ ({0}) = β∆Ω ({λj}) =
∑
i

λ2
i −N0

(
log ϕ+ (log ϕ)2

2 (1 − c0)

)

or even simpler

β∆Ω ({ξj}) = N0

(∑
i

ξ2
i

2ci
− (1 − c0)

(
η + η2

2

))
. (A.9)

This is the Ramakrishnan-Yussouff expression for the grand potential in terms of
the rescaled order parameters {ξi} and the fractional density change η = η ({ξi}),
which itself is the function of the order parameters.
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A.3 One-mode approximations
Any function of a given crystal symmetry can be constructed as a Fourier sum (see
App. A.2.4) over the reciprocal lattice vectors (RLVs) of the crystal (Kjl, vector
j in set l), in general

ψ (r) = ψ +
∑
l

Al
∑
j

exp (iKjl · r) , ∀j : |Kjl| = Kl .

When we say, that the PFC model is a one mode dominant theory, we mean,
that at small values of the model parameter ϵ, the periodic pattern ψ (r), which
minimizes the PFC functional is approximated to a good degree by a Fourier sum
over the first RLV set of the crystal structure, i.e. by

ψSM (r) = ψ + A
∑
j

exp (iKj1 · r) .

Such a single-mode function is parameterized by the length of the RLVs, which
determines the lattice constant, A is the amplitude, equal for the RLVs in the set
and finally ψ is there to control the average density, as the plane waves have zero
mean.

A one-mode or single-mode approximation to the PFC model is achieved by
substituting the above test function into the functional and minimizing it ana-
lytically. This procedure can be used for example, to analytically calculate an
approximate phase diagram. In two dimensions, the most important pattern is the
triangular lattice, given by the RLVs

K ∈

{
q

(
1
0

)
, q

(
1/2√
3/2

)
, q

(
−1/2√

3/2

)
, q

(
−1
0

)
, q

(
−1/2

−
√

3/2

)
, q

(
1/2

−
√

3/2

)}
,

the sum simplifies to

ψTR (r) = ψ + A
[
cos (qx/2) cos

(
qy

√
3/2

)
+ cos (qx) /2

]
.

The two-dimensional square lattice is specified by

K ∈

{
q

(
1
0

)
, q

(
−1
0

)
, q

(
0
1

)
, q

(
0

−1

)}
,

and the one-mode test function is

ψSQ (r) = ψ + A [cos (qx) + cos (qy)] .
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Figure A.2: One-dimensional substrate potential in red, limited in extent to x ∈
[−20, 20], with an average value of −2 (responsible for adsorption), transition factor
5 and amplitude 1 is achieved with V (x) = Θ

(
x+20

5

)
Θ
(

−x+20
5

)
(−2 − cosx). Black

line represents the average potential, without the single-mode function.

For small ϵ the preferred three-dimensional crystal structure is BCC, which has
the single-mode approximation built from the following RLVs:

K ∈

 q√
2

 1
1
0

 ,
q√
2

 1
0
1

 ,
q√
2

 0
1
1

 ,
q√
2

 1
−1
0

 ,
q√
2

 1
0

−1

 ,
q√
2

 0
1

−1


 ,

and the one-mode test function is

ψBCC (r) = ψ + A [cos (qx) cos (qy) + cos (qx) cos (qz) + cos (qy) cos (qz)] .

The above one-mode test functions are displayed in Fig. A.1.
These functions can also be used for the construction of substrates, applied

through an external potential, described in Sec. 7.2.1. To account for the finiteness
of the substrate, the spatial extent of the pattern needs to be limited. This is
usually achieved by the use of an envelope function in the appropriate spatial
variable, such as a properly parameterized tanh function, which is a generalization
of a Heaviside step function

Θ (x) = 1
2 (tanh (x) + 1) .

As an example, a one-dimensional, one-mode approximation of a substrate with
smooth transition is illustrated in Fig. A.2, note, that the single-mode function
ψSM = cosx is used with a negative sign, so that atomic positions correspond to
the minima of the external potential.



Appendix B

Numerical considerations

Solutions to the time or pseudo-time dependent equations of motion coupled with
PFC thermodynamics of Chap. 4 have been obtained numerically. The develop-
ment and the deployment of software solutions for the facilitation of the work
presented in this dissertation have taken a considerable amount of time and effort.
However, since this development does not involve novel solutions, but only the
implementation and efficient use of published methods, we deem necessary only to
briefly mention a couple of highlights in this regard.

As described in Chap. 4 on time evolution, order parameter theories are based
around the idea of the minimization of functions or functionals. The time evolu-
tion of the order parameter is mathematically represented by a partial differential
equation (PDE). Boundary conditions need to be specified, which are exclusively
periodic boundary conditions (PBCs) in this dissertation. An initial value for the
order parameter also needs to be given, this determines, which equilibrium state
the system relaxes to. Often these PDEs have a stochastic component, a random
variable for the representation of thermal fluctuations.

The EL equation and the diffusive EOM follow dissipative dynamics, in time
these equations (without fluctuations) monotonically approach local minima. The
accurate numerical representation of these minima is practically more important,
than the accuracy of the time marching scheme. The study of diffusional or mor-
phological instabilities actually require an accurate numerical scheme. However,
the interpretation of the order parameter as a temporally averaged quantity, al-
lows us the modeling of thermal fluctuations at the nanoscale to aid the system in
symmetry breaking and barrier passing. The Langevin noise term perturbs the oth-
erwise accurate solutions, so the amplitude of the noise term puts an upper limit
on the required accuracy of time stepping. The book [118] is a valuable resource
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on the inclusion of Langevin noise in PDEs.
The PFC functional is based on the Fourier transform of the direct correlation

function, Eq. 3.2. The simple form of c (k) together with the low-order approxima-
tion of the ideal gas term result in a one-mode dominant (see App. A.3) ground
state of the solid phase. Thus, the strategy with the PFC driving force, which is
the functional derivative δF

δψ
is to evaluate the parts nonlinear in ψ (approxima-

tion to the ideal gas term) in real space, while use the Fourier transform of ψ to
construct the part coming from correlations. When the Fourier transform is em-
ployed in the numerical solution process of a PDE, it is frequently characterized
as a semi-spectral method. The gradient expansion of c (k) in real space ĉ (i∇) is
not considered for numerical simulations in this dissertation.

The steps necessary to solve the SH form of the ELE (Eq. 4.1) and the EOM
(Eq. 4.2) are presented briefly. The Fourier transform is denoted by the operator
F (.) and the symbol .̂, we also introduce the operator L = −1 for the ELE and
L = ∇2 for the EOM, so that the dynamical equations can be expressed succintly
as

∂tψ = L
(
(1 − ϵ)ψ + ψ3 + ζ − µ+ F−1

([
−2k2 + k4

]
ψ̂
))

.

We take the Fourier transform of the whole equation, also L̂ = F (L) = {−1,−k2}

∂tψ̂ = L̂
((

1 − ϵ− 2k2 + k4
)
ψ̂ + F

(
ψ3 + ζ − µ

))
.

The time derivative is approximated with the forward Euler scheme ∂tψ ≈
(ψ (t+ ∆t) − ψ (t)) /∆t, thus

ψ̂ (t+ ∆t) = ψ̂ (t) + ∆tL̂
(
1 − ϵ− 2k2 + k4

)
ψ̂ + ∆tL̂F

(
ψ3 + ζ − µ

)
.

The useful quality of the semi-spectral method is, that one is able to handle im-
plicitly the parts that are linear in the unknown function L̂ (1 − ϵ− 2k2 + k4) ψ̂,
thus the time marching becomes semi-implicit, as that part is evaluated at time
t+ ∆t

[
1 − ∆tL̂

(
1 − ϵ− 2k2 + k4

)]
ψ̂ (t+ ∆t) = ψ̂ (t) + ∆tL̂F

(
ψ3 + ζ − µ

)
,

where the spatial operator is inverted point-wise in Fourier space to arrive at the
final form of time marching

ψ̂ (t+ ∆t) = ψ̂ (t) + ∆tL̂F (ψ3 + ζ − µ)
1 − ∆tL̂ (1 − ϵ− 2k2 + k4)

.
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The semi-implicit time stepping improves the stability of the numerical solution
considerably. More information on the semi-spectral semi-implicit time marching
scheme in PFC context is available in Ref. [119].

The numerical solution of the generalized EOMs in Sec. 4.4 require different
considerations, than the equations of the purely dissipative cases. Besides the rep-
resentation of the order parameter, the accuracy of its time derivative also becomes
important. The thermodynamic driving force takes the place of the reactive force,
which drives wave propagation, the rate of dissipation is controlled by a viscosity
parameter. The spatial operators and the correlational part of the free energy are
still evaluated in Fourier space, however, due to the coupled nature of the equa-
tions, an explicit second order accurate scheme, Heun’s method is used for the
time marching of the hydrodynamic equations.

The final forms of the numerical equations were solved on Graphical Processing
Units (GPUs), which currently provide the highest compute density and memory
bandwidth for the lowest power consumption and cost. Fourier transforms were
accomplished with the CUDA implementation of the Fast Fourier Transform [120]
algorithm.





Appendix C

Analysis

C.1 Bond order parameters
The configuration of atoms in particle based simulations is frequently analyzed
with the help of bond-orientational order parameters, bond order parameters for
short. These were introduced in Ref. [85] and sometimes go by the name of Stein-
hardt order parameters. First, atomic neighborhoods are defined |rij| < rc based
on a pairwise cutoff distance determined as the location rc of the first minimum
of the radial distribution function. Then, bond vectors rij are calculated, point-
ing from particle i to its neighbor particles j. Spherical harmonics basis functions
Ylm (rij) of order l are evaluated for every bond and averaged over the neighbors
for each atom. A complex valued bond orientational vector is constructed

(
qil
)
m

= 1
Ni

Ni∑
j=1

Ylm (rij) .

The local Steinhardt order parameters qil are coordinate system independent com-
binations of the spherical harmonics, aside from a normalization constant, they
are the lengths of the ql, .∗ denotes complex conjugation,

qil =
√

4π
2l + 1qil · q∗i

l .

Lechner and Dellago in Ref. [78] found increased accuracy in structure determi-
nation, when an averaged order parameter is used in the calculations. The bond
orientational vectors qil are averaged over the first neigbors (and the particle itself)
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Figure C.1: Second neighbor information improves the quality of structure identi-
fication, illustrated on q6 − q4 scatterplots. Left panel shows the local Steinhardt
bond orientational order parameters q6 −q4 for a molecular dynamics simulation of
a Lennard-Jones liquid. Right panel shows the averaged order parameters q6 − q4,
proposed by Lechner and Dellago. Source: Ref. [78].

to obtain
qil = 1

Ni

Ni∑
k=0

qkl ,

while the improved order parameter is calculated similarly

qil =
√

4π
2l + 1qil · q∗i

l .

Fluctuations in the atomic positions smear out the local Steinhard order parame-
ters, but the averaged versions provide a more robust separation, this is illustrated
in Fig. C.1.

Additionally, the correlation of bond order can be calculated for each atom.
The scalar product of the ql vector of atom i and of its neigboring atom j when
surpasses a value qil · q∗j

l > 0.5 signals a solid-like bond between these atoms. The
parameter ξ is used, to represent the number of such solid-like bonds for each atom

ξi =
Ni∑
j=1

Θ
(
qil · qj∗l − 0.5

)
.

C.2 Voronoi analysis
Voronoi analysis is a standard method for the segmentation of space into non-
overlapping regions, also without gaps, given a set of points as input. It is the
generalization of the Wigner-Seitz cell, without the requirement of periodicity. The
Voronoi cell (see Fig. C.2) of a given point includes space, which is closer to that
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Figure C.2: Illustrating the concept of Voronoi cells, regions of space closer to a
chosen point, than to any other. This construction segments space without gaps
or overlaps.

point, than to any other. It is useful for both two and three-dimensional point sets.
Standard software libraries exist for the calculation, for example Voro++ [121].

C.3 Hexatic order parameter
A common tool to analyze two dimensional, closed packed, local structure is the
so-called hexatic order parameter [122], which is constructed from a set of points
in the plane. As the name implies, this order parameter will reach a large value,
when atoms are situated at the vertices of a hexagon around a central atom (we
call this a triangular lattice). The definition

ĝi6 =
∑
j

exp (6iΘij) = gi6 exp (iΘi)

does not include the bond lengths between atoms, only the bond angles Θij be-
tween the central atom i and its neighbors j. The factor 6 is responsible for the
constructive interference of six-fold symmetry. The hexatic order parameter is re-
ally the modulus of the above complex number g6 = |ĝ6|. The orientation of the
hexatic arrangement of atoms relative to the laboratory frame is given by the
argument of the complex order parameter Θi = arg (ĝ6).

C.4 Coarse-grained amplitude
One can be interested in the segmentation of the solid from the liquid phase or
in the determination of the position of defects in the crystal lattice. A coordi-
nate system independent order parameter would be useful, which characterizes
the strength of local periodic ordering.
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Let us introduce the coarse-graining operation ⟨.⟩CG, which filters out Fourier
components of its argument above a set value, let this be kmax/2, so the coarse-
graining operation over any function a (r) can be written succintly as

⟨a⟩CG = F−1 {Θ (kmax/2 − |k|) F [a]} .

The structural information of the pattern in the PFC model is carried in the
density distribution ψ at high wavenumbers, around kmax, where the direct cor-
relation function reaches its maximum. The high wavenumber components of ψ
can be obtained by subtracting the coarse-grained density ψ− ⟨ψ⟩CG. The desired
order parameter would take on a large value, where a periodic pattern with large
amplitude is present, but would not display its atomic periodicity. This can be
achieved, if we take the square of the high wavenumber component, calculated
above and coarse-grain it. The new order parameter is calculated as

⟨ψ⟩amp =
√〈

(ψ − ⟨ψ⟩CG)2
〉

CG
,

this coarse-grained amplitude is not sensitive to the variation of the average density
and shows the long-wavelength variation in the amplitude field.
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