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Chapter 1

Introduction

Conceptualised over 100 years ago, quantum theory is considered one of the most successful
theories of the twentieth century that forms the basis of numerous directions of contemporary
physical research. Historically, quantum mechanics was used to describe the electron states
and dynamics in atoms through the Schrödinger equation, which led to the atomic theory that
is generally accepted today. Quantum systems containing a large number of particles, such
as heavy atoms or solid-state materials, require enormous computational power to address
the dynamics, an obstacle which resulted in the ever-growing field of quantum many-body
theory, intending to describe the dynamics of many-body systems.

One of the most fruitful approaches to quantum many-body systems is provided by quan-
tum field theories (QFT), originally developed as a relativistic formulation of ordinary quan-
tum mechanics. It describes the physics of particles in terms of relativistic quantum fields and
has resulted in our current understanding of fundamental physics and the standard model
of particle physics describing the fundamental interactions and particles of our world. In the
process, the spiking interest in high-energy physics propelled the growth of the QFT toolbox,
and it can be considered to be one of the most successful and well-established theoretical
frameworks of contemporary physics. These systems are generally interacting, and many
are strongly correlated, especially those where the dynamics is effectively low-dimensional.
Nowadays, QFT is used to investigate the collective behaviour of many quantum systems,
from high-energy and solid-state physics to statistical physics and cosmology.

In particular, QFTs provide an ideal framework to study the physics of condensed matter
systems. These systems are in many cases, very strongly interacting. They often exhibit
phase transitions where correlations become enhanced close to the critical point, and the
correlation length diverges. As a result, the corresponding critical phenomena manifest a
universal behaviour at large scales and are independent of the microscopic details of the
system. Their dynamics can be modelled by an appropriate field theory that describes the
large-scale behaviour of the statistical system in the vicinity of the critical point [1], making
QFTs a powerful tool to extract the universal behaviour of statistical physical systems.

In many condensed matter setups, the principal question is the out-of-equilibrium dy-
namics and thermalisation of the physical system. Recent advances in ultracold atomic
experiments [2–8] opened the possibility to experimentally realise and carefully manipulate
these strongly correlated quantum systems to study their dynamics and properties. This war-
rants accurate theoretical predictions about the dynamics of strongly interacting many-body
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systems in and out of equilibrium. In these experiments, quantum fluctuations are easily
suppressed by thermal fluctuations. To combat this, experiments target low-dimensional
many-body systems cooled very close to zero temperature, where the quantum correlations
are naturally strong due to the enhanced scattering between particles and are not overpow-
ered by thermal fluctuations. A seminal example of these ultracold-atomic systems is the
Bose-Einstein condensate first realised experimentally in 1995 [9, 10], laying the foundation
for tremendous progress in realising and controlling strongly-correlated quantum many-body
systems. As a result, the interest in quasi-one-dimensional systems, such as (1+1)d quantum
field theories or spin chains, has increased significantly in recent years, and the demand for
progress in their theoretical description is higher than ever.

In many cases, systems confined to one spatial dimension exhibit peculiar scattering
behaviour that allows for exact analytical predictions. In these integrable systems, quasi-
particles suffer only two-body scatterings due to the large number of conserved charges that
strongly limit the dynamics. Consequently, powerful analytical approaches are available
to study the properties of such systems, such as conformal field theory [1], the S-matrix
bootstrap [11] or the Bethe ansatz [12–14] that allow for analytical solutions of the dynamics
[15]. These models exhibit a relaxation behaviour very different from that of general quantum
systems [2,4,7,16,17] which, together with their experimental realisation, accounts for their
significance in contemporary condensed matter physics. Additionally, integrability has strong
connections to the AdS/CFT correspondence [18], which further boosts its popularity.
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Chapter 2

Non-equilibrium dynamics and
thermalisation

The question of out-of-equilibrium dynamics in quantum systems is a vast subject with nu-
merous interesting scenarios such as the equilibration of observables, transport of conserved
quantities, the dynamics of inhomogeneities or time evolution of open quantum systems. One
of the simplest and most common situations is that of a closed quantum system initialised
in a pure state subject to unitary time evolution governed by the Schrödinger equation. In
a non-equilibrium setting, the initial state is not an eigenstate of the Hamiltonian govern-
ing the time evolution, and the dynamics becomes highly non-trivial. A natural question
- motivated by classical physics - is the relaxation of observables to some long-time steady
state corresponding to the equilibrium. Equilibration in a generic closed quantum system
can occur in multiple ways; the most natural prospect is the thermalisation of the system,
where the steady-state expectation values depend only on the energy (and the corresponding
temperature) of the system.

The time evolution in a generic classical mechanical system is governed by the Hamilton
equations of motion which are generally non-linear. As a result, the dynamics quickly be-
comes independent of the microscopic details of the initial state, and the trajectories explore
the available energy shell in the phase space uniformly. In the long-time limit, the time
average of observables is equivalent to a statistical average given by the (micro-)canonical
ensemble. This universal behaviour is called ergodicity and is due to the non-linearity of the
equations of motion.

2.1 Quantum quenches and thermalisation

To understand the out-of-equilibrium time evolution of a generic isolated quantum system
initiated in a pure state, we employ a simple yet powerful protocol called the quantum
quench [19, 20], which can nowadays be routinely realised in experiments with ultra-cold
atoms [2, 3, 5–8]. In this scenario, the physical system is prepared in a pure state |Ψ0⟩ that
is usually the ground state of some pre-quench Hamiltonian Ĥ0. To force the system out of
equilibrium, some parameters of the system are abruptly changed at time t = 0, resulting
in a non-trivial time evolution of the system. Time evolution is governed by the linear
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Schrödinger equation, and as a result, the dynamics is unitary, governed by the Hamiltonian
after the quench Ĥ:

|Ψ(t)⟩ = e−iĤt |Ψ0⟩ . (2.1)

We are interested in the time evolution of expectation values of some observable Ô:

⟨Ψ(t)|Ô|Ψ(t)⟩ = ⟨Ψ0|eiĤtÔe−iĤt|Ψ0⟩ =
∑
n,m

C∗
nCm ⟨n|Ô|m⟩ ei(En−Em)t , (2.2)

where the |n⟩ are the energy eigenstates of the Hamiltonian Ĥ with energy En and the Cn are
the overlaps of the initial state and the energy eigenstates ⟨n|Ψ0⟩. The above formula relates
the time evolution of expectation values of local observables to equilibrium properties of the
system (namely the energy spectrum) and contains dynamical information (the overlaps)
that depend on the initial state. Performing the summation is generally impossible, with
a few exceptions for integrable systems where specific tools such as the thermodynamic
Bethe ansatz are available [21–24]. Nevertheless, Eq. (2.2) predicts the non-equilibrium
time evolution of Ô following a quantum quench in generic quantum systems.

If the expectation value (2.2) reaches a steady state, its value must be equal to the time
average:

Ō = lim
T→∞

1

T

∫ T

0

dt ⟨Ô(t)⟩ . (2.3)

Inserting (2.2) into (2.3), in a generic quantum system with no degeneracies in the spectrum,
the long-time average of an operator Ô can be expressed by the so-called diagonal ensemble:

Ō =
∑
n

|Cn|2 ⟨n|Ô|n⟩ (2.4)

corresponding to a state of the system described by the density matrix

ρ̂DE =
∑
n

|Cn|2 |n⟩ ⟨n| . (2.5)

Clearly, there is a problem here due to the fact that during the unitary time evolution, the
system is at all times in a pure state given by (2.1). Additionally, the long-time average
given by the diagonal ensemble (2.4) contains information on the microscopical details of the
initial state in the form of the overlaps. In contrast, the thermalisation of a physical system
is expected to be reflected in some ensemble average that is independent of the microscopic
details of the initial state and described by a small set of macroscopical quantities such as
e.g. the energy. Therefore, thermalisation is equivalent to the time average (2.3) being equal
to the thermal (canonical) ensemble average given by the Gibbs ensemble:

⟨Ô⟩GE =
1

Z
Tr
(
Ô e−βĤ

)
, (2.6)

where Z = Tr e−βĤ . The diagonal ensemble (2.4), although universal, cannot describe the
long-time dynamics in terms of a small set of macroscopical quantities and, as a result,
cannot account for the thermalisation in itself.
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2.2 The Eigenstate Thermalisation Hypothesis

The most widely accepted resolution to these problems is the Eigenstate Thermalisation
Hypothesis (ETH) formulated by Deutsch [25] and Srednicki [26]. The main idea behind the
ETH is that by the nature of the unitary time evolution, the thermalisation of the system
does not occur at the level of the full density matrix. Instead, it is now generally accepted
that equilibration only takes place for a certain set of observables whose equilibrium value
can be described by the canonical (Gibbs) ensemble. The set of operators for which the
ETH holds (equivalently, the set of observables that thermalise) can not be the whole set
of many-body operators, as it would mean that the density matrix should transition from a
pure state to a totally mixed state described by ρ̂GE which is forbidden due to the unitary
time evolution. Instead, these observables are the ones that are generally accessible in a
realistic setup and correspond to few-body or local observables that depend on a finite (small)
number of particles or local degrees of freedom. A simple example is given by quantum spin
chains, where the overall Hilbert space is constructed from constituent local Hilbert spaces
corresponding to single spins localised on each site. A few-body or local operator is supported
on a small number of local Hilbert spaces (”sites”) that are much smaller than the length of
the chain. Measurement of a local observable Ô is equivalent to performing the expectation
value Tr(Ôρ̂) which includes taking the partial trace over the parts of the Hilbert space that
is unaffected by the operator Ô. For a large enough system, the rest of the Hilbert space
effectively acts as an environment of the support of Ô and mixes the two parts of the Hilbert
space:

TrŌ ρ̂DE = TrŌ ρ̂therm , (2.7)

where TrŌ denotes the partial trace over the local degrees of freedom outside the support of
the local observable Ô. As a result, the expectation value of the local operator Ô is described
by a mixed state ρ̂DE.

The Eigenstate Thermalisation Hypothesis [25, 26] states that in the thermodynamic
limit, the matrix elements of few-body (local) operators between the eigenstates of a generic
Hamiltonian exhibit two important properties:

I. The diagonal elements Onn are smooth functions of the energy of the eigenstates of
the Hamiltonian and are independent of any other details of the eigenstates.

II. The off-diagonal elements Onm, n ̸= m are suppressed exponentially in the system
size.

These two statements can be cast into the mathematical form

Onm = O(E)δnm + e−
S(E)

2 fÔ(E,∆E)Rnm , (2.8)

where Onm denotes the matrix element ⟨n|Ô|m⟩, |n⟩ are the eigenstates of the Hamiltonian
Ĥ with energy En, O(E) and fÔ(E,∆E)) are smooth functions depending on the variables
E = (En + Em)/2 and ∆E = En − Em. S(E) is the thermodynamic entropy of the system,
and Rnm is a random variable with zero mean and unit variance. A consequence of the ETH
is that if the energy fluctuations in the initial state are negligible in the thermodynamic
limit (corresponding to infinite system size), the diagonal ensemble average is equivalent to
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the microcanonical ensemble average corresponding to energy E. Finally, the equivalence
between the microcanonical and canonical ensembles in the thermodynamic limit follows
from ordinary statistical mechanics, and as a result, the steady-state expectation value of
the local observable Ô is given by the thermal average:∑

n

|Cn|2 ⟨n|Ô|n⟩ TDL−−→ 1

Z
Tr
(
Ô e−βĤ

)
. (2.9)

Equivalently, the steady-state expectation value Ō becomes independent of the microscopic
details of the initial state and takes the value corresponding to the thermal distribution ρ̂GE

associated with thermalisation.
Therefore, the ETH can be considered to be the quantum equivalent of the ergodicity

principle in classical statistical mechanics. It describes the observed thermalisation in iso-
lated quantum systems through the equilibration of few-body observables that are accessible
in realistic experimental scenarios. Thermalisation of a closed quantum system is there-
fore equivalent to thermalisation of these local observables for which ETH holds. The ETH
has now been observed in various setups [27–39] and has been generally accepted as the
underlying mechanism behind the thermalisation of isolated quantum systems.

2.3 Equilibration of integrable systems

In generic quantum systems where the ETH holds, the expectation values of suitable observ-
ables eventually thermalise to a steady state described by thermal distribution. However,
some systems violate the ETH and do not thermalise in the usual sense.

The most well-known exceptions are integrable models with an infinite number of lo-
cal conserved charges. Even though equilibration in a certain sense has been observed in
integrable systems [4, 5, 7, 16, 17], the steady-state expectation values differ from the ther-
mal predictions associated with the thermalisation of the system. The infinitely many local
quantities that are conserved during the time evolution encode information about the initial
state of the system, and the initial distribution of charges has to be reflected in the steady
state, which is not accounted for by the standard Gibbs ensemble. A resolution proposed
in [40, 41] is the idea of the steady state being described by a generalised Gibbs ensemble
that takes into account all local conserved charges Qj of the integrable system:

⟨Ô⟩GGE =
1

Z
Tr Ô e−

∑
j λjQj (2.10)

where the partition function Z = Tre−
∑
j λjQj ensures normalisation and the λj are gen-

eralised chemical potentials which are Lagrange multipliers originating from the maximal
entropy principle [42]. The validity of GGE has been proven to predict the equilibration
of free systems [43–47] and has been tested experimentally [16]. However, for the Heisen-
berg spin chain, the GGE fails to describe the steady state of the system for generic initial
states [48, 49]. Instead, the long-time average is described by the so-called complete gener-
alised Gibbs ensemble [50] which, in addition to the set of local charges present in the GGE,
also incorporates a set of quasi-local charges as well [51, 52]. The specific set of quasi-local
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quantities that is necessary for the complete GGE is generally an open question, and the
complete GGE today is only known in certain cases such as the Heisenberg spin chain [50]
and SU(3) spin chains [53].

Apart from integrable systems, the ETH is violated in special non-integrable systems
admitting solutions called many-body scar states [54–60]. Many-body scars are energy eigen-
states for which the expectation values of local observables are very far from what is predicted
by the thermal average. Typically, many-body scars form a zero-measure infinite set within
the Hilbert space which corresponds to a set of expectation values of local fields that violate
the ETH. The origin of many-body scar states is generally an open question, together with
their fate in the thermodynamic limit: thermalisation of the system corresponds to satisfying
the usual (also called strong) ETH (2.8) which requires the disappearance of these states.
Alternatively, if scar states do persist in the spectrum, forming a zero-measure set, the weak
form of ETH holds, where the energy eigenstates appearing in (2.8) are restricted to non-scar
states. If, instead, these many-body scar states form a finite density set in the spectrum,
even the weak ETH is violated, and the system fails to thermalise in general.

Closely related to integrability, systems exhibiting many-body localisation (MBL) [61–68]
also violate the ETH and therefore fail to thermalise. MBL is the many-body generalisation
of Anderson localisation [69] and results from the disorder of an isolated many-body system.
MBL generally breaks ergodicity due to a new kind of emergent ”integrability” of the system:
MBL is characterised by a set of quasi-local integrals of motion [67, 68, 70] that similarly
to the usual integrability, results in the violation of ETH and prevents the system from
thermalising. This ”localised integrability” is very different from the usual integrability.
Nevertheless, the structure of the set of quasi-local integrals of motion forbids systems with
MBL to equilibrate, contrary to usual integrable systems.
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Chapter 3

Models

This work studies the out-of-equilibrium time evolution and related phenomena in (1+1)-
dimensional, strongly correlated quantum systems. In the following, we introduce the models
studied, discussing only the details relevant to our investigation. As mentioned in Chapter
2, the relaxation of observables changes significantly if the system is integrable, motivating
us to consider integrable and non-integrable systems as well.

First, in Section 3.1, we review the spin-1/2 XXZ spin chain, focusing on the phase
diagram and the charges and currents characterising the model. We then turn to continuous
field theories, starting with the (1+1)-dimensional φ4 theory, which we discuss in Section
3.2. The sine-Gordon model is introduced in Section 3.3.

3.1 The XXZ spin chain

One-dimensional spin chains are at the heart of contemporary condensed matter physics.
On the one hand, spin chains can nowadays be realised in experiments with ultracold atoms
or certain magnetic crystals [71–75]. On the other hand, many of these systems exhibit inte-
grable properties that allows for powerful theoretical tools to study these systems exactly [14].
Due to the simple structure of their Hilbert space and the available theoretical techniques,
integrable spin chains provide an excellent platform to study the notion of integrability and
its breakdown in quantum many-body systems.

One of the most important integrable spin chains is the spin-1/2 XXZ model. Experi-
mental realisations of the model using ultracold atoms in Rydberg states [73] and magnetic
atoms [75] and crystals such as Cs2CoCl

2
4 [74] opened up the possibility of experimentally

probing its dynamics and properties. The spin-1/2 XXZ spin chain is described by the
Hamiltonian

ĤXXZ =
L∑
i=1

[
ŝxi ŝ

x
i+1 + ŝyi ŝ

y
i+1 +∆ŝzi ŝ

z
i+1

]
(3.1)

where the spin operators are defined as ŝa = 1
2
σ̂a using the Pauli operators

σ̂x =

[
0 1
1 0

]
σ̂y =

[
0 −i
i 0

]
σ̂z =

[
1 0
0 −1

]
, (3.2)
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Figure 3.1: The phase diagram of the spin-1/2 XXZ spin chain.

and ∆ is the (real) anisotropy parameter. Working with a finite chain, we specify periodic
boundary conditions ŝaL+1 ≡ ŝa1. The model has three distinct phases as a function of ∆,
illustrated in Fig. 3.1:

I. The phase ∆ < −1 is gapped, corresponding to an Ising ferromagnet. In the limit
∆ → −∞, the two degenerate ground states

|GS↑⟩ =
L∏
j=1

|↑j⟩ and |GS↓⟩ =
L∏
j=1

|↓j⟩ (3.3)

are related to each other by flipping every spin. The low-energy excitations are single
magnons and their bound states [14].

II. For −1 < ∆ < 1, the gap in the spectrum disappears, and the ground state is a
paramagnetic ground state with zero magnetisation. For ∆ = 0, the XXZ chain reduces
to the XX model, which can be mapped to a system of free spinless fermions on a lattice
through Jordan-Wigner transformation [14].

III. There is a gap again for ∆ > 1, and the phase corresponds to an Ising antiferromagnet.
In the limit of ∆ → ∞, the degenerate ground states are Néel states, written as

|N1⟩ = |↑1, ↓2, ↑3, ...⟩ and |N2⟩ = |↓1, ↑2, ↓3, ...⟩ . (3.4)

Again, the ground states |N1,2⟩ can be transformed into each other by flipping each
spin. In the low-energy sector, the excitations are spinors, corresponding to domain
walls, regions in space where one type of Néel state changes into the other, forming
two unidirectional adjacent spins.

The points |∆| = 1 are special as the system admits additional symmetries. In the
following, we focus on regions of the anisotropy parameter away from these points, and so
we restrain ourselves from further discussions of the parameters ∆ = ±11.

The XXZ chain is an integrable model characterised by an infinite set of conserved charges
Q̂α, α = 1, 2, 3 . . . that commute with each other and the Hamiltonian (3.1). The charges
Q̂α are extensive and expressed as a sum of local charge densities q̂αj

Q̂α =
L∑
j=1

q̂αj , (3.5)

1Interested readers will find a detailed discussion in [14].
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that are localised on α sites around site j. Their conservation is expressed through the
respective continuity equation

ĵαl+1 − ĵαl = i
[
q̂αl , ĤXXZ

]
, (3.6)

which defines the corresponding generalised current Ĵα:

Ĵα =
L∑
j=1

ĵαj . (3.7)

Historically, the construction of the charges is given through the quantum inverse scattering
method (QISM) by Fadeev et al. [12]. Recently, Pozsgay discovered an algebraic construction
of the generalised currents in [76], which can be applied to a number of integrable systems
apart from the XXZ chain. For the XXZ model, the first two charges correspond to the total
magnetisation

Q̂1 = Ŝz =
L∑
j=1

ŝzj (3.8)

and the Hamiltonian (energy) of the system:

Q̂2 =
L∑
j=1

q̂2j , q2j = ŝxj ŝ
x
j+1 + ŝyj ŝ

y
j+1 +∆ŝzj ŝ

z
j+1 . (3.9)

The first non-trivial charge that corresponds to the integrability of the XXZ model is given
by

Q̂3 =
L∑
l=1

q̂3l ,

q̂3l = ŝxl−1ŝ
z
l ŝ
y
l+1 − ŝyl−1ŝ

z
l ŝ
x
l+1 +∆

(
−ŝzl−1ŝ

x
l ŝ
y
l+1 + ŝzl−1ŝ

y
l ŝ
x
l+1 − ŝxl−1ŝ

y
l ŝ
z
l+1 + ŝyl−1ŝ

x
l ŝ
z
l+1

)
,

(3.10)

together with the corresponding conserved current

Ĵ3 =
L∑
l=1

ĵ3l ,

ĵ3l = −1

2

[
2∆
(
ŝxl−2ŝ

y
l−1ŝ

x
l ŝ
y
l+1 + ŝxl−2ŝ

z
l−1ŝ

x
l ŝ
z
l+1 + ŝyl−2ŝ

x
l−1ŝ

y
l ŝ
x
l+1 + ŝyl−2ŝ

z
l−1ŝ

y
l ŝ
z
l+1

+ ŝzl−2ŝ
x
l−1ŝ

z
l ŝ
x
l+1 + ŝzl−2ŝ

y
l−1ŝ

z
l ŝ
y
l+1 − ŝxl−2ŝ

y
l−1ŝ

y
l ŝ
x
l+1 − ŝyl−2ŝ

x
l−1ŝ

x
l ŝ
y
l+1

)
− 2

(
ŝxl−2ŝ

z
l−1ŝ

z
l ŝ
x
l+1 + ŝyl−2ŝ

z
l−1ŝ

z
l ŝ
y
l+1

)
− 2∆2

(
ŝzl−2ŝ

x
l−1ŝ

x
l ŝ
z
l+1 + ŝzl−2ŝ

y
l−1ŝ

y
l ŝ
z
l+1

) ]
− 1 + ∆2

4

(
ŝxl−1ŝ

x
l + ŝyl−1ŝ

y
l

)
− ∆

2
ŝzl−1ŝ

z
l .

(3.11)
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3.2 The (1+1)d φ4 model

The simplest example of an interacting, non-integrable, relativistic quantum field theory is
provided by the (1+1)d φ4 theory. It is the simplest non-trivial Ginzburg-Landau theory
and gives the scaling limit of the Ising model [1]. As such, the model is subject to a second-
order phase transition where Z2 symmetry is spontaneously broken, characteristic of the Ising
universality class. Therefore, studying the theory enables understanding universal behaviour
in Ising-like ferromagnets near the critical point, independent of lattice details. Apart from
its importance in statistical physics, the (1+1)d φ4 model describes the one-dimensional
analogue of the Higgs field in the Standard Model. Consequently, studying the dynamics of
the theory is expected to reveal some general characteristics of the elementary particle, such
as the proposed decay of the false vacuum [77].

The theory is a textbook example of interacting relativistic quantum field theories. As
such, it has been widely studied using perturbation theory [78,79] and by various implemen-
tations of the truncated Hamiltonian approach, both on the massless free boson basis [80]
and the Fock space of the massive free boson [81–83].

The φ4 model is non-integrable. Therefore, the expectation values of local observables
are expected to thermalise at long times to the thermal distribution. However, as pointed
out by Durnin et al. in [84], the time scale at which the relaxation takes place is much larger
than general non-integrable models. The origin of the much larger time scale can be under-
stood perturbatively: at first order in perturbation theory, the φ4 interaction allows only for
fully elastic two-particle scattering processes, reminiscent of integrability and therefore, it is
classified as weak integrability breaking [85].

Classically, the (1+1)d φ4 model is given by the Hamiltonian

H =

∫
dx

[
1

2
(∂tφ)

2 +
1

2
(∂xφ)

2 ± 1

2
m2φ2 +

λ

4!
φ4

]
(3.12)

describing a bosonic field φ(x, t) subject to a quartic self-interaction. From now on, we work
in units in which c = ℏ = 1, and so dimensionful physical parameters can be measured in
units of some characteristic energy scale mscale, whose choice is usually dependent on the
details of the theory. Here, a natural choice for this scale is the mass m appearing in the
Hamiltonian (3.12), and so the interaction strength is characterised by the dimensionless
parameter λ/m2. We also use the parameter g = λ

4m2 in the following.
The theory admits two distinct phases characterised by the sign of the coefficient of the φ2

term in (3.12): when the sign is positive, the Z2 transformation φ→ −φ is a global symmetry,
and the theory is in the disordered (paramagnetic) phase. For a negative coefficient, the Z2

symmetry is spontaneously broken and leads to a potential with two degenerate minima at
φ = ±

√
6m2/λ corresponding to an Ising-type ferromagnetic phase.

Expanding the potential around these minima

V

(
±
√

6m2

λ
+ η

)
= −6m

4λ
+m2η2 ±m

√
λ

6
η3 +

λ

24
η4 = −3m

2λ
+

1

2
m2

0η
2 + . . . (3.13)

gives the mass of the elementary particle m0 =
√
2m. The theory also admits static kink
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and antikink solutions interpolating between the two vacua:

ϕ±
kink = ±

√
6m2

λ
tanh

(
mx√
2

)
, (3.14)

where the (+) refers to the kink and (-) to the antikink, and have energy

M0 =
m0

g
. (3.15)

Kink solutions moving with velocity v can be generated by appropriate Lorentz transforma-
tion due to the relativistic nature of the theory. Bound states of a kink and antikink are
called oscillons [86], which are quasi-periodic solutions of the classical equations of motion
forming a continuous spectrum. However, they are not stable as they are constantly los-
ing energy in the form of outgoing radiation of small fluctuations, which depends on their
oscillation amplitude.

Semi-classical quantisation

The theory can be quantised semi-classically by quantising the fluctuations around the min-
ima of the potential. To avoid divergences, the theory needs to be regularised via normal
ordering with respect to some free theory. In the work by Dashen et al. [87], the reference
theory is chosen to be the infinite volume free theory with mass m0, describing the (free
bosonic) fluctuations around any of the minima of (3.13). The semi-classical mass shift of
the kinks and related objects needs to be calculated non-perturbatively, and so the authors
quantised the theory around the saddle point of the semi-classical path integral [87]. The
semiclassical correction to the kink (and antikink) mass is given by

M =M0 −m0c =
4
√
2m3

λ
−
√
2mc+O(λ) , c =

3

2π
− 1

4
√
3
, (3.16)

where the parametersm and λ are the coefficients appearing in the renormalised Hamiltonian.
Although classically unstable, the kink-antiking bound states (oscillons) can still be quan-

tised. Semi-classically, they correspond to periodic breathers, and their spectrum becomes
discrete [88]:

mn = 2M sin

(
n
ζ

2

)
ζ =

g

1− gc
. (3.17)

Although the theory is non-integrable, at the quantum level, the lightest breather (n = 1)
is identified with the elementary particle (small fluctuations), and therefore, it is stable.
Higher breathers can be considered as bound states of the n = 1 breather, and their stability
against decays into the lightest particle requires

mn < 2m1 , (3.18)

which only holds for n = 2, but not for n ≥ 3. This is still true at the quantum level [88],
where only two stable breather solutions exist. However, as the quartic coupling g increases,
the spectrum changes, and the second breather becomes unstable around

g∗B2 =
π/2

(1 + cπ/2)
≈ 1.031 , (3.19)
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decaying into a kink and an antikink. Further increasing g, the first breather also disappears
from the spectrum by decaying into a kink-antikink pair for

g > g∗B1 =
π

(1 + cπ)
≈ 1.535. (3.20)

Perturbative results

At the quantum level, the bosonic field φ becomes an operator φ̂, and the Hamiltonian takes
the form

Ĥ =

∫
dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 ± 1

2
m2φ̂2 +

λ

4!
φ̂4

]
: (3.21)

the semicolons denote normal ordering with respect to some infinite-volume free theory
with some mass m0. Choosing the (+) sign in the above Hamiltonian describes the system
in the Z2-symmetry phase. Here, the spectrum is gapped, and its value can be computed
perturbatively in the quartic coupling λ using resummation techniques [78]. Up to 8th order,
it is given by:

M2

m2
= 1− 3

2
g24 +

(
9

π
+

63ζ(3)

2π3

)
g34 − 14.655869(22)g44 + 65.97308(43)g54

−347.8881(28)g64 + 2077.703(36)g74 − 13771.04(54)g84 +O(g94) .

(3.22)

where g4 = λ/24 is the coefficient of the : φ4 : term in the Hamiltonian (3.21). The vacuum
energy density can be similarly obtained and up to 8th order reads:

Λ/m2 = −21ζ(3)

16π3
g24 +

27ζ(3)

8π4
g34 − 0.116125964(91)g44 + 0.3949534(18)g54

−1.629794(22)g64 + 7.85404(21)g74 − 43.1920(21)g84 +O(g94) .
(3.23)

When the sign of the quadratic term in (3.21) is negative, the Z2 symmetry is sponta-
neously broken, and the spectrum is built up from kinks, antikinks and two stable breather
solutions. As mentioned before, the elementary particle is identified with the lightest breather
corresponding to the gap in the spectrum. A perturbative expansion of its mass m1 reads
as [89]:

m2
1(g)−m2

0 =

m2
0

(
− g

2
√
3
− 1

36

(
0.375 + 2.2492 + 2.8020− 1

2
(1.06864 + 1.9998 + 5.50025)

)
g2
)
.

(3.24)

Perturbative result regarding the second breather mass can be computed from [89]

m2 = 2m1 cos
g

2
(3.25)

using (3.24).
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3.3 The sine-Gordon model

The sine-Gordon model is a paradigmatic example of an integrable relativistic quantum field
theory. Besides its theoretical significance in quantum field theory, the theory describes the
low-energy dynamics of many gapped one-dimensional systems, such as, e.g., bosonic and
fermionic Hubbard models [90–93], spin chains [94–96], quantum magnets [97] and circuit
quantum eletrodynamics [98, 99]. Recently, an experimental realisation of the model using
two one-dimensional Josephson-coupled bosonic quasi-condensates [2, 4, 8, 100–102] opened
up the possibility to study the non-equilibrium dynamics of the sine-Gordon model in a lab-
oratory setting. In this setup, 87Rb atoms are trapped in an elongated double-well potential
on an atomchip, which effectively restricts their dynamics to one spatial dimension. The
finite potential barrier between the wells induces tunnelling between the one-dimensional
condensates in the form of particle hopping, and the tunnelling strength can be tuned by
adjusting the height of the barrier. The tunnelling disappears in the limit of a very high
barrier, and the condensates become independent. Abruptly changing the height forces the
system out of equilibrium and allows for the experimental study of the subsequent time
evolution.

The coupled condensate pair can be discussed in terms of bosonisation, where the system
is described by symmetric and antisymmetric collective degrees of freedom coupled together,
corresponding to a Luttinger liquid (symmetric) and the sine-Gordon model (asymmetric)
and their interaction [100] (c.f. App. B). Information about the tunnelling between conden-
sates, to a first approximation, is contained in the sine-Gordon potential. As a result, the
dynamics of the coupled condensate pair can be investigated via the abundant toolbox of
integrable QFTs and QFTs in general.

Classical spectrum

Classically, the sine-Gordon model is defined by the action

Scl
sG =

∫
dt

∫
dx

[
1

2
(∂tφ)

2 − 1

2
(∂xφ)

2 + λ cos βφ

]
, (3.26)

which describes the continuum limit of a chain of torsion-coupled mathematical pendula
through the angular field variable φ. It has an infinite number of vacua corresponding to
the zeros of the potential −λ cos βφ:

φ(n)
vac =

2π

β
n , n ∈ Z , (3.27)

and the elementary particle excitation has a mass
√
λβ. Besides the elementary excitations,

the equations of motion provide stable field configurations in the form of static solitons (+)
and antisolitons (-) interpolating between two consecutive vacua:

φ±(x) = ± 4

β
arctan

(
eλβx

)
(3.28)

with masses

Mcl =
8
√
λ

β
. (3.29)
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Due to the relativistic invariance of the model, moving solitons are generated via the appro-
priate Lorentz transformation.

The sine-Gordon model is integrable and has an infinite number of conserved charges
that restrict the dynamics to a collection of tori in the phase space. As a result, the model
admits spatially localised stable periodic field configurations parametrised by a continuous
parameter ε called breathers:

φε =
4

β
arctan

(
ε

ω

cosmωt

coshmεx

)
(3.30)

where ε2 + ω2 = 1. The breather energy spectrum is a continuous function of ε:

mε =
16ε

√
λ

β
. (3.31)

Quantum theory

The classical scalar field φ is promoted to the field operator φ̂ at the quantum level. Its
dynamics is governed by the Hamiltonian

ĤsG =

∫
dx :

(
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − λ cos βφ̂

)
: . (3.32)

The semicolons denote normal ordering with respect to the free massless boson defined by
setting λ = 0, which regulates the theory. The potential’s minima correspond to the theory’s
infinitely degenerate vacua.

The parameter β characterises the strength of the quantum fluctuations, and depending
on its value, the sine-Gordon model admits two distinct regimes. For 4π ≤ β2 < 8π, the
spectrum consists of solitons and antisolitons and their scattering states that repel each
other. When β <

√
4π, the theory is in the attractive regime, and the spectrum consists of

many-particle states of breathers and (anti)solitons. The spectrum of the breathers becomes
discrete:

mn = 2M sin
πξn

2
, (3.33)

whereM denotes the mass of the quantum soliton. The parameter ξ is related to the coupling
β through

ξ =
β2

8π − β2
, (3.34)

and characterises the strength of the interactions. At ξ = 1, the sine-Gordon model can be
mapped to a free fermion, and the inverse 1/ξ counts the existing breather species in the
spectrum. At the limit ξ → 0, the model describes a free massive boson associated with the
lowest-lying breather. Choosing the mass scale to be the lightest breather mass m1 allows
for all physical parameters to be expressed in terms of m1. As a result, the soliton mass is
given by

M =
1

2 sin πξ
2

. (3.35)
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Integrability relates the mass scale m1 to the dimensionful coupling constant λ [103]:

λ =

(
2 sin

πξ

2

)2h−2
2Γ(h)

πΓ(1− h)

(√
πΓ
(

1
2−2h

)
m1

2Γ
(

h
2−2h

) )2−2h

(3.36)

where

2h =
β2

4π
(3.37)

is the anomalous dimension associated with the cosine operator.
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Chapter 4

Methods

In Chapter 2, we discussed the notion of quantum quenches, a simple protocol for studying
the out-of-equilibrium dynamics of quantum many-body systems, where at time t = 0 some
parameters of the system are suddenly changed, forcing it out of equilibrium. An initial state
|Ψ0⟩ (usually the ground state of the Hamiltonian Ĥ0 before the quench) is then evolved in
time by the Hamiltonian Ĥ1 after the quench:

|Ψ(t)⟩ = e−iĤ1t |Ψ0⟩ . (4.1)

In this context, the naturally interesting question is the time evolution of the expectation
values of local observables, defined as

O(t) = ⟨Ψ(t)|Ô|Ψ(t)⟩ . (4.2)

However, Ĥ1 is often interacting, and (4.2) can not be computed analytically exactly, requir-
ing approximate and numerical methods.

Now we introduce some of these methods used to compute the non-equilibrium time evo-
lution of expectation values of local operators in interacting quantum field theories (though
some of these can also be applied to lattice models, here we focus on continuous theories). In
Section 4.1, we start by discussing the self-consistent Gaussian approach for the (1+1)d φ4

theory, one of the simplest ways of dealing with the interactions. Then, we discuss another
semi-classical approach, the truncated Wigner approximation in Section 4.2. Finally, in Sec-
tion 4.3, we consider various versions of the truncated Hamiltonian approach, applicable to
various physical systems, such as the φ4 theory and the sine-Gordon model.

4.1 The self-consistent Gaussian method

One of the simplest ways of approximating (4.2) in interacting field theories is provided by
the self-consistent Gaussian (SCA) approximation, also called the mean-field or Hartree-
Fock approach. The method can be formulated in many equivalent ways and has been
widely used to study dynamics in numerous models [104–110]. In terms of perturbation
theory, the SCA amounts to dropping all skeleton diagrams contributing to the correlation
functions, apart from the one-loop diagram. Alternatively, approximating the system state
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with some Gaussian wavefunction that satisfies Wick’s theorem for all times t results in the
same dynamics.

For the φ4 theory, the SCA was developed by Cardy and Sotiriadis [111] to study the
non-equilibrium dynamics of the propagator following quantum quenches by initiating the
system in the ground state of

Ĥ0 =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2

0φ̂
2 +

λ0
4!
φ̂4

]
: (4.3)

and at t = 0 changing the mass and coupling parameters (m0, λ0) → (m,λ). The system is
subject to non-equilibrium time evolution governed by the post-quench Hamiltonian

Ĥ =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2φ̂2 +

λ

4!
φ̂4

]
: . (4.4)

The main idea behind their formulation of the method is to replace the quartic interaction
in the Hamiltonian (4.4) with a Gaussian approximation:

φ̂4 → 6 ⟨φ̂2⟩ φ̂2 − 3 ⟨φ̂2⟩2 (4.5)

which is equivalent to dropping the fully connected part : φ̂4 :. Since the second term is
just a constant shift in energy, it does not contribute to the time evolution and can also be
dropped. The replacement of the interactions by a mean-field term is eventually justified in
the large-N limit of the linear σ-model, a generalisation of the φ4 theory to an N -component
field, where the system becomes integrable, and the dynamics are described exactly by the
SCA. In 4.5, the first term corresponds to a shift in the particle mass, essentially reducing the
dynamics to that of a massive Klein-Gordon model with a self-consistently determined, time-
dependent particle mass. Naively, it is given by the self-consistent gap equation, computed
from the two-point correlation function:

m2
eff(t) = m2 +

λ

2

∑
k

⟨φ̂k(t)φ̂−k(t)⟩ . (4.6)

However, Eq. (4.6) suffers from ultraviolet divergences due to the infinite sum on the right-
hand side, and the actual effective mass can be defined through a renormalisation procedure,
leading to the renormalised gap equation:

m2
eff(t) = m2 +

λ

2

∑
k

(
⟨φ̂k(t)φ̂−k(t)⟩ −

1

2ωk

)
. (4.7)

with ω2
k = m2 + k2. This procedure is equivalent to normal ordering with respect to the

bosonic modes corresponding to mass m.
The mean field approximation to the time evolution only takes into account the lowest-

order quantum correlations and reduces the dynamics to Gaussian time evolution of free
bosonic modes with a self-consistently determined effective mass. As a result, the scattering
of particles with different momenta is disregarded, and the SCA can not account for relax-
ation phenomena originating from the energy exchange between different momentum modes.
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Such an approach is equivalent to modelling the non-integrable system via the closest (Gaus-
sian) integrable theory, and as such, it is expected to reproduce some of the generalities of
the non-integrable dynamics, particularly in the weakly interacting regime when λ is small.

Computation of the time evolution of the correlator ⟨φk(t)φ̂−k⟩ in the self-consistent
approximation can be obtained by solving the Gaussian equations of motion containing a
time-dependent mass term, defined through (4.5):

∂2t φ̂k + ω2
k(t)φ̂k = 0, ω2

k(t) = k2 +m2
eff (4.8)

and self-consistently determining meff(t) from the condition (4.7). This can be done by
substituting the ansatz

φ̂k ∼
1√

2Ωk(t)
exp

[
−i
∫ t

0

dt′Ωk(t
′)

]
(4.9)

into the EOM (4.8) and determining the frequencies Ωk for all k using the initial conditions

Ωk(0) = ωk(0) Ω̇k(0) = 0 . (4.10)

The correlator ⟨φ̂2(t)⟩ and the effective mass m2
eff can be obtained straightforwardly.

Though analytically tedious, this procedure can be easily implemented numerically by
discretising the (t, k)-space and solving the equations of motion by the following iterative
procedure [111]:

1. Construct the time-dependent mode frequency function Ωk(t) for every mode k from

Ω̈k

2Ωk

− 3

4

(
Ω̇k

Ωk

)2

+ Ω2
k = ωk(t)

2 . (4.11)

with the initial condition

Ωk(0) = ωk(0) Ω̇k(0) = 0 . (4.12)

where

ωk(t) =
√
m2

eff(t) + k2 . (4.13)

2. Compute ⟨φ̂k(t)φ̂−k(t)⟩ for every k from

⟨φ̂k(t)φ̂−k(t)⟩ =
1

Ωk(t)

[
ωk(0)

2 + ω2
0k

2ωk(0)ω0k

+
ωk(0)

2 − ω2
0k

2ωk(0)ω0k

cos

(
2

∫ t

0

dt′Ωk(t
′)

)]
, (4.14)

where ω2
0k = m2

0 + k2.

3. The effective mass m2
eff(t) can be obtained from the gap equation

m2
eff(t) = m2 +

λ

2

∑
k

(
⟨φ̂k(t)φ̂−k(t)⟩ −

1

2ωk(0)

)
. (4.15)
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4. Move to the next time step t→ t+ dt.

In a finite volume L, using periodic boundary conditions, the allowed Fourier modes
become a discrete set: k = 2πn/L with n ∈ Z which can simply be made finite by introducing
an upper cutoff Nmax so that |n| ≤ Nmax. In our later computations (see Chapter 6), Nmax

is chosen such that results converge. However, choosing the cutoff too high introduces
instabilities and must be avoided. Moreover, the time-step parameter dt has to be tuned so
that results no longer depend on its value.

4.2 The truncated Wigner approximation

As discussed in the previous section, the self-consistent Gaussian (or mean-field) approach
fails to accurately describe the out-of-equilibrium dynamics as it neglects the energy exchange
between particles with different momenta that would result in the relaxation of expectation
values of observables. Indeed, it is a general fact that semi-classical approximations can not
reproduce the exact time evolution of strongly coherent quantum many-body systems. How-
ever, they are expected to provide accurate results whenever the interactions and coherence
between the degrees of freedom are weak, close to the classical limit of the theory.

In a general out-of-equilibrium setting, the time evolution of expectation values of local
operators can be expressed via the Keldysh path integral formalism [112, 113], which can
be systematically expanded in the quantum fluctuations to compute (in theory) the time
evolution to arbitrary precision. The lowest-order expansion is usually referred to as the
truncated Wigner approximation (TWA) [112–114], which is a widely used semi-classical
approximation for computing non-equilibrium time evolution in interacting quantum many-
body systems. It has been previously argued that it provides a good description of the
dynamics of interacting field theories, such as the sine-Gordon model [115]. However, its ac-
curacy is hard to control, requiring careful validation against other, more controlled methods
whenever available.

Now we turn to discuss the implementation of the TWA for 1-dimensional relativistic field
theories, focusing on the (1+1)d φ4 model first in detail, then moving on to the application
of TWA for the sine-Gordon model, only highlighting the differences where necessary. In our
subsequent work presented in Chapters 6 and 8, the TWA was implemented and applied to
the dynamics by Izabella Lovas [115].

4.2.1 Lattice regularisation

The TWA is formulated using the lattice regularised form of the φ4 Hamiltonian:

Ĥlatt =
Ns∑
j=1

(
π̂2
j + (φ̂j − φ̂j−1)

2

2a
+
m2a

2
φ̂2
j +

λa

4!
: φ̂4

j :

)
, (4.16)

where Ns denotes the number of lattice sites, a = L/Ns is the lattice constant, and the
operators φ̂j and π̂j = a∂tφ̂j satisfy canonical commutation relations

[φ̂j, π̂j′ ] = iδjj′ . (4.17)
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Here, normal ordering of the operator : φ̂4
j is done with respect to the (post-quench) mass

m. Setting λ = 0, the quadratic part of (4.16) can be diagonalised via the Fourier transform

φ̂k =
1√
Ns

∑
j

e−ijakφ̂j , π̂k =
1√
Ns

∑
j

e−ijakπ̂j , (4.18)

and results in the dispersion relation

ωlatt
k =

√(
2

a
sin

ka

2

)2

+m2 (4.19)

which reduces to the continuum relation ωk =
√
m2 + k2 in the limit of k ≪ 1/a. In the

vacuum, the correlators of the φ̂k and π̂k operators are given by

⟨φ̂kφ̂k′⟩vac = δk,−k′
1

2aωlatt
k

,

⟨π̂kπ̂k′⟩vac = δk,−k′
aωlatt

k

2
. (4.20)

Since the TWA is a semi-classical approximation, it is formulated in terms of operators that
are not normal-ordered. Hence, to treat (4.16) as a semi-classical Hamiltonian, the operator
: φ̂4

j : must be rewritten as

: φ̂4
j := φ̂4

j − φ̂2
j

λa

4Ns

∑
k

1

2aωlatt
k

+ const., (4.21)

where the sum runs over momentum modes k = 2πn/L, n = 0,±1,±2, ...,±Ns/2, and the
second term accounts for the vacuum expectation value ⟨φ̂kφ̂k′⟩vac. Defining the bare mass

m2
bare = m2 − λ

4Nsa

∑
k

1

ωlatt
k

, (4.22)

the Hamiltonian (4.16) can be written in terms of non-renormalised operators:

Hlatt =
Ns∑
j=1

(
π̂2
j + (φ̂j − φ̂j−1)

2

2a
+
m2

barea

2
φ̂2
j +

λa

4!
φ̂4
j

)
. (4.23)

4.2.2 Approximating the time evolution

The semi-classical TWA approximates out-of-equilibrium expectation values and correlations
through phase space averages of an ensemble of classical trajectories [112, 113]. Closely re-
lated to the mean-field approximation, it approximates the time evolution by solving the
classical equations of motion for the phase space coordinates {φj, πj}. However, the TWA
goes significantly beyond the mean field approximation by considering the quantum fluctua-
tions in the initial state, incorporating them in the time evolution. This is done by sampling
random initial coordinates {φ(0)

j , π
(0)
j } distributed accordingly to some relevant probability
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distribution containing the quantum fluctuations of the initial state, determining the classi-
cal trajectories for these fluctuation initial conditions and averaging over this ensemble. A
more formal construction of the TWA is given by a systematic expansion of the Keldysh
path integral [112,113].

To implement the TWA for the lattice Hamiltonian (4.23), it is favourable to introduce
the notations |φ⟩j and |π⟩j for the eigenvectors of the operators φ̂j and π̂j, respectively. That
is, they are defined so they satisfy the completeness relation

Ij =
∫

dπ

2π
|π⟩j j⟨π| =

∫
dφ |φ⟩j j⟨φ| (4.24)

for any site j. We introduce a more compact vector notation

φ = {φj |j = 1, ..., Ns} (4.25)

for the full set of eigenvalues, with analogous notation for the eigenvalues of the canonical
conjugate operators π̂j.

An initial state corresponding to the density matrix ρ̂0 can be characterised by the Wigner
function, a quasi-probability distribution in phase space:

W (φ, π) =
1

(2π)2Ns

∫
dφ′ ⟨φ+ φ′/2| ρ̂0 |φ− φ′/2⟩ e−iφ′π. (4.26)

An arbitrary observable Ô can be represented as a function over phase space coordinates
similarly by its Wigner transform defined as

OW (φ, π) =

∫
dφ′ ⟨φ− φ′/2| Ô |φ+ φ′/2⟩ eiφ′π. (4.27)

As a result, the TWA is formulated in terms of the phase space distribution W and the
phase space functions OW . Quantum fluctuations of the initial state are incorporated by
sampling random initial coordinates {φ0, π0} according to the Wigner quasi-distribution W .
Time evolution is computed by solving the classical equations of motion

∂tπj = −1

a
(φj+1 + φj−1 − 2φj)−m2

bareaφj −
λa

6
φ3
j ,

∂tφj =
1

a
πj ,

(4.28)

for the classical trajectories {φ(t), π(t)}, and obtaining the contribution of these trajectories

to the expectation value of Ô by substituting {φ(t), π(t)} into OW . The TWA expectation

value ⟨Ô⟩TW is computed by averaging over a large ensemble of initial states {φ(0), π(0)}:

⟨Ô⟩TW(t) =

∫∫
dφ(0)dπ(0)W (φ(0), π(0))OW (φ(t), π(t)) , (4.29)

which expresses the time-evolved expectation value of the observable as a phase space average
over classical trajectories, distributed according to the Wigner quasi-probability distribution
of the initial state.

The TWA is first validated by performing mass quenches with the quartic coupling set
to zero, where the method is exact, similar to the SCA.
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4.2.3 TWA for the sine-Gordon model

The TWA for the sine-Gordon model time evolution is implemented similarly to the (1+1)-
dimensional φ4 theory discussed previously. Here, we restrict ourselves to pointing out
the key differences and introducing the matching of observables between the lattice and
continuum theories.

As discussed before in Section 3.3, the sine-Gordon model is given by the Hamiltonian

ĤsG =

∫ L

0

dx :

(
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − λ cos βφ̂

)
: , (4.30)

where the theory is now formulated in a finite volume L. The TWA is implemented in terms
of the lattice regularised Hamiltonian of the sine-Gordon model:

ĤLat =
a

2

N∑
j=1

(
(∂tφ̂j)

2 +
(φ̂j − φ̂j−1)

2

a2

)
− λa

N

N∑
j=1

cos βφ̂j , (4.31)

where a = L/N is the lattice constant and the discretised phase field φ̂j is related to the
continuum field through φ̂j = φ̂(x = aj). The discretised canonical momentum is defined as

π̂j = a∂tφ̂j (4.32)

to satisfy
[φ̂j, π̂j′ ] = iδj,j′ . (4.33)

The semi-classical TWA is formulated using the non-renormalised operators. The normal
ordering of the cosine in Eq. (4.30) is accounted for by relating

cos βφ̂i = N : cos βφ̂i : , (4.34)

via the coefficient N , determined from the Baker-Campbell-Hausdorff formula [115]:

N = exp

(
−πh
N

)N/2−1∏
n=1

exp

(
− 2πh

N sin πn
N

)
. (4.35)

In the continuum theory, the two-point function

⟨φ̂kφ̂−k⟩ (4.36)

has an expectation value

⟨0|φ̂kφ̂−k|0⟩ =
1

4πk
, (4.37)

that can be matched with the TWA definition by defining the Fourier transform of the
discredited fields φ̂j as

φ̂k ̸=0 =
1

N

N∑
j=1

ei
2π
N
kjφ̂j (4.38)
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and computing the vacuum expectation value of their correlator:

⟨0|φ̂kφ̂−k|0⟩ =
1

4N sin(πk/N)
, (4.39)

which in the continuum limit N → ∞ reduces to the definition used in the continuum
correlator (4.36).

As discussed before in this section, the time evolution of expectation values of observables
in the TWA is computed through an ensemble of solutions of the classical equations of
motion, averaged over the fluctuating initial state distributed according to the Wigner quasi-
probability distribution given by

W (φ, π) =
1

(2π)2N

∫
dφ′ ⟨φ− φ′/2|ρ̂|φ+ φ′/2⟩ e−iφ′·π . (4.40)

Here we introduced the same vector notation as before

φ = {φj|j = 1, ..., N} , π = {πj|j = 1, ..., N} . (4.41)

for the phase space coordinates, and ρ̂ is the density operator corresponding to a given initial
state |Ψ0⟩ of the system:

ρ̂Ψ0 = |Ψ0⟩ ⟨Ψ0| . (4.42)

The Wigner function is usually positive semi-definite, allowing for the proper generation of
random initial conditions {φ, π} distributed according to W . Averaging over these fluctuat-
ing initial conditions can be obtained by Monte Carlo simulations of the classical trajectories.
However, in the case of negative regions occurring in W , the method becomes less efficient
due to the emergent sign problem.

4.3 The truncated Hamiltonian approach

In contrast to semi-classical methods, the truncated Hamiltonian approaches (THA) provide
a more controlled approach, a family of non-perturbative methods used to study strongly
interacting quantum field theories. Originally called the truncated conformal space approach
(TCSA), it was developed by Yurov and Zamolodchikov [116] to study relevant perturbations
of conformal field theories numerically. The method can be considered a field theoretical
version of the Rayleigh-Ritz variational method used in ordinary quantum mechanics. The
main idea behind the THA is to put the system in finite volume, which discretises the
spectrum. As a next step, applying a global (upper) energy truncation restricts the Hilbert
space to some low-energy subspace, and the Hamiltonian and observables can be represented
by finite matrices that are easily diagonalisable. The finite matrix formalism also enables
studying the (non-perturbative) non-equilibrium time evolution of perturbed field theories
via appropriate exponentiation of the Hamiltonian, and has been applied in various scenarios
and systems [115,117–122]. The THA results however depend on the system size, and differ
from the exact results by the so-called truncation error. These errors usually tend to zero
as the energy cutoff is increased, which can be computationally expensive, requiring other
procedures, such as the leading order renormalisation group improvement [82,83].
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A general requirement of the THA is to have an eigenbasis of a finite volume (unper-
turbed) Hamiltonian for which the spectrum and eigenstates are known, together with the
corresponding matrix elements of the perturbing Hamiltonian of interest. Consequently,
there are various versions of the THA differentiated by their computational basis: in their
seminal work [116], Yurov and Zamolodchikov used the conformal basis to express the per-
turbed Hamiltonian and compute the spectrum, which is referred to as the truncated con-
formal space approach (TCSA). In the work [123], the authors used the free massive fermion
basis for the THA, which is subsequently called the truncated free fermion space approach
(TFFSA). Similarly, THA versions using massive [81–83,89] and massless [124] free bosonic
eigenstates as a basis are also available. The method has been used extensively to study
non-equilibrium dynamics of strongly interacting many-body systems [115,117–122], as well
as boundary [125, 126] and defect problems [127]1. In the work [81], the THA was also
extended to dimensions higher than one.

In the following, we discuss the implementation of the THA for two interacting (1+1)-
dimensional quantum field theories. In Section 4.3.1, we focus on the φ4 theory both in
Z2-symmetric and Z2-broken phase, where the THA is built upon the Fock space of the
free massive boson. In the symmetry-broken phase (Section 4.3.1), the THA is implemented
using a mini-superspace treatment of the zero mode [83]. In Section 4.3.2, we discuss the
TCSA built upon the free massless boson basis and the mini-superspace-based THA to study
the dynamics of the sine-Gordon model. In both cases, we start by considering the finite
volume theory and then discuss the truncation protocols characteristic of the appropriate
THA version. A number of technical details are relegated to Appendix A.

4.3.1 THA for the (1+1)d φ4 theory

The Z2-symmetric phase

The (1+1)d φ4 theory in a finite volume L is given by the Hamiltonian

Ĥ =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2φ̂2 +

λ

4!
φ̂4

]
: (4.43)

where the free part is the massive Klein-Gordon Hamiltonian

Ĥm
KG =

L∫
0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2φ̂2

]
: (4.44)

describing a free boson with mass m through the scalar field φ̂ and canonical momentum

π̂ = ∂tφ̂ (4.45)

satisfying the usual equal-time canonical commutation relation

[φ̂(t, x), π̂(t, y)] = iδ(x− y) . (4.46)

1For a recent review c.f. [128]
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We use periodic boundary conditions φ̂(t, x + L) = φ̂(t, x). As a result, the Klein-Gordon
spectrum is discretised, and the allowed Fourier modes are integer multiples of 2π/L. Reg-
ularisation of the Hamiltonians is done by normal ordering with respect to the free boson
modes with massm, denoted by the semicolons. From now on, we focus on the Z2−symmetric
phase, characterised by m2 > 0 and employ units in which m = 1 and define the dimension-
less volume parameter l = Lm and measure the quartic coupling λ in units of m2.

The finite volume formulation of the theory is a general requirement of the truncated
Hamiltonian approach and results in a discrete spectrum. Though it is possible to directly
formulate the theory in infinite volume through light-cone quantisation [129,130], the method
outlined here is better-tailored to studying the dynamics of the system, and although it limits
us to work in finite volume, it is adequate for our later calculations.

As a next step, a UV cutoff is introduced to limit the dimension of the Hilbert space to
a finite size, allowing for a finite matrix representation of the Hamiltonians and observables.
Here we work on the eigenbasis of the massive Klein-Gordon Hamiltonian corresponding to
a mass m = 1, and we parametrise the volume L via the dimensionless parameter l = Lm.
Since the Hamiltonian (4.43) is translationally invariant, the Hilbert space can be restricted
to the zero-momentum subspace. As a result, the energy cutoff Λ can be parameterised as

Λ

m
= 4πnmax/l (4.47)

where nmax is the quantum number of the maximum momentum mode that can be excited
in the massless limit. Keeping only the low-lying Klein-Gordon eigenstates as a basis re-
duces the computation of observables to simple arithmetics (for details, see Appendix A).
Expectation values and eigenvalues of the truncated operators can be evaluated by manip-
ulations of finite matrices. However, these results depend on the cutoff Λ and differ from
the exact results by what is called the truncation error. Since the φ4 theory is a relevant
perturbation of the massive Klein-Gordon model, these truncation errors tend to zero as
the cutoff is increased to infinity. However, increasing the cutoff is computationally expen-
sive, warranting clever ways to increase the precision. One of the simplest approaches is
the widely used leading order renormalisation group improvement, consisting of defining an
effective theory by summing up the high-energy contributions and incorporating them into
the running couplings of the effective theory [82]:

Ĥeff = Ĥ + κ0V̂0 + κ2V̂2 + κ4V̂4 (4.48)

where

V̂n =

∫ L

0

dx : φ̂n : (4.49)

and the running couplings κn are defined to leading order as [82]

κ0 = −
∫ ∞

Λ

dE

E − ϵ∗
[g24µ440(E) + g22µ220(E)]

κ2 = −
∫ ∞

Λ

dE

E − ϵ∗
[g24µ442(E) + g2g4µ422(E)]

κ4 = −
∫ ∞

Λ

dE

E − ϵ∗
g24µ444(E)

(4.50)
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Figure 4.1: The gap as a function of the quartic coupling λ for l = 10 in the perturbative
regime using units m = 1, for different values of the cutoff parameter nmax computed using
the leading order RG improvement Eq. (4.48). The solid lines show the 7th and the 8th
order perturbative results [78].

where the gn are the coupling of the V̂n term corresponding to the infinite cutoff as appearing
in (4.43), i.e.

g2 = 0, g4 =
λ

4!
, (4.51)

ϵ∗ is a reference energy [82] which we choose to be zero, and the functions determining the
renormalisation group flow of the running couplings are given by [82]

µ220(E) =
1

πE2
, µ422 =

12

πE2
, µ444(E) =

36

πE2

µ440(E) =
1

E2

[
18

π3
(logE/m)2 − 3

2π

]
µ442(E) =

72 logE/m

π2E2
.

(4.52)

To test the accuracy of the renormalised THA, we first compute the mass gap and com-
pare the results to perturbation theory (3.22) [78], as demonstrated in Fig. 4.1. The cor-
respondence between the results demonstrates the accuracy of the THA and illustrates the
effectiveness of the leading order renormalisation group improvement for eliminating cutoff
dependence from the spectrum.

The symmetry-broken phase

Now we turn to the symmetry-broken phase of the (1+1)d φ4 theory, characterised by
the negative sign of the mass term in the Hamiltonian. Additionally, we include a term
proportional to an explicitly symmetry-breaking external field ε, which will later allow us to
study the false vacuum decay in the theory:

Ĥε = Hm
KG +

∫
dx :

(
−m2φ̂2 +

g

6
φ̂4 − εφ̂

)
:m, (4.53)
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with

Ĥm
KG =

∫
dx :

(
1

2
π̂2 +

1

2
(∂xφ̂)

2 +
m2

2
φ̂2

)
:m (4.54)

denoting the Klein-Gordon Hamiltonian describing free bosons of massm, with the canonical
field satisfying the equal time canonical commutation relations

[π̂(t, x), φ̂(t, x′)] = −iδ(x− x′) . (4.55)

The semicolons : · · · :m denote normal ordering with respect to the free massive bosonic
modes of mass m. The THA is formulated in finite volume L with periodic or antiperiodic
boundary conditions. We work in unitsm = 1, and therefore, the system can be parametrised
by the dimensionless combination of parameters

l = mL, ḡ =
g

m2
and ε̄ =

ε

m2
. (4.56)

In finite volume L, the Klein-Gordon Hamiltonian takes the form

Ĥm
KG(L) =

∫ l

0

dx :

(
1

2
π̂2 +

1

2
(∂xφ̂)

2 +
m2

2
φ̂2

)
:m,L +E0(l) , (4.57)

where the semicolons : · · · :m,L (with an additional subscript L) denote normal ordering with
respect to the free bosonic modes of mass m defined in a finite volume L. (c.f. App. A) The
last term is a shift in the ground state energy density, defined as [89]

E0(l) =

∫ ∞

−∞

dθ

2π
cosh θ log

(
1− e−l cosh θ

)
. (4.58)

The Hamiltonian of the perturbed theory in finite volume can be expressed as

Ĥε(L) = Ĥm
KG(L) +

∫ l

0

dx :
[
g0(l) + g2(l)φ̂

2 + g4(l)φ̂
4 − ε̄φ̂

]
:m,L . (4.59)

Here, the couplings gi(l) are related to the infinite volume couplings of the theory (defined
in (4.53)) as [89]

g0(l) = −m2z±(l)−m23 log 2

8π
+
g

2
z̃±(l)2 , g2(l) = gz̃±(l)−m2 , g4 =

g

6
(4.60)

together with

z+(l) =

∫ ∞

0

dθ

π

1

el cosh θ − 1
, z−(l) = 2z+(2l)− z+(l) , z̃±(l) = z±(l) +

log 2

4π
(4.61)

where the superscript ± refers to periodic (+) and antiperiodic (-) boundary conditions φ̂(x+
L) = ±φ̂(x), respectively. When the symmetry is spontaneously broken, the Hilbert space
of the theory consists of states corresponding to particle excitations above the degenerate
vacua. Consequently, in order to develop an effective version of the THA, it is crucial to
select a variational basis that qualitatively reflects the physical properties of the vacuum
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structure of the theory. Therefore, we implement the so-called mini-superspace approach,
consisting of separating and pre-diagonalising the zero mode of the field to take into account
the main effect of the symmetry breaking:

φ̂(x) = φ̂0 + φ̃(x) , φ̂0 =
1

L

∫ L

0

dxφ̂(x) (4.62)

where the zero (homogeneous) mode is denoted by φ̂0, while the non-zero modes (inhomo-
geneities) are contained in φ̃(x). The Hilbert space can be separated accordingly by writing

H = Hmini ⊗ H̃ , (4.63)

resulting in a factorised form of the Hamiltonian (4.59):

Ĥε = H̃m
KG +Hmini

ε +∫ L

0

dx
[
g0 + g2 : φ̃(x)

2 : +g4
(
: φ̃(x)4 : +6 : φ̃(x)2 : φ̂2

0 + 4 : φ̃(x)3 : φ̂0

) ] (4.64)

with the mini-superspace Hamiltonian governing the zero mode in the single-mode limit
written as

Ĥmini
ε = L

[
1

2
: π̂2

0 : +
m2

2
: φ̂2

0 : +g2 : φ̂
2
0 : +g4 : φ̂

4
0 : −ε : φ̂0 :

]
. (4.65)

Here, H̃m
KG is the free massive Klein-Gordon Hamiltonian with the zero mode subtracted,

and π̂0 is the zero mode conjugate momentum satisfying

[π̂0, φ̂0] = i . (4.66)

Also, given that the allowed Fourier modes of the field φ̂ in the case of antiperiodic boundary
condition are ±1

2
2π
l
,±3

2
2π
l
,±5

2
2π
l
, . . . , the mini-superspace approach is only necessary in the

case of periodic boundary conditions.
The matrix elements of the Hamiltonian (4.64) can be explicitly calculated on the Fock

space of the free Klein-Gordon model of mass m in finite volume L with (anti)periodic
boundary conditions. The space is made finite by introducing a UV cutoff in both Hmini

and H̃. In the mini-superspace, this is carried out by numerically diagonalising Ĥmini
ε=0 and

retaining a sufficient number of low-lying eigenstates so that the energy eigenvalues kept
can be considered numerically exact. The space of the non-zero modes H̃ decomposes into
sectors of finite total momentum. We only kept the sector with zero total momentum in our
subsequent calculations. As a result, the UV cutoff for the non-zero Hilbert space can be
parametrised as previously (4.47):

Λ

m
=

4πnmax

l
, (4.67)

where nmax ∈ Z+ is a dimensionless number, which can be interpreted as the largest momen-
tum mode present in the theory in the limit of zero mass m. The Hamiltonian and other
observables are finite matrices on the truncated Hilbert space. However, expectation values
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of observables and the spectrum still depend on the value of Λ and, therefore, differ from
the exact results by the truncation error. The leading order contribution to the truncation
error can be eliminated by appropriate renormalisation of the Hamiltonian [83]:

ĤRG
ε = Ĥε+

∫ L

0

dx
[
κ0+κ2 : φ̃(x)

2 : +κ4
(
: φ̃(x)4 : +6 : φ̃(x)2 : φ̂2

0 + 4 : φ̃(x)3 : φ̂0

) ]
(4.68)

where the κn are given by the formulae (4.50)-(4.52). However, the zero-mode part of the
Hamiltonian can be considered numerically exact by construction, given that the zero-mode
UV cutoff is chosen sufficiently large.

4.3.2 THA for the sine-Gordon model

The sine-Gordon model gives a partial low-energy effective description to a pair of Josephson-
coupled one-dimensional quasi-condensates: the antisymmetric bosonised degrees of freedom
that incorporate the tunnelling between the condensates are formulated in terms of a rela-
tivistic bosonic field that obeys the sine-Gordon dynamics (see App. B). Therefore, studying
the non-equilibrium time evolution of the condensate pair can be reduced to investigate that
of the sine-Gordon model, for which many approaches are available, such as the truncated
Wigner approach [115] or the time-dependent self-consistent Hartree Fock (mean-field) ap-
proximation [110]. Here, we discuss two different implementations of the truncated Hamil-
tonian approach to study the dynamics of the theory.

To start off, we briefly describe the sine-Gordon theory in finite spatial volume L. The
time evolution is governed by the Hamiltonian

ĤsG =

∫ L

0

dx :

(
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − λ cos βφ̂

)
: . (4.69)

Here, the semi-colons denote normal ordering with respect to the modes of the compact-
ified λ = 0 massless free boson in finite volume L, corresponding to the free part of the
Hamiltonian:

ĤFB =
1

2

∫ L

0

dx :
[
(∂tφ̂)

2 + (∂xφ̂)
2
]
: , (4.70)

where the phase field φ̂ is defined mod 2π. In the condensate literature, (4.70) corresponds
to an infinite barrier between the two condensates, with zero tunnelling rate between them.
The value of λ in (4.69) can be determined in relation to the mass of the lightest breather
m1 (for details about the sine-Gordon spectrum see Section 3.3) [103]:

λ =

(
2 sin

πξ

2

)2h−2
2Γ(h)

πΓ(1− h)

(√
πΓ
(

1
2−2h

)
m1

2Γ
(

h
2−2h

) )2−2h

(4.71)

where

ξ =
β2

8π − β2
, (4.72)

and

2h =
β2

4π
(4.73)
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is the anomalous dimension of the cosine operator. In the following, we parametrise the
Hamiltonian and physical parameters in m1 = 1 units.

Considering the cosine potential, the sine-Gordon field φ̂ represents an angular variable
of period 2π

L
. Therefore, it is natural to choose quasi-periodic boundary conditions in the

form

φ̂(x+ L, t) = φ̂(x, t) +
2π

β
m , (4.74)

where m ∈ Z is the so-called winding number (topological charge). In the following, we only
need the sector corresponding to zero topological charge m = 0, so Eq. (4.74) reduces to the
ordinary periodic boundary condition of the field.

Expanding the boson field φ̂ in (4.70) in Fourier modes

φ̂(x, t) = φ̂0 +
1

L
π̂0t+

i√
4π

∑
k ̸=0

1

k

[
ake

i 2π
L
k(x−t) + āke

−i 2π
L
k(x+t)

]
, (4.75)

results in the second-quantised form of the free massless boson Hamiltonian (4.70)

ĤFB =
2π

L

(
π̂2
0

4π
+
∑
k>0

a−kak +
∑
k>0

ā−kāk −
1

12

)
. (4.76)

with the zero mode of the field φ̂0 and the zero mode of the canonical conjugate momentum
π̂0:

π̂(x, t) = ∂tφ̂(x, t); π̂0 =

∫ L

0

dxπ̂(x, t) (4.77)

satisfying
[φ̂0, π̂0] = i . (4.78)

The ak and āk are the left and right-moving canonical bosonic annihilation (creation) oper-
ators with positive (negative) momentum k, respectively, that satisfy the canonical commu-
tation relations

[ak, al] = [āk, āl] = kδk+l,0. (4.79)

As a result, the sine-Gordon Hamiltonian (4.69) takes the form

ĤsG =
2π

L

(
π̂2
0

4π
+
∑
k>0

a−kak +
∑
k>0

ā−kāk −
1

12

)
− λ

2

∫ L

0

:
(
eiβφ̂ + e−iβφ̂

)
: . (4.80)

Truncated conformal space approach (TCSA)

The usual formulation of the truncated Hamiltonian approach (THA) to studying the spec-
trum and time evolution of the sine-Gordon model is given by truncated conformal space
approach (TCSA) [115, 124, 131, 132]. It uses the eigenstates of the massless free boson in
finite volume L as a discrete variational basis, truncated by a UV energy cutoff to reduce
the computation of the spectrum and the time evolution of expectation values of observables
to simple finite matrix manipulation. Similarly to the THA discussed in Section 4.3.1, the
results provided by the TCSA are subject to truncation errors, leading to deviations from the
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exact results. For relevant perturbations such as the cosine potential appearing in 4.80, the
truncation errors tend to zero as the energy cutoff increases. The convergence of the TCSA
depends on the conformal weight 4.73 of the perturbing operator and can be improved by
applying appropriate renormalisation group methods [133–135]. However, while powerful in
general, we found that these do not alter the results of our numerical simulations, nor do
they improve the rate of convergence with respect to the cutoff.

As already mentioned, the standard TCSA is built upon the Hilbert space of the free
massless boson in a finite volume L, consisting of Fock modules Fν :

HFB =
⊕
ν∈Z

Fν , (4.81)

with each Fock module

Fν =

{
|ψ⟩ =

∏
k>0

ark−kā
r̄k
−k |ν⟩

∣∣∣∣rk, r̄k ∈ N+

}
(4.82)

constructed upon the zero mode plain wave basis

|ν⟩ = eiνβφ̂0 |0⟩ . (4.83)

The Hilbert space can be further deconstructed into different sectors of finite momentum
s ∈ Z:

Fν =
⊕
s∈Z

F (s)
ν (4.84)

where the module

F (s)
ν =

{
|ψ⟩ =

∏
k>0

ark−kā
r̄k
−k |ν⟩

∣∣∣∣∑ krk −
∑

kr̄k = s

}
, (4.85)

corresponds to free many-boson states with total spatial momentum p = 2πs
L
. In our following

calculations, we only study homogeneous quantum quenches, and therefore we can restrict
ourselves to work within a single momentum sector of s = 0.

As a next step, the Hilbert space 4.81 is truncated by imposing an upper energy cutoff ecut,
limiting the truncated Hilbert space to a finite number of low-energy free boson eigenstates
[124]:

Htrun.
FB = span

{∏
k>0

ark−kā
r̄k
−k |ν⟩

∣∣∣∣(νβ)24π
+
∑
k>0

k(rk + r̄k) < ecut

}
. (4.86)

Though effective for large values of β, the above truncation procedure has the disadvantage
that in the semi-classical limit corresponding to small β, it includes a large number of Fock
modules, limiting its effectiveness in the experimentally relevant parameter regime.

The mini-superspace-based truncated Hamiltonian approach (MSTHA)

To improve on the procedure outlined in the previous section, it is favourable to decompose
the bosonic field φ̂ into homogeneous (zero mode) and inhomogeneous (non-zero modes,
a.k.a. oscillator modes) parts:

φ̂(x, t) = φ̂0(t) + φ̃(x, t) . (4.87)
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Omitting the contribution coming from the oscillator modes reveals the single-mode dynam-
ics of the sine-Gordon model describing a quantum pendulum (for details on the volume
dependence, refer to App. A):

ĤQP =
1

2L
π̂2
0 − λL

(
2π

L

)2h

cos(βφ̂0) . (4.88)

Accordingly, the full model containing the zero mode and the oscillator modes describes a
quantum pendulum coupled to a set of non-linearly interacting phononic degrees of freedom:

ĤsG =
1

2

∫ L

0

:
[
(∂tφ̂0)

2 + (∂t ˆ̃φ)
2 + (∂x ˆ̃φ)

2
]
: −λ

2

∫ L

0

dx :
[
eiβφ̂0eiβφ̃ + e−iβφ̂0e−iβφ̃

]
: (4.89)

The above decomposition is useful if we consider that in the experimentally relevant param-
eter regime, the inter-mode interactions are weak (β is small), and therefore, it is viable to
treat the theory as a quantum pendulum weakly coupled to a set of non-linear phonons. The
periodic nature of the potential and, therefore, the field is encapsulated in the zero mode,
requiring precise representation of the quantum pendulum in the THA. Therefore, we first
solve the zero mode dynamics numerically exactly and couple the non-zero modes to the
quantum pendulum in the next step. The usefulness of this approach also becomes apparent
when considering the THA as a variational method: optimizing the variational basis results
in a better convergence rate, allowing for the more precise computation of the spectrum and
time evolution of the expectation values of observables.

To start off, we construct the quantum pendulum quantum mechanics on the plane wave
basis ({|ν⟩}) (4.83) with an appropriate truncation so that the diagonalised eigenvalues

ĤQP |n⟩ = εn |n⟩ n ∈ N (4.90)

converge to the exact results. In the next step, the finite matrices of the operators π̂2
0 and

e±iβφ̂0 appearing in (4.88) are constructed on the truncated quantum pendulum eigenbasis
{|n⟩}. The non-zero mode part of the Hamiltonian can be easily implemented [115, 124,
131, 132] on the non-zero mode free boson basis. Using the fact that the Hamiltonian 4.80
factorises with respect to left and right moving modes, the matrix representation of the non-
zero mode operators can be separately implemented in the left and right moving sectors,
similarly to a previous procedure detailed in [131], reducing the memory requirement of the
THA. Finally, the sine-Gordon Hamiltonian is put together from the finite matrices of zero
and non-zero mode operators according to (4.80). As a result, the precision of the mini-
superspace-based THA (MSTHA) is controlled via two separate truncation parameters: the
zero mode cutoff nmax and the non-zero mode truncation ℓmax:

Htrun.
FB = span

{∏
k>0

ark−kā
r̄k
−k |n⟩

∣∣∣∣n ≤ nmax and
∑
k>0

k(rk + r̄k) ≤ ℓcut

}
. (4.91)

For a given truncation (nmax, ℓmax), the time evolution of any initial state |Ψ0⟩

|Ψ(t)⟩ = e−iĤsGt |Ψ0⟩ (4.92)
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can be straightforwardly computed by exponentiating the finite matrix of ĤsG (4.80). Here
we opt for the so-called Bessel-Chebyshev method [117, 131] and maintain its validity by
monitoring the norm of the time-evolved state |Ψ(t)⟩. Of course, the choice of the initial
state |Ψ0⟩ depends on the quench protocol, which we discuss in Chapter 8.

To validate the MSTHA, the zero mode spectrum was cross-checked against the solution
of the quantum pendulum Schrödinger equation solved numerically via the shooting method.
The time evolution of the single-mode theory was also compared against the numerical
solution of the coordinate Schrödinger equation of the quantum pendulum. The MSTHA
containing all modes (up to the respective truncation) was validated first by comparing the
truncated spectrum to exact results available from sine-Gordon S-matrix theory [136], and
its time evolution was compared to previous implementations of TCSA, where available. For
each simulation, we checked the convergence of the method by studying the cutoff dependence
of the results.
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Chapter 5

Weak integrability breaking in the
XXZ spin chain

We investigate the weak integrability breaking of integrable spin chains, where integrability
breaking occurs only at higher orders in the perturbation parameter g. Our approach consists
of (numerical) exact diagonalisation of the spin-1/2 XXZ spin chain, perturbed by one of
its generalised currents, associated with weak integrability breaking [137], and extracting
the level spacing statistics, an indicator of integrability, to study the finite size scaling of
the crossover from the Poissonian (integrable) to Wigner-Dyson (chaotic/non-integrable)
statistics. We compare the results to a known strongly integrability breaking perturbation,
the next-to-nearest-neighbour interaction, serving as a benchmark for differentiation between
the two classes of integrability breaking.

We start by introducing the notion of weak integrability breaking in Section 5.1, then
move on to discussing the Hamiltonian of the XXZ chain and its perturbations in Section 5.2.
Section 5.3 contains the introduction and definitions of the level spacing distribution, which
serves as the indicator for integrability and its breakdown. In Section 5.2, we briefly discuss
the failure of perturbation theory for differentiating between the two types of integrability
breaking and present our (numerical) results concerning the crossover in Section 5.5. We
give our conclusions in Sec. 5.6.

5.1 Weak integrability breaking

One of the cornerstones of the modern theory of quantum many-body physics is provided
by exactly solvable models of quantum systems. In particular, one-dimensional integrable
models are at the forefront of interest due to the rapidly emerging field of generalised hydro-
dynamics, which provides a hydrodynamical description of the non-equilibrium dynamics at
the mesoscopic scale [138,139]. An integrable system is characterised by an infinite number
of local conserved charges and corresponding generalised currents given through the respec-
tive continuity equations. In this context, one of the main questions is the construction
of these charges and generalised currents and their expectation values in equilibrium, with
many exact results in the thermodynamic limit [138–142] and finite volume [143] as well.
In particular, a recent work by Pozsgay [76] led to the exact algebraic construction of the
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current operators in integrable spin chains, including the XXZ model.
It was discovered in a recent work [137] that the existence of exact formulae for the current

expectation values is connected to the so-called long-range deformation of integrable short-
range spin chains (such as the XXZ model). Originating from the Ads/CFT correspondence
[144–146], long-range spin chains are one-parameter deformations of short-range spin chains,
that preserve integrability at every order of the deformation parameter by simultaneously
increasing the interaction range. At the same time, a strong connection has been found [147]
between long-range deformations and the so-called T T̄ -deformations of integrable quantum
field theories [148–151], sharing the same algebraic origins that result in the preservation of
integrability at finite orders in the deformation parameter and allows for the construction of
the expectation values of the current operators.

More precisely, in [137], it has been observed that for each generalised current of an
integrable short-range spin chain, there exists a long-range deformation of the model, such
that the leading order perturbing operator is precisely that generalised current. As a result,
perturbing an integrable spin chain via one of its generalised currents preserves integrability
at the leading order in perturbation theory, with the integrability breaking occurring at
higher orders. In contrast, the usual notion of integrability breaking takes place already at
first order in perturbation theory, and the integrability of the model can not be maintained
by adjusting the perturbing operator order-by-order. To differentiate the two types better,
we call the former weak and the latter strong integrability breaking. Note that earlier
works did not make the distinction between these two classes of integrability breaking [152],
and in that context, the term ’weak’ simply refers to the small value of the non-integrable
coupling. Here, we use the term to describe the class of integrability breaking associated
with current perturbations and T T̄ -deformations, where at first order in perturbation theory,
the integrability of the model is maintained. The distinction between the two classes of
integrability breaking has only come into view recently; in the work [153], the authors argue
that systems with weak integrability breaking span the tangent space of integrable systems
embedded in the full space of local many-body systems. Accordingly, weakly breaking the
integrability is equivalent to following the tangent line of the manifold of integrable systems,
and as a result, the onset of chaos is much slower as opposed to systems perturbed by a general
integrability breaking perturbation, equivalent to ’radially’ moving away from the integrable
system. This is also supported by the observation done in [84], where the authors studied the
thermalisation of a system induced by integrability breaking via current perturbation within
the framework of generalised hydrodynamics. Contrary to a generic integrability breaking
operator with coupling λ, the current perturbation does not thermalise the systems on the
expected time scales t ∼ λ2, due to the ’weak’ nature of integrability breaking. For this
reason, weak integrability breaking is closely related to the out-of-equilibrium dynamics and
relaxation of physical systems and warrants a deeper investigation.
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5.2 The perturbed XXZ Hamiltonian

The spin-1/2 XXZ chain of finite length L is governed by the Hamiltonian

ĤXXZ =
L∑
i=1

[
ŝxi ŝ

x
i+1 + ŝyi ŝ

y
i+1 +∆ŝzi ŝ

z
i+1

]
(5.1)

where the spin operators ŝa are defined as

ŝx =
1

2

[
0 1
1 0

]
ŝy =

1

2

[
0 −i
i 0

]
ŝz =

1

2

[
1 0
0 −1

]
. (5.2)

Throughout this chapter, we apply periodic boundary conditions ŝaL+1 ≡ ŝa1. As discussed
before in Section 3.1, the XXZ model has three distinct phases, controlled by the anisotropy
parameter ∆, corresponding to a gapless phase for −1 < ∆ < 1 and two phases with a
finite gap for |∆| > 1. In the special points ∆ = ±1, the U(1) symmetry generated by the
conserved charge

Ŝz =
L∑
i=1

ŝzi (5.3)

is enhanced to SU(2). Accordingly, investigating the integrability breaking in these special
points requires particular care, and therefore, in the following, we restrict our attention to
parameters |∆| ≠ 1.

Studying the effects of weak integrability breaking requires perturbing the XXZ chain via
one of its generalised currents [137]. For the model, the first two charges Q̂1 = Ŝz and Q̂2 =
ĤXXZ correspond to the U(1) symmetry and time translations, respectively, and are general
symmetries of spin chain models studied here, independent of integrability. Therefore, the
first non-trivial charge that contributes to integrability is Q̂3, given by

Q̂3 =
L∑
l=1

q̂3,l (5.4)

with

q̂3,l = ŝxl−1ŝ
z
l ŝ
y
l+1− ŝ

y
l−1ŝ

z
l ŝ
x
l+1+∆

(
−ŝzl−1ŝ

x
l ŝ
y
l+1 + ŝzl−1ŝ

y
l ŝ
x
l+1 − ŝxl−1ŝ

y
l ŝ
z
l+1 + ŝyl−1ŝ

x
l ŝ
z
l+1

)
. (5.5)

The corresponding generalised current is defined through the continuity equation

ĵ3,l+1 − ĵ3,l = i
[
q̂3,l, ĤXXZ

]
(5.6)

and reads

ĵ3,l = −1

2

[
2∆
(
ŝxl−2ŝ

y
l−1ŝ

x
l ŝ
y
l+1 + ŝxl−2ŝ

z
l−1ŝ

x
l ŝ
z
l+1 + ŝyl−2ŝ

x
l−1ŝ

y
l ŝ
x
l+1 + ŝyl−2ŝ

z
l−1ŝ

y
l ŝ
z
l+1

+ ŝzl−2ŝ
x
l−1ŝ

z
l ŝ
x
l+1 + ŝzl−2ŝ

y
l−1ŝ

z
l ŝ
y
l+1 − ŝxl−2ŝ

y
l−1ŝ

y
l ŝ
x
l+1 − ŝyl−2ŝ

x
l−1ŝ

x
l ŝ
y
l+1

)
− 2

(
ŝxl−2ŝ

z
l−1ŝ

z
l ŝ
x
l+1 + ŝyl−2ŝ

z
l−1ŝ

z
l ŝ
y
l+1

)
− 2∆2

(
ŝzl−2ŝ

x
l−1ŝ

x
l ŝ
z
l+1 + ŝzl−2ŝ

y
l−1ŝ

y
l ŝ
z
l+1

) ]
− 1 + ∆2

4

(
ŝxl−1ŝ

x
l + ŝyl−1ŝ

y
l

)
− ∆

2
ŝzl−1ŝ

z
l .

(5.7)
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The current-perturbed XXZ Hamiltonian has the form

ĤJ = ĤXXZ + g3Ĵ , (5.8)

with the perturbation

Ĵ =
L∑
l=1

ĵ3,l . (5.9)

The system described by the perturbed Hamiltonian (5.8) is non-integrable. However, ac-
cording to [137], integrability breaking only occurs at higher order in perturbation theory
(in g3). Therefore, we also consider the next-to-nearest-neighbour (NNNI) perturbation of
(5.1) as a benchmark, given by the Hamiltonian

ĤNNNI = ĤXXZ + gN

L∑
i=1

ŝzi ŝ
z
i+2 =

L∑
i=1

[
ŝxi ŝ

x
i+1 + ŝyi ŝ

y
i+1 +∆ŝzi ŝ

z
i+1 + gN ŝ

z
i ŝ
z
i+2

]
, (5.10)

where the perturbing operator

ÔNNNI =
L∑
i=1

ŝzi ŝ
z
i+2 , (5.11)

is known to break integrability already at first order, as also studied in [154] where the
authors investigated the transport properties altered by the integrability breaking.

By definition, the weak (or strong) classes of integrability breaking is a property of the
perturbing operator Ô of an integrable model and is independent of the value of the coupling
gO. However, one usually characterises the strength of integrability breaking via the coupling
of the integrability-breaking operator appearing in the Hamiltonian. Therefore, to accurately
compare the two classes of perturbations Ĵ and ÔNNNI, we introduce the effective coupling
geff of an operator Ô as

geff = gOnO , (5.12)

where again the gO is the coupling appearing in the Hamiltonian

Ĥnon−integrable = Ĥintegrable + gOÔ , (5.13)

and nO is defined as the coefficient of the leading order asymptotic term in the norm of Ô:

||Ô||2 = nOL+ ... , ||Ô||2 = sup
||x||=1

||Ôx|| . (5.14)

To leading order, the norm ||Ô||2 is linear in the volume since Ô is expressed as a translation-
ally invariant sum of localised terms (see the definitions (5.9) and (5.11)). This parametri-
sation allows for directly comparing the classes of the two perturbing operators.

Some explicit values of the norms of Ĵ and ÔNNNI are shown in Table 5.1. As expected,
the norm of the current perturbation is dependent on the anisotropy parameter ∆, as opposed
to the NNNI operator. Also, in Fig 5.1, the operator norms are presented as a function of the
length L of the chain. Indeed, the norms are extensive with the volume, changing linearly
with L apart from some fluctuations in ||Ĵ ||2 caused by the fact that L is changed in steps of
2, while the terms ĵ3,l in Eq. (5.9) are localised to four sites. The norm nO can be obtained
straightforwardly by linear curve-fitting on the data. Some values are presented in the last
column of Table 5.1.
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L 10 12 14 16 18 20 nO∥∥∥Ĵ∥∥∥
2

∆ = 0.2 0.742 1.306 1.232 1.841 1.772 2.346 0.143

∆ = −1.2 2.376 3.115 3.357 4.614 4.726 6.023 0.348

∆ = 1.2 2.274 3.115 3.455 4.614 4.412 6.023 0.340∥∥∥ÔNNNI

∥∥∥
2

1.500 2.000 2.500 3.000 3.500 4.000 0.250

Table 5.1: The norms of the perturbing operators J and ÔNNNI
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NNNI

J for Δ = 0.2

J for Δ = -1.6

J for Δ = 1.6

Figure 5.1: Norm of Ĵ and ÔNNNI as a function of the system size L in the three phases.

5.3 The level spacing statistics

The onset of quantum chaos (breaking of integrability) in quantum many-body systems can
be studied via the statistics of energy eigenvalues and eigenvectors [155–166] Generally, a
physical quantum system is described by a Hermitian Hamiltonian Ĥ that has real eigen-
values (energy levels) {Ej}. The level spacing of such a system is given by the difference
between consecutive energy levels

Sj = Ej+1 − Ej E1 ≤ E2 ≤ ... , (5.15)

that are monotonically increasingly ordered. The level spacing distribution P (s) of the
system is defined as the distribution of the normalised level spacings

sj = Sj/S̄ (5.16)

where S̄ is the mean level spacing. Random matrix theory predicts that the level spacing
distribution of integrable systems is exponential:

P (s)I = e−s , (5.17)
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while for non-integrable systems, the level spacing statistics take the form of the Wigner-
Dyson distribution1:

P (s)NI =
π

2
se−

π
4
s2 . (5.18)

As a result, the level spacing distribution is a direct indicator of (non-)integrability. For an
integrable model, the different energy levels do not interact due to the presence of a large
number of conserved charges. Their value follows a Poissonian distribution, which results in
the exponential statistics of the level spacings. When integrability is broken, the charges are
no longer conserved, and the interaction between the energy levels results in level repulsion
that suppresses the energy differences close to zero. Considering the system as a function
of a parameter such as a volume, the energy levels in an integrable system as a function of
the volume simply cross while introducing integrability-breaking terms in the Hamiltonian
results in repulsion between the levels, opening up additional non-zero level spacings. In
the thermodynamic limit, corresponding to infinite systems size (in random matrix theory,
infinite matrix size), the change between exponential and the Wigner-Dyson distribution is
sudden for any non-zero value of the non-integrable coupling g. In finite system size (finite
random matrix size), the distribution is a continuous function of the coupling g, and the
change of the statistics from Poissonian to Wigner-Dyson is a continuous crossover that
becomes sharper for larger volumes [155,159].

Additionally, in a finite physical system, the level spacing statistics differ from the random
matrix predictions: due to the locality of the Hamiltonian, the structure of the low-energy
(and high-energy for lattice systems) part of the spectrum is dictated by quasi-particle
excitations. Therefore, when considering the level spacing statistics of the systems introduced
in Section 5.2, we discard the low- and high-energy parts and only consider the middle two-
thirds of the full spectrum to construct the level spacing distribution. Further care needs to
be taken to eliminate degeneracies originating from trivial symmetries of the model [167,168].
In the following, we restrict ourselves to working in the sector corresponding to zero total
momentum, even spatial parity and a fixed non-zero value of Sz = 2. Note that in the sector
where Sz = 0, there is an additional spin-flip symmetry to consider. We obtained similar
results in the sectors Sz = 1 and 3.
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Figure 5.2: Level spacing distribution of the XXZ spin chain for a chain length of L = 22
and anisotropy parameters (left to right) ∆ = 0.2, 1.6,−1.6 with the exponential distribution
fitted (dashed red line).

1The specific form of the Wigner-Dyson distribution depends on the random matrix ensemble. Here we
work with real and symmetric matrices corresponding to the orthogonal Gaussian ensemble.
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In Figure 5.2, the level spacing statistics of the unperturbed g = 0 XXZ chain are
shown for a volume L = 22 in the three distinct phases. The exponential fit (shown by red
dashed lines) has a single fitting parameter corresponding to the overall normalisation of the
distribution and describes the statistics very well.

To illustrate that the perturbations introduced in Section 5.2 indeed break integrability,
we switch on a suitably large coupling g and compute the level spacing distribution, shown
in Fig. 5.3. The statistics take the form of the Wigner-Dyson distribution, indicated by
the matching fitting of (5.18). As before, the only fitting parameter here is the overall
normalisation of the distribution.
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Figure 5.3: Typical level spacing statistics of a non-integrable system with the Wigner-Dyson
distribution fitted (red dashed line). left : ĤNNNI with L = 22 ∆ = 0.2 and geff = 0.1. right :
ĤJ with L = 22, ∆ = 0.2 and geff = 0.42.

5.4 The failure of perturbation theory

By definition, weak integrability differs from the usual strong integrability breaking as it re-
tains the integrable properties of the system at first order in perturbation theory. Therefore,
an attractive (and very simple) way of determining the order of integrability breaking is to
consider the spectrum as computed from first-order perturbation theory in the coupling g
to construct the level spacing statistics. However, it turns out that this route falls short, as
illustrated in Fig 5.4, where the level spacing distribution of HNNNI is shown as computed
by first-order perturbation theory. Clearly, the statistics remain exponential even for very
large values of the coupling g.
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Figure 5.4: The level spacing statistics of ĤNNNI computed from first-order perturbation
theory for the case L = 22, ∆ = 0.2, and different values of the coupling.
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To gain a more detailed picture, we consider the two-level subsystem of an integrable
theory as a function of the volume L (continued to real values), for which the breaking of
integrability introduces level repulsion:[

a1(L) 0
0 a2(L)

]
, (5.19)

where the unperturbed energy levels are denoted by a1,2(L). A general perturbation of the
subsystem takes the form [

a1(L) + g∆a1(L) gϵ(L)
gϵ(L) a2(L)− g∆a2(L)

]
. (5.20)

parametrised by the diagonal and off-diagonal elements of the perturbation ∆a1,2(L) and
ϵ(L), with the integrability-breaking coupling g. For the unperturbed system, corresponding
to integrability, the level crossing happens for L0 for which

a1(L0) = a2(L0) . (5.21)

At first order in perturbation theory in g, the two-level spectrum is computed by diagonalising[
a1(L) + g∆a1(L) 0

0 a2(L)− g∆a2(L)

]
, (5.22)

which simply shifts the level crossing to a position L∗ that can be computed from

a1(L∗) + g∆a1(L∗) = a1(L∗)− g∆a2(L∗) , (5.23)

and up to first order in g takes the form

L∗(g) = L0 − g
∆a1(L0)−∆a1(L0)

a′1(L0)− a′2(L0)
+O

(
g2
)
. (5.24)

As a result, first-order perturbation theory does not account for level repulsion, and the level
spacing statistics remain exponential.

As first-order perturbative corrections did not introduce repulsion between the energy
levels, it is tempting to move on to second-order perturbation theory. The exact diagonal-
isation of the perturbed subsystem (5.20) results in level repulsion due to the off-diagonal
terms ε(L). However, perturbative expansion of the perturbed energy levels up to second
order in g is numerically unstable in the vicinity of two close energy levels

E1,2 = a1,2(L) + g∆a1,2(L)± g2
2ϵ(L)2

a1(L)− a2(L)
+O

(
g3
)

(5.25)

due to the energy difference appearing in the denominator, which diverges when the energy
levels a1(L) and a2(L) are close, as is the case for an integrable system. Therefore, the order
of integrability breaking can not be concluded by perturbatively computing the spectrum to
construct the level spacing statistics.
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Figure 5.5: Determination of the dependence of the peak position on geff for the NNNI (a)
and current (b) perturbations for L = 22, ∆ = 0.2. The blue solid lines correspond to the
Gaussian-filtered data. The extracted peak positions are denoted by blue markers.
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5.5 The crossover from Poissonian to Wigner-Dyson

statistics

Seeing the failure of perturbation theory, we apply (numerical) exact diagonalisation to
the perturbed XXZ model introduced above and extract the level spacing statistics from the
numerically obtained spectrum. In finite volume, varying the integrability-breaking coupling
g results in a smooth crossover between the exponential and Wigner-Dyson statistics. To
characterize the crossover, we obtain the peak of the intermediate distributions that move
from zero to the final value of

√
2/π characteristic to the Wigner-Dyson function (5.18).

The normalised level spacings are sorted into bins of width 0.5 for chain lengths L =
16, 18 and 20 and of width 0.1 for L = 22 and 24. The resulting distribution is subject to
fluctuations due to the finite bin size, which we smooth out by applying a Gaussian filter
of kernel radius r = 6 for L = 16 and 18 and r = 4 for L ≥ 20. We note that the number
of level spacings for chain lengths below L ≤ 16 is insufficient to yield suitable statistics.
Fig 5.5 displays the crossover from exponential to Wigner-Dyson statistics, together with
the obtained peaks of the appropriate crossover distributions for ∆ = 0.2 and a chain length
of L = 22. It is clear that for the NNNI perturbation, the crossover takes place at smaller
couplings than for the current perturbation, suggesting the difference between the two classes
of integrability breaking of the operators.
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Figure 5.6: The obtained peak positions as a function of the effective coupling geff for the case
of ĤNNNI for ∆ = 0.2 and different chain lengths L. The dashed black line marks the peak
position of the Wigner-Dyson distribution (5.18)

√
2/π, and the orange line corresponds to

the crossover peak position
√
1/2π. As expected, the transition from Poissonian to Wigner-

Dyson statistics is faster for longer chains.

Figs 5.6 and 5.7 display the g-dependence of the obtained peaks of the intermediate distri-
butions in the gapless phase for ∆ = 0.2 and various chain lengths L. Though filtering allows
for the determination of the peaks, the accuracy of their position is ultimately limited by
the bin size, resulting in the observed fluctuations. According to expectations, the crossover
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Figure 5.7: The obtained peak positions as a function of the effective coupling geff for the
case of ĤJ for ∆ = 0.2 and different chain lengths L. The dashed black line marks the peak
position of the Wigner-Dyson distribution (5.18)

√
2/π, and the orange line corresponds

to the crossover peak position
√

1/2π. The transition from Poissonian to Wigner-Dyson
statistics is faster for longer chains, as expected.

is faster for longer chains, and it is substantially slower for the current perturbation than for
the NNNI case for all values of L, consistent with the idea that for the case of the current
perturbation, integrability is broken at higher-than-first order in perturbation theory.

To obtain more decisive evidence that the current perturbation preserves integrability at
first order, we define the crossover coupling gcr as the effective coupling geff for which the
peak of the intermediate distribution is exactly halfway between the location of the peaks
of the limiting exponential and Wigner-Dyson distributions. That is, for geff = gcr, the peak
of the statistics is at x0, where 2x0 =

√
2/π is the position of the peak of the Wigner-

Dyson distribution. Since for larger volumes L, the crossover is expected to occur faster (as
already seen before), gcr(L) as a function of the volume should be a monotonically decreasing
function of L. More precisely, in the gapless phase, we expect the crossover coupling to be
described by a power-law [169,170]:

gcr ∝ L−α α > 0 , (5.26)

whereas in the massive phase, it is expected to be an exponentially decaying function of the
finite size L:

gcr ∝ e−βL β > 0 . (5.27)

Note, however, that since the crossover is a smooth function of the effective coupling,
other definitions of the crossover scale are also perfectly possible [169,170]. In the work [170],
the authors defined gcr as the fitting parameter (coupling scale) of a hyperbolic function
fitted to the transition of the intermediate peak positions. Indeed, for the case of the NNNI
perturbation, they obtained the exponent α = 3, which we also recover using our definition
outlined above.
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5.5.1 The gapless phase

Here we discuss the results obtained by performing the above-described procedure for both
the current and NNNI perturbations, focusing on the gapless phase for ∆ = 0.2.
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Figure 5.8: Computation of the crossover coupling gcr from the peak positions for different
effective couplings for the current (left) and NNNI perturbation (right) in the gapless phase
(∆ = 0.2). The parabola fitted around x0 (indicated by the orange dashed line) is denoted
by the red solid line.

In Fig. 5.8, the obtained peak positions for L = 22 can be seen (similarly to Fig. 5.7
and 5.6) with a parabola f(g) fitted to the data around x0. The crossover coupling gcr can
be obtained by simply solving

f(gcr) = x0 (5.28)

for all values of the volume L, resulting in the function gcr(L), shown in Fig. 5.9 for both
the current and NNNI perturbations, together with the logarithm of the crossover coupling
log gcr. As expected, the results exhibit a power-like decay with the volume L, and the
exponents can be simply determined by fitting a linear function on log gcr(L) = a + b logL
to the results, yielding

bJ = −1.99± 0.18

bNNNI = −3.11± 0.27
(5.29)

As mentioned before, for the case of the NNNI perturbation, we recover the previously
obtained exponent of −3, claimed to be universal for integrability at first order in gapless
spin chains [169, 170]. Also, the exponent bJ , corresponding to the current perturbation,
supports the idea that the current perturbation only breaks integrability at higher orders in
perturbation theory in g.

5.5.2 The massive phase

Now, we turn to the results obtained in the gapped phase, where the crossover coupling is
expected to be an exponentially decaying function of the volume. Due to the finite correlation
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and NNNI perturbations (red markers) on normal (left) and log-log scale (right) in the
gapless phase (∆ = 0.2). Dashed lines correspond to the fitted AL−3 (red) and BL−2 (blue),
respectively.

length, correlations typically decay exponentially, and as a result, the finite size effects are
also expected to decay exponentially with the volume [171,172].

Figs. 5.10 and 5.11 display the crossover coupling and its logarithm as a function of
the volume L for ∆ = 1.6 and −1.6, respectively, corresponding to the two gapped phases.
To demonstrate the exponential behaviour, we fit a linear function c + dL on log gcr. For
∆ = 1.6, the resulting scaling exponents are given by

dJ = −0.056± 0.014

dNNNI = −0.157± 0.020 ,
(5.30)

while for ∆ = −1.6 the obtained exponents are

dJ = −0.063± 0.014

dNNNI = −0.137± 0.043 .
(5.31)

Again, there is a substantial difference between the strength of integrability breaking
for the two operators. For the current perturbation, the crossover coupling is a magnitude
larger than for the NNNI perturbations for all values of the volume, hinting at the difference
between the classes of integrability breaking. The conclusive evidence again, however, is
that the coefficient d describing the decay of the crossover coupling with the volume is much
smaller for J than for the NNNI perturbation, in agreement with the conjecture that the
current perturbation preserves integrability at first order in perturbation theory.

5.6 Summary

We presented our results concerning the weak integrability breaking of the XXZ spin chain,
induced by perturbing it via one of its generalised currents of the conserved charges that im-
ply integrability. In contrast with the usual (’strong’) class of integrability breaking, where
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and NNNI perturbations (red markers) on normal (left) and log-log scale (right) in the
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integrability is broken already at first order in perturbation theory in the integrability break-
ing coupling g, a system with weakly broken integrability preserves its integrable properties
at first order, and the onset of chaos takes place only at higher orders.

Our approach consisted of perturbing the (integrable) spin-1/2 XXZ spin chain via its
first generalised current Ĵ , which is supposed to break integrability only weakly [137], and
evaluating the level spacing statistics as a proxy of the presence of integrability using exact
diagonalisation. We compared the results to a well-known strongly integrability-breaking
perturbation, the next-to-nearest neighbour (NNNI) perturbation, serving as a benchmark.
Comparison between the two perturbations independently of their normalisation requires
rescaling the integrability-breaking couplings g by the operator norms per unit volume.

In finite volume, the onset of quantum chaos can be characterised by the level spacing
distribution, which exhibits a smooth crossover from the Poissonian (integrable) to Wigner-
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Dyson statistics (chaotic/non-integrable) as the integrability-breaking parameter g is in-
creased. In accordance with expectations [137], for the current perturbation Ĵ , we find that
the crossover values of the rescaled couplings were markedly higher for any fixed value of
the volume L, and their behaviour with L exhibited a much slower decay than for that
of the NNNI perturbation. Specifically, we found that in the gapless phase, the scaling of
the NNNI crossover coupling with the volume goes as 1/L3, a law previously claimed to be
universal in gapless spin chains with strongly broken integrability [170], albeit without ana-
lytical evidence. In contrast, in the case of the current perturbation, the crossover values of
the coupling display a slower scaling with an exponent ≈ 2 (5.29), supporting the idea that
the current perturbation only breaks integrability at higher orders in perturbation theory,
resulting in a slower onset of quantum chaotic behaviour.

The nature of the exponents is still an open question; in the work [170], the exponent
−3 is claimed to be universal for gapless spin chains, albeit without analytical support.
Nevertheless, it is natural to speculate that the value of the exponent is ultimately dependent
on the order in which integrability is broken. Sadly, as discussed above in Section 5.4, the
crossover in the level spacing statistics can not be resolved by perturbation theory, given
the breaking of integrability is generic in the sense that the onset of chaos happens through
the introduction of repulsion between two energy levels of the integrable system. Here we
note, however, that in non-integrable quantum field theories obtained as perturbations of
conformal field theories, the onset of chaos (crossover to the Wigner-Dyson statistics) occurs
already in the perturbative regime [165].
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Chapter 6

Non-equilibrium dynamics in the φ4

theory

Generally, strongly interacting quantum field theories can not be solved exactly, and one has
to resort to approximate or numerical methods to compute the dynamics. Typically, their
dynamics is studied in some semi-classical limit by neglecting higher-order correlations. As
discussed previously in Chapter 4, semi-classical methods are generally uncontrolled and
require careful testing against other, more controlled methods.

Here we consider the non-equilibrium dynamics of the (1+1)d φ4 theory in the Z2-
unbroken phase, serving as a testing ground for two widely used semi-classical methods: the
truncated Wigner approximation (TWA) and the (Gaussian) self-consistent method (SCA),
also known as the mean field approximation. To test the validity of the semi-classical approx-
imations, we also apply a flavour of the truncated Hamiltonian approach (THA), built upon
a massive free boson basis. To study the time evolution of observables, we perform general
quenches where the system is initially in the ground state of a free boson with mass m0 and
at t = 0, it is quenched to the massive interacting theory with post-quench (renormalised)
mass m and quartic coupling λ/4!.

6.1 The quench protocol

For the (1+1)d φ4, a detailed discussion is given in Section 3.2. The finite volume theory is
presented in Section 4.3.1 together with the detailed implementation of the THA.

A general quantum quench in the φ4 theory consists of changing the initial (pre-quench)
parameters m0 and λ0 to some post-quench values m and λ. Therefore, the finite volume
Hamiltonian describing the system before the quench is given by the pre-quench Hamiltonian

Ĥ0 =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2

0φ̂
2 +

λ0
4!
φ̂4

]
:, (6.1)

while after t = 0, it is governed by the post-quench Hamiltonian

Ĥ =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2φ̂2 +

λ

4!
φ̂4

]
: , (6.2)
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where L is the finite volume and we use periodic boundary conditions. In our protocol, the
initial state is taken to be the ground state of Ĥ0, that is Ĥ0 |Ψ0⟩ = E0 |Ψ0⟩ with the smallest
eigenvalue E0. After t = 0 the time evolution is generally out-of-equilibrium and is governed
by (6.2):

|Ψ(t)⟩ = e−iĤt |Ψ0⟩ . (6.3)

Presently, we focus on the Fourier modes of the two-point function

C2(x, t) = ⟨: φ̂(x, t)φ̂(0, t) :⟩ (6.4)

given (in Schrödinger picture) by

C2(n, t) = ⟨: φ̂k(t)φ̂−k(t) :⟩ = ⟨Ψ(t)| : φ̂kφ̂−k : |Ψ(t)⟩ , k =
2πn

l
. (6.5)

Due to the periodic boundary conditions, the available Fourier modes become discrete and
can be characterised by an integer n:

k =
2πn

l
, n ∈ Z. (6.6)

For our discussions, we can set the post-quench mass m = 1 and the pre-quench coupling
λ0 = 0 without the loss of generality. We choose the initial state |Ψ0⟩ as the ground state of
the free massive boson corresponding to m0 and simultaneously turn on the quartic coupling
and change the mass to m = 1. To compute (6.5), we apply the THA built on the eigenbasis
of the free massive boson of mass m = 1, which is consequently equal to the post-quench
mass. (The reader is referred to Section 4.3.1 for the implementation details.) Generally, it
is not required to choose the post-quench mass to be the unit mass. However, the choice of
m = 1 is well-suited for the current THA as the modes corresponding to the post-quench mass
are already incorporated in the basis. The initial state can be constructed exactly in terms
of the post-quench modes through Bogolyubov transformation; however, its normalisation
must be adjusted to ensure that the vector has a unit norm on a truncated basis.

In Fig. 6.1, the cutoff dependence of the renormalised THA time evolution is shown
for two different (mild and strong) quenches. The results show negligible truncation effects,
even with the large differences between the various computational basis dimensions used.
Generally, the precision of the THA can be arbitrarily refined by increasing the cutoff, given
sufficient computational power is available. In the following, we set the cutoff parameter
nmax so that the maximum difference between the time curves corresponding to the two
largest cutoff values is in the fourth digit (or smaller). Therefore, the precision of the THA
can be (crudely) estimated to be of order ≈ 0.1%. As a result, in the quenches studied
here, the THA results can be considered converged and essentially numerically exact up to
this precision, allowing for the THA to serve as a direct test to determine the accuracy and
validity of semi-classical approaches.

We also mention that THA results for t ≥ L are expected to differ from the infinite volume
dynamics due to finite size effects originating from particles travelling around the volume.
However, we are mainly interested in the short and intermediate times and determining the
applicability of semi-classical methods, and therefore, we can focus our attention on short
times t ≤ L, where deviations from the well-established THA are already expected to occur.
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Figure 6.1: Time evolution of the zero-mode of the two-point function C̃2(n = 0, t) for (a)
a mild and (b) a strong quench computed by the THA for different values of the cutoff and
volume l = 10. Different colors denote different values of nmax, corresponding to nmax = 8,
14, 17, and 21 resulting in Hilbert space dimensions cc. 400, 16000, 90000 and 700000 states,
respectively.

6.2 SCA vs. THA

The self-consistent approximation, discussed in Section 4.1, was developed by Cardy and
Sotiriadis [111]. In this approach, the interacting dynamics are approximated by Gaussian
time evolution of free bosonic modes with a time-dependent effective mass that is computed
from a self-consistency equation (4.7):

m2
eff(t) = m2 +

λ

2

∑
k

(
⟨φ̂k(t)φ̂−k(t)⟩ −

1

2ωk

)
. (6.7)

with ω2
k = m2 + k2. The renormalisation procedure is equivalent to normal ordering with

respect to the bosonic modes corresponding to mass m and, therefore, matches that of the
THA. Furthermore, by choosing the post-quench mass m as the unit mass, we can directly
compare the SCA to the THA when performing quantum quenches.

To compare the SCA time evolution to the THA results, we work in a finite volume
l = Lm = 10, which discretises the allowed Fourier modes k = 2πn/L with n ∈ Z. The
set is made finite by introducing an upper cutoff Nmax so that |n| ≤ Nmax. We choose the
cutoff Nmax so that the results converge. However, choosing the cutoff too high introduces
instabilities and needs to be avoided. We remark that the maximum momentum mode
number Nmax included in the SCA is independent of the cutoff parameter of the THA.
Moreover, in the following, the time-discretisation parameter dt is chosen so that the time
evolution can be considered continuous.

To test the validity of the SCA and the THA time evolution, we performed mass quenches
(λ set to zero) for which the mean-field theory becomes exact and the truncated Hamiltonian
approach yielded practically exact results.

In Fig. 6.2, the time evolution of the correlator (6.5) can be seen following a general
quantum quench where the initial mass is changed from m0 = 0.8 to m = 1 while simul-
taneously switching on the quartic coupling from zero to some finite value λ. We present
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Figure 6.2: Time evolution of the n = 0 and n = 4 modes of C2 following quenches with the
mass changed from 0.8 to 1 and different post-quench interactions in volume l = 10. Dots
denote the THA data computed using the renormalisation improvement (4.48), at a cutoff
value of nmax = 21. The solid line denotes the results of the self-consistent approach.
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Figure 6.3: The effective mass in the THA (markers) and SCA (solid line) approximations,
calculated using the largest value of nmax = 21 for a volume parameter l = 10. (a) In
the perturbative regime, the two methods agree and reproduce the exact evolution of the
effective mass, which stays close to the renormalised mass m = 1. (b) For a stronger quench,
the effective mass deviates from 1, and the SCA fails to predict the correct time evolution.

the results for the zero mode of the correlator C2(0, t) alongside a higher-mode component
C2(4, t) as computed by both the SCA and the THA. The results show a progressively in-
creasing discrepancy between the methods, showcasing the imminent failure of the SCA as
the coupling increases. As seen in Fig. (6.5), the main source of the difference can be at-
tributed to the mean-field theory failing to reproduce the post-quench frequencies, an effect
that is increasing with the coupling. Moreover, this effect gives rise to a discrepancy be-
tween the amplitudes as well, as suggested by (4.14). However, looking at the higher-mode
component, we can see that the frequencies match quite well irrespective of the value of the
coupling, suggesting that the disagreement can be attributed to the difference in mass scales
between the two methods. That is, for a given effective mass meff, the temporal frequency
corresponding to a Fourier mode k is of the form

Ωk ∼
√
m2

eff + k2 , (6.8)

and thus, the mass scale meff mostly determines the low-frequency end of the spectrum. For
high wavenumbers k, the dominating contribution to the temporal frequencies comes from
the mode k, relaxing the importance of a precise mass scale meff. Indeed, the two methods
produce different mass scales, as illustrated in Fig. 6.3. While for the SCA, the effective mass
is obtained self-consistently from (6.7) using the mean field value of the two-point function,
in the THA computation of meff requires substituting of the exact (truncated) correlator to
(6.7), leading to different results. As seen in Fig. 6.3a, for small couplings, the effective mass
resulting from the two methods match but begins to grow apart with increasing coupling as
shown in Fig. 6.3b. This leads to a noticeable difference in the temporal modes for smaller
Fourier modes, while it becomes less pronounced for higher wavenumbers, in accordance with
Fig. 6.2c.
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Figure 6.4: THA and SCA results of C̃2(4, t) for the quench (m0, λ0) = (0.8, 0) → (m,λ) =
(1, 8) for l = 10. Different coloured markers denote the (renormalisation group improved)
THA results corresponding to different values of nmax. The THA shows minimal truncation
effects. The continuous line denotes the SCA, which fails to predict the amplitudes of the
oscillations correctly.

Note, however, that despite the good agreement between the temporal frequencies in the
case of higher Fourier modes, there is still some discrepancy present between the amplitudes
of the correlator. A possible source of the difference can be the truncation errors of the THA
since it is expected that the method becomes unreliable whenever the time evolution of an
observable contains high frequencies close to energy cutoff Λ. To rule out this possibility,
we show the cutoff dependence of C2(4, t) in Fig. 6.4 and see that the amplitudes of the
correlator are minimally subjected to truncation effects. The only alternative option remains
the lack of higher-order correlations in the SCA calculations, leading to an overshoot in the
amplitudes.

These findings can be further demonstrated by considering quenches with a larger change
in the mass parameter, shown in Fig. 6.5. The setting can be considered a stronger quench
because the post-quench energy density is higher, in principle reducing the effectiveness of
the truncated Hamiltonian approach [117]. However, as discussed previously in Sec. 6.1,
for the quenches studied here, the THA can be considered to have converged, providing
practically exact results for the time evolution. The SCA is exact for pure mass quenches
(λ0 and λ set to zero), and we do not expect very different results from before. Indeed,
looking at Fig. 6.5, we see a similar behaviour, with the two methods agreeing for small
values of the coupling and the SCA providing less reliable results for both the temporal
frequencies and amplitudes as the strength of the quartic interaction is increased.
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(b) (m0, λ0) = (0.4, 0) → (m,λ) = (1, 4)
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Figure 6.5: Same as 6.2 but for stronger quenches m0 = 0.4 → m = 1 with different values of
the post-quench coupling for l = 10. The THA data is computed using nmax = 21 together
with the renormalisation group improvement and is displayed by dots. The SCA results are
denoted via continuous lines.
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6.3 TWA vs. THA

For the quenches considered here, the initial state is the ground state of the massive free
boson with λ = 0, which is described by a simple Gaussian Wigner function:

W =
∏

k=0,π/a

1

π
exp

(
− φ2

k

2σ2
k

− 2σ2
k π

2
k

) ∏
0<k<π/a

4

π2
exp

(
−φk φ−k

σ2
k

− 4σ2
k πk π−k

)
. (6.9)

Here σk denotes the variance appearing in Eq. (4.20),

σk =
1

2 aωlatt
k,0

,

and ωlatt
k,0 is given by

ωlatt
k =

√(
2

a
sin

ka

2

)2

+m2
0 , (6.10)

calculated with the initial (renormalised) mass m0.
As before, we focus on the correlator

C2(k, t) = a ⟨: φ̂k(t)φ̂−k(t) :⟩ = a ⟨φ̂k(t)φ̂−k(t)⟩ −
1

2ωlatt
k

(6.11)

with ωlatt
k given in Eq. (6.10), using the renormalised post-quench mass m. The lattice

constant a is inserted to match the dimensions of the continuum theory, which is necessary
for comparing the TWA with the THA. The Wigner transform of the correlator can be
computed trivially by simply substituting the operators with the classical variables:

C2,W (k, t) = φk(t)φ−k(t)−
1

2ωlatt
k

. (6.12)

Comparison of the TWA to the THA was carried out similarly to the previous Section:
we performed general mass and coupling quenches in the φ4 model, with the initial coupling
set to λ = 0 and the post-quench mass set to m = 1 in volume Lm = 10. In all results going
forward, the THA can be considered practically exact and serve as a good benchmark for
validating the TWA results.

For small enough values of λ, the TWA produces good results that agree with the THA,
as shown in Fig. 6.6a, displaying the zero mode of the correlator C2(0, t) for a quench
(m0 = 0.4, λ0 = 0) → (m = 1, λ = 1). However, increasing the strength of the interactions
λ, notable deviations appear between the TWA and the THA, pointing to the breakdown
of the semi-classical method. Contrary to the reliable results of the THA, the TWA data
shows strong damping in the oscillations and a relaxation of the correlator zero mode to
some non-zero value. Besides leading to faster damping, the stationary value also increases
with the coupling λ, as shown in Figs. 6.6c and 6.6e for quenches with λ = 1 and 8. For the
largest value of the coupling λ = 8 studied here, the TWA significantly overestimates the
damping to the point where the correlator practically relaxes completely to a steady state.
Similar behaviour can be found for quenches with a larger change in the mass parameter
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(a) (m0, λ0) = (0.8, 0) → (m,λ) = (1, 1) (b) (m0, λ0) = (0.4, 0) → (m,λ) = (1, 1)

(c) (m0, λ0) = (0.8, 0) → (m,λ) = (1, 4) (d) (m0, λ0) = (0.4, 0) → (m,λ) = (1, 4)

(e) (m0, λ0) = (0.8, 0) → (m,λ) = (1, 8) (f) (m0, λ0) = (0.4, 0) → (m,λ) = (1, 7)

Figure 6.6: THA (dots) and TWA (solid lines) results for the time evolution of the correlator
C̃2(k = 0, t) for quenches corresponding to weak/intermediate/strong interactions and two
different values for the mass shift and l = 10. The TWA results were computed using Ns =
400. In the THA we applied a cutoff nmax = 21 (including the leading RG improvement).
The insets compare energy density injected by the quench (green solid line) with the THA
(dotted black line) and the TWA potential (dashed red line). The injected energy density is

computed as ∆E = (⟨ψ0|H|ψ0⟩ − E
(1)
0 )/L where E

(1)
0 is the vacuum energy of H.
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m0 = 0.4 → m = 1, corresponding to a larger post-quench energy density that, in theory,
should benefit the semi-classical TWA. Though true to some extent in light of the previous
results, the systematic over-damping is still present in the TWA data, with a quick relaxation
to some non-zero value of the correlator, as seen in Figs. 6.6b, 6.6d and 6.6f for the cases of
λ = 1, 4 and 7.

The systematic overdampening and the general failure of the TWA for sufficiently large
values of λ can be traced back to the sensitivity of the time evolution to mass renormalisation.
As described previously in Section 4.2, the semi-classical TWA is formulated in terms of the
bare mass m2

bare

m2
bare = m2 − λ

4Nsa

∑
k

1

ωlatt
k

, (6.13)

as opposed to the renormalised post-quench mass m. For large enough values of λ, m2
bare

becomes negative, corresponding to a symmetry-broken theory with the classical vacuum
expectation value φj = −6m2

bare/λ as shown in the insets of Figs. 6.6c to 6.6f. The equations
of motion (4.28) predict a fast relaxation of the correlator C2 to some finite value, causing the
emergence of a symmetry-broken classical steady state in the dynamics. This is contrasted
to the THA, where the mass term entering the equations governing the time evolution is
given by the (positive) renormalised mass m2, Consequently giving rise to much weaker
relaxation in the dynamics. Besides the strength of interactions, this effect also depends on
the post-quench energy density ∆E , which can be tuned by varying the pre-quench mass m0

while keeping the post-quench mass m and coupling λ fix to preserve the shape of the post-
quench potentials within the methods. For smaller values of ∆E , the classical trajectories in
the TWA are localised closer to the vicinity of the non-physical minima of the potential, as
shown in the insets of Figs. 6.6c to 6.6f, resulting in the emergence of the symmetry-broken
classical steady state. For larger values of the post-quench energy density, a higher number
of classical trajectories further from the minima contribute to the TWA averaging, somewhat
obscuring the effects of the classical symmetry breaking.

This effect can be investigated more closely by considering the time-averaged correlator

⟨C̃2(k, t)⟩t =
1

T

∫ T

0

dt C̃2(k, t) , (6.14)

where T is chosen as the total time of the first three full oscillations of the correlator C2(k, t).
Fig. 6.7 shows results for ⟨C̃2(0, t)⟩t as a function of the bare mass (6.13) for quenches with
a fix value of m0 and m and varying λ. For the smaller quenches presented in Fig. 6.7a, the
TWA agrees well with the THA as long as m2

bare is positive, with a progressively growing
difference between the two methods as the m2

bare increasingly negative, corresponding to the
non-physical classical symmetry breaking within the TWA. Similar agreement can be found
for positive values of m2

bare for quenches corresponding to higher post-quench energy density.
However, the two methods show different behaviour form2

bare < 0, with the correlator average
growing in the TWA and steadily decreasing in the THA. These findings strongly support
the idea that the over-dampening present in the TWA is due to the negative bare mass
entering the classical equations of motion and as such, a non-physical artefact driven by the
mass renormalisation, rendering the TWA unreliable whenever λ is sufficiently large.
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Figure 6.7: The time-averaged correlator ⟨C̃2(k = 0, t)⟩t as a function of the bare mass
m2

bare (6.13), calculated using the TWA (blue circles) and THA (red squares), for l = 10
and different values of the coupling λ. For m2

bare > 0, the methods show a good agreement
but start to deviate when m2

bare > 0 becomes negative due to the increasing λ. The TWA
results are computed using Ns = 400. The THA cutoff was set to the largest available value
nmax = 21 (including the leading RG improvement).

Here we briefly mention that the TWA has also been applied to the sine-Gordon model
[173], and more importantly, it has been compared to the truncated Hamiltonian approach
[115,174]. In those studies, the instability to the mass renormalisation in the TWA is entirely
absent. This is because in the sine-Gordon model, renormalisation works very differently than
in the φ4 theory. The sine-Gordon model is given by the Hamiltonian:

ĤsG =

∫
dx

(
1

2
π̂2 +

1

2
(∂xφ̂)

2 − λ : cos βφ̂ :

)
(6.15)

and the normal ordering corresponding to renormalisation is done with respect to the free
massless boson modes, described by the first two terms of the Hamiltonian. Therefore,
instead of the addictive mass shift (6.13) present in the φ4 theory, in the sine-Gordon model,
normal ordering leads to the multiplicative renormalisation of the coupling λ [115]. This
procedure keeps the shape of the potential fixed, admitting no change in the sign of the
mass term, and as a result, the TWA stays stable against the effects of renormalisation.

6.4 Summary

We investigated the out-of-equilibrium dynamics in the Z2−symmetric phase of the φ4 theory
by simulating quantum quenches using three distinct methods: the truncated Hamiltonian
approach (THA), the self-consistent approximation (SCA) and the truncated Wigner ap-
proximation (TWA). We considered quench protocols where the system is initially prepared
in the ground state of the free massive boson with pre-quench mass m0 and then is evolved in
time by the interacting Hamiltonian with some different post-quench mass m and non-zero
interaction strength λ. The methods were compared by computing the time evolution of the
Fourier modes of the two-point function (6.5).

62



The truncated Hamiltonian approach used here is formulated in a finite volume L, built
upon the Fock space of the massive free boson with m = 1, concurrently chosen as the post-
quench value. The method shows very little dependence on the large cutoff values studied,
and together with the leading order renormalisation group improvement, it is considered
converged, practically yielding exact results for the dynamics. The observables studied here
exhibit very slow relaxation, consistent with the observation [84] that the φ4 interaction is
a weakly integrability breaking perturbation [84,85].

The self-consistent approximation is expected to provide reliable results whenever the
interaction strength λ is sufficiently small but breaks down when the value of the coupling
becomes high, and the connected part of the four-point correlations can not be neglected
anymore to reproduce the quantum evolution. Accordingly, our SCA simulations break
down for relatively small values of the coupling λ ⪆ 4 (indeed, according to Fig. 4.1, this is
just outside of the range validity of the perturbation theory). In the literature, the SCA is
applied to systems with much larger coupling parameters [111], where it fails to reproduce the
temporal frequencies and amplitudes present after the quench: the post-quench frequencies
show signs of strong k−dependence, with the deviations becoming smaller for high modes
k, pointing to the incorrect determination of the effective mass. Here, we remark that
since the SCA is formulated as a semi-classical approximation of quantum field theories,
an obvious improvement is taking into account higher-order quantum correlations using an
approach such as the 2PI effective action [109], a promising direction for which the THA
demonstrated here can serve as an efficient tool for validation.

The truncated Wigner approximation is formulated using the lattice regularised form of
the theory. The TWA equations of motion contain the bare mass, which is renormalised by
quantum fluctuations via normal ordering of the Hamiltonian. By comparing the TWA to the
THA, we found that the former fails to correctly reproduce the exact quantum time evolution
whenever the bare mass m2

bare becomes negative, resulting in an overestimated relaxation to
a symmetry-broken classical steady state. This observation is relevant for other models that
exhibit phase transitions and additive renormalisation of the control parameter, such as other
Ginzburg-Landau theories.

These results establish the THA as a very accurate and powerful tool for studying out-
of-equilibrium dynamics in interacting low-dimensional quantum field theories, such as the
φ4 model, and provide a point of reference for the validity of semi-classical approaches in
interacting quantum field theories.
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Chapter 7

False vacuum decay in the φ4 model

After the out-of-equilibrium dynamics of the φ4 model in the Z2-symmetric phase, we now
focus on the symmetry-broken phase. Classically, whenever the sign of the mass term in the
Hamiltonian

H =

∫
dx

[
1

2
(∂tφ)

2 +
1

2
(∂xφ)

2 − 1

2
m2φ2 +

g

6
φ4

]
(7.1)

becomes negative, the theory admits two degenerate minima of the potential

φ± = ±

√
3m2

2g
. (7.2)

In the quantum regime, the scalar field φ turns into the scalar operator φ̂ and the change in
the sign of the mass term in (7.1) corresponds to spontaneous symmetry breaking, resulting
in two degenerate vacua upon which the Hilbert space of the theory is built.

Perturbing the system with an odd function of the field φ̂ breaks the Z2 symmetry explic-
itly, lifting the degeneracy between the minima of the potential. Though stable classically
against small perturbations, the local minimum with the higher energy in the quantum
regime corresponds to a metastable state of the system, called the false vacuum, susceptible
to decay via quantum mechanical tunnelling [175, 176]. The decay is driven through nucle-
ation of bubbles of true vacuum (the true ground state of the theory) via tunnelling across
the volume and expanding propelled by the energy difference between the true and the false
vacuum. The released energy (latent heat) excites a sea of particles above the true ground
state, filling the domains of the volume with the true vacuum present.

The decay of the false vacuum has gained considerable attention lately due to indi-
cations of the metastability of the Higgs vacuum [77, 177]. Apart from its significance
in cosmology and high-energy physics, recent advances in ultracold atomic experiments
opened the possibility of directly observing the phenomenon in experimental condensed
matter settings [178–183]. The main quantity of interest is the tunnelling or decay rate
of the false vacuum, with theoretical results available with multiple degrees of precision,
depending on the approximation used, the microscopic details and the dimensionality of the
system [175–177,184–188].

We simulate the false vacuum decay in the Z2-broken (1+1)-dimensional φ4 model by
performing quantum quenches and analysing the subsequent time evolution of the order
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parameter. Studying the real-time quantum evolution non-perturbatively via the truncated
Hamiltonian approach (THA) allows us to numerically determine the bubble nucleation rate
and compare it to existing analytical formulae in the literature. Subsequently, the results
establish the THA as a powerful tool to study strongly non-perturbative phenomena far from
equilibrium in interacting quantum field theories, such as false vacuum decay.

Here, we briefly introduce the elements of false vacuum decay necessary for later discus-
sions in Section 7.1. Then, we discuss the quench setup applied to study the false vacuum
decay in Section 7.2 and present our results in Section 7.3. We close by giving our conclusions
in Section 7.4.

7.1 Semi-classical treatment of false vacuum decay

Now, we briefly review the false vacuum decay necessary for our investigation. Though
applicable to higher dimensions, we formulate the theory with a specific focus on (1+1)d
quantum field theories. A system stuck in the false vacuum decays through nucleation of
predominantly spherical bubbles of true vacuum induced by quantum fluctuations. Bubbles
not reaching a critical size only appear as short-lived quantum fluctuations due to the finite
energy (a.k.a. surface tension) of the bubble walls. However, bubbles with sizes exceeding
the critical size are energetically favourable and form long-lived field configurations. Due to
the excess energy, they begin to expand, accelerating rapidly and converting more and more
of the false vacuum into the true ground state, giving rise to an abundance of quasi-particle
excitations above the true vacuum in the process. Following Coleman’s ground-breaking
works, [175,176] a semi-classical treatment of the process starts with a potential U(φ) with
a local and a global minimum, corresponding to the false and true vacua, respectively. The
nucleation of the critical bubble can be described in terms of the instanton bounce, a non-
perturbative and spherically symmetric field configuration satisfying the Eucledian equation
of motion: (

∂2

∂τ 2
+∇2

)
φ =

∂U

∂φ
(7.3)

with appropriate boundary conditions. This treatment allows for the expression of the bubble
nucleation rate per unit volume γ

γ =
Γ

L
= A exp

[
−1

ℏ
SE

]
(7.4)

as a function of the Euclidean action of the instanton bounce SE. The prefactor A can be
written as a fraction of determinants of the quantum fluctuations on the instanton back-
ground with special care of the zero mode. To simplify the calculation, it is useful to restrict
our attention to the limit when the bubble walls’ thickness is much smaller than the bub-
ble radius, which is called the thin-wall approximation. It allows for the expansion of the
potential U(φ) as

U(φ) = U0(φ) + ε∆U(φ) , (7.5)

with the potential U0 being symmetric, with two degenerate local minima corresponding to
quantum mechanical ground states with equal energy density. When ε is greater than zero,
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the second term explicitly breaks the symmetry of the theory, lifting the degeneracy between
the vacua. The thin-wall limit corresponds to the limit of small ε > 0 [175]. In (1+1)d, the
bubble is formed by a kink-antikink pair, extrapolating between two points of false vacua
with the true vacuum in the inside region. Simple energy conservation leads to the size of
the critical bubble:

a∗ =
2M

E
, (7.6)

where M is the mass of the (anti)kink, corresponding to the energy stored in the walls of
the bubble, and E is the energy density difference between the false and true vacua:

E =
1

L
(EFV − ETV) . (7.7)

In the thin-wall limit, the action corresponding to a bubble with diameter a is given by [175]

S(a) = πaM − πa2

4
E . (7.8)

The stationary point of (7.8) is exactly at the critical radius a = a∗, meaning that bubbles
of the size around the critical size have the highest chance of nucleation. As a result, the
instanton action determining the tunnelling rate can be semi-classically approximated by

SE =
πM2

E
. (7.9)

Coleman eventually went beyond the semi-classical limit by including quantum corrections
up to leading order [176]. Moreover, fluctuations up to all orders were summed up in 1+1
dimensions independent of microscopical parameters by Voloshin [184]:

γ =
E
2π

exp

[
−πM

2

E

]
, (7.10)

where M is the exact (renormalised) mass of the kink and E is the exact energy density
difference between the false and true vacua.

7.2 Quench setup for false vacuum decay

In the symmetry broken phase, the φ4 theory is described by the Hamiltonian

Ĥ =

∫
dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − 1

2
m2φ̂2 +

g

6
φ̂4

]
: (7.11)

with m2, g > 0. Spontaneous symmetry breaking corresponds to the emergence of a pair
of degenerate ground states |Ψ±⟩. Perturbing the system by applying an external field ε
coupled to φ̂

Ĥε =

∫
dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − 1

2
m2φ̂2 +

g

6
φ̂4 − εφ̂

]
: (7.12)
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explicitly breaks the Z2 symmetry, lifting the degeneracy between the ground states. Note,
however, that the positions of the local minima are also shifted due to the perturbation.

To study the false vacuum decay in the φ4 theory, we perform quantum quenches and
study the subsequent time evolution. In our protocol, we initialise the system in the ground
state |Ψ−⟩ of Ĥ, corresponding to the false vacuum when the symmetry breaking parameter
ε > 0 is switched on:

|Ψ(0)⟩ = |Ψ−⟩
Ĥ |Ψ−⟩ = E0 |Ψ−⟩ , ⟨Ψ−|φ|Ψ−⟩ < 0 .

(7.13)

At t = 0, ε > 0 is switched on, resulting in unitary time evolution starting from the close
vicinity of the false vacuum, governed by the post-quench Hamiltonian Ĥε:

|Ψ(t)⟩ = e−iHεt |Ψ(0)⟩ . (7.14)

In the following, we focus on the time evolution of the order parameter, that is, the expecta-
tion value of the field φ̂. To gain a better proxy for the decay, we use the parameterization

F (t) =
⟨φ̂0(t)⟩+ ⟨φ̂0(0)⟩

2 ⟨φ̂0(0)⟩
=

⟨Ψ(t)|φ̂0|Ψ(t)⟩+ ⟨Ψ(0)|φ̂0|Ψ(0)⟩
2 ⟨Ψ(0)|φ̂0|Ψ(0)⟩

, (7.15)

with

φ̂0 =
1

L

∫ L

0

dx φ̂(x) , (7.16)

following a study of a similar setting in spin chains [189]. The decay of the false vacuum
roughly corresponds to the change of F (t) from 1 to 0 (neglecting the shift in the vacuum
expectation values due to the external field ε), making F (t) a convenient indicator of the
decay process.

During the decay F (t) is expected to decrease exponentially:

F (t) ∝ e−Γt , (7.17)

Studying the real-time decay of the false vacuum allows us to directly (numerically) obtain
the decay rate Γ as a function of the external field ε and compare it with the theoretical
prediction (7.10). We apply the THA introduced in Section 4.3.1 built upon the massive
free boson eigenstates with mass m = 1, complemented by a mini-superspace and identify
the decay in the real-time evolution of F (t) via the corresponding linear regime in logF (t).
The slope is proportional to the decay rate Γ and can be obtained via a simple linear fit.

7.3 Results

Here we give our results for the time evolution of the order parameter (7.15) following
quantum quenches initiated in the false vacuum using the truncated Hamiltonian approach.
Identifying the linear regime in the real-time evolution of logF (t) allows for the numerical
determination of the decay rate for a range of external fields ε̄, which can be compared to the
formula (7.10). However, evaluation of (7.10) requires the renormalised (exact) kink mass
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M and vacuum energy density difference (latent heat) E . Therefore, we first present the
THA results for these quantities and then later move on to studying the real-time dynamics.
As before, we work in units of m = 1 (where m is the mass of the Klein-Gordon field
appearing in (7.12) and use periodic boundary conditions when not specified otherwise. The
dimensionless parameters (denoted by a ’bar’, e.g. ḡ) are defined in Section 4.3.1.

7.3.1 The kink mass

To obtain the kink massM we set ε̄ = 0 and compute the lowest energy levels in the antiperi-
odic and periodic boundary conditions within the THA, corresponding to the stationary kink
and the vacuum state, respectively:

MTHA(ḡ) = EAPBC
0 (ḡ)− EPBC

0 (ḡ) . (7.18)

The ḡ-dependence of the THA data can be checked against the semi-classical prediction
(3.16) [87]

M =

√
2m3

g
−
√
2m

(
3

2π
− 1

4
√
3

)
+O(g) , (7.19)

demonstrated in Fig. 7.1. For small coupling, the kink mass is large; therefore, its value is
comparable to the cutoff Λ, making the THA determination less precise. For larger values
of ḡ, the THA provides a very good approximation for the renormalised kink mass.
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Figure 7.1: The kink mass as computed by the THA (markers) together with the semi-
classical prediction (3.16) as a function of the coupling ḡ. Different colours correspond to
different cutoff values nmax = 21/2, ...37/2 corresponding to cc. 1000-100000 computational
basis states.

7.3.2 The latent heat

The latent heat E , defined as the energy density difference between the false and the true
vacua (7.7), is easily obtainable from the THA by diagonalising Ĥε (7.12). However, as the
false vacuum is a metastable state, it is not an eigenstate of the Hermitian Hamiltonian Ĥε.
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Figure 7.2: Representative spectrum of Hε as a function of the symmetry breaking parameter
for l = 8 and ḡ = 1.1 with the true vacuum energy substracted. The false vacuum is displayed
by open black markers.

Accordingly, in order to compute its energy EFV(ε, L) it has to be identified by looking at
the spectrum of Ĥε for fixed volumes l and varying ε̄, following the example shown in Fig.
7.2 for ḡ = 1.1 and l = 8. Computing EFV(ε, L) now requires repeating the above procedure
for numerous values of the volume L. The energy of the true ground state ETV(ε, L) can also
be straightforwardly obtained, given by the lowest-lying eigenvalue of Ĥε for a fixed ε̄ and
different values of the volume. Taking the difference for a fixed value of ε̄, it is extensive with
the system size, and the latent heat (7.7) corresponds to the slope of the lines as a function
of L, illustrated for ḡ = 1, 1 and a variety of ε̄ values in Fig. 7.3. In Fig. 7.4, the latent
heat can be seen as a function of ε̄ for various quartic couplings ḡ. For the small values of ε̄
studied here, the latent heat is linear in accordance with the first-order perturbation theory
predictions. Therefore, the latent heat can be parametrised as

E = A(ḡ)ε̄ (7.20)

by fitting a linear curve and extracting A(ḡ) for various values of ḡ. Our calculations were
carried out with around 1000 non-zero modes and 11 mini-superspace basis states, providing
adequate accuracy for our needs.

We note here that for larger values of ε, the latent heat is not expected to be linear in
ε, as higher-order perturbative corrections come into play. However, the prediction (7.10) is
only valid in the thin-wall limit corresponding to small values of ε̄ in the setup considered
here. Therefore, our computation is restricted to the perturbative regime where (7.20) is
valid.

7.3.3 Time evolution and the decay rate

Now that we have the renormalised kink mass and latent heat required to evaluate (7.10),
we turn our focus to acquiring the bubble nucleation rate γ through simulating the real-time
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Figure 7.3: The energy difference between the false and true vacuum against the volume l
for ḡ = 1.1. The slopes of the linear fitted curves correspond to the energy density difference
(latent heat) E for various values of the symmetry breaking field ε.
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Figure 7.4: The energy density difference between the false and true vacuum (latent heat) E
as a function of ε̄ for various couplings ḡ with the fitted linear dependence. The error bars
are obtained from the parameter estimation uncertainty from the fits shown in Fig. 7.3 and
only represent a crude estimate of the eventual errors.

quantum evolution via THA following the quench setup described in Section 7.2. However,
executing the procedure requires some prior considerations due to the limited validity of the
THA with regard to the values of ε̄. Firstly, the value of ε̄ must be chosen such that the size
of the critical bubble (7.6) is smaller than the system size L by at least a couple of factors
of the correlation length (in the order of ∼ 1/m), to avoid finite size effects. This condition
gives a lower bound for the values of ε̄, limiting the available regime where the decay of the
false vacuum can be studied, which depends on the self-interaction parameter ḡ. Secondly, to
ensure that the false vacuum state is properly represented in the THA, it must fit below the
UV cutoff Λ, limiting the available ε to values that fulfil E = A(ḡ)ε̄ ≪ Λ in our subsequent
calculations, imposing an upper bound for ε̄, which depends on the value of ḡ.
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In our simulations, we use a volume l = 20 and choose values of ḡ such that the region
of ε̄ available is wide enough to study the dependence of the nucleation rate on ε̄. We
use a mini-superspace dimension of 41, for which the results converged and showed stable
behaviour against increasing the cutoff. The non-zero mode cutoff nmax is chosen to be
nmax = 10, 12, 14, 16 and 18 to monitor better the validity of the THA, corresponding to
Hilbert space dimensions up to cc. 4100 to 287000.

The time evolution of the order parameter F (t) is presented in Fig. 7.5 for ḡ = 1.1
and a selection of values of the symmetry breaking parameter ε̄ and cutoffs values. When
ε̄ is small, the resonant bubble size exceeds the volume, leading to dynamics exhibiting
persistent oscillations dominated by the quasi-particles and sub-critical bubbles. Increasing
the strength of the symmetry breaking ε̄ changes the nature of the dynamics: at short times
t ≥ 0, the behaviour of F (t) is quadratic, dominated by the Zeno effect [190, 191]. This is
followed by a time window of exponential decay of the order parameter, as signalled by the
linear descent of logF (t), shown in Fig. 7.6. However, the exponential behaviour is limited
in time, and it is soon followed by oscillations exhibiting mild decay, corresponding to the
oscillations above the true vacuum, though the limited time window restricts its thorough
study. Note, however, that the exponential behaviour is limited even in the absence of the
oscillating regime, as the finite volume formulation of the THA restricts us to only study the
dynamics for t ≤ L, as for t > L particles travelling around the system results in unwanted
finite size effects. At later times, further restrictions arise from the complicated dynamics
involving the expansion and collision of nucleated bubbles and the subsequent thermalisation
of the densely populated medium. Despite these effects, we can find a finite time window
where the time evolution of F (t) displays exponential behaviour, corresponding to simple
bubble nucleation dynamics.

We determine the tunnelling rate γ by plotting the logarithm of F (t) against t and
determining the slope of the linear segment by curve fitting. This was performed for various
values of ḡ and ε̄ to obtain γ as a numerical function of the parameters. Some representative
plots are presented in Fig. 7.6 for ḡ = 1.1 and l = 20. For large values of the symmetry-
breaking parameter, the linear segment is simple to identify, while for small values of ε̄, the
identification can be helped by following the time evolution by gradually changing ε̄ from
larger values to smaller ones. The obtained slopes correspond to the extensive nucleation
rate Γ that can be divided by the volume L to acquire the nucleation rate per unit volume
γ shown in Fig. 7.7 for l = 20 and various values of the coupling ḡ. Fig. 7.7 also contains
the theoretical predictions, displayed as dashed lines

γ = C(ḡ)
E
2π

exp

[
−πM

2

E

]
, (7.21)

where the renormalised kink massM and exact latent heat E are extracted from the THA as
discussed before in this section. The formula (7.21) differs from Voloshin’s original prediction
(7.10) [184] by an inclusion of a ḡ-dependent factor C(ḡ). C(ḡ) is essentially a fitting pa-
rameter used to translate the theoretical predictions to overlay the numerical results, which
can be done independently of the value ε̄. Subsequently, this procedure leaves the depen-
dence on the symmetry-breaking parameter unchanged, which is very well reproduced by
the THA. Also, the inclusion of a ḡ dependent factor is eventually expected, following a
similar study [189], where the false vacuum decay was investigated in the transverse field
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Figure 7.7: The logarithm of the tunneling rate per unit volume γ as a function of 1/ε̄
obtained from THA corresponding to the largest available cutoff nmax = 18, for l = 20
and various values of the coupling ḡ. The dashed lines denote the theoretical predictions
(7.10). The vertical lines correspond to ε̄ values where the resonant bubble size is exactly
half the system size a∗ = l/2, and demonstrate that the difference between the numerical
and theoretical results for small values of ε̄ originates from finite size effects. The error bars
are obtained from fitting errors (a representative sample of which is shown in Fig. 7.6) and
represent a crude estimate.

Ising model, requiring a similar redefinition of the corresponding theoretical prediction [185]
to match the numerical data.

As seen in Fig. 7.7, the matching between the THA and the theoretical predictions
persists for a range of values of the interaction strength ḡ, which further supports the validity
of the THA. For the cases studied, there is a range of ε̄ where the THA can reproduce the
theoretical dependence (apart from the additional factor C(ḡ)), while deviations from the
theoretical curve occur at each end of the studied interval of ε̄. For small values of ε̄ (large
values of 1/ε̄), the difference between the results stems from finite size effects due to the
large size of the critical bubble (7.6), comparable to the system size L. To illustrate this, in
Fig. 7.7 we display values of 1/ε̄ for which the resonant bubble size a∗ is equal to half the
volume L/2 by colour-coded vertical lines. Indeed, the placement of these coincides with the
narrow region where the THA deviates from (7.21).

For larger values of ε̄ (small values of 1/ε̄), the disagreement between the numerical data
and the theory can originate from two different sources. Firstly, formula (7.10) and subse-
quently the redefined formula (7.21) is valid only in the thin-wall limit [184], corresponding
to relatively small values of the external field, although providing an estimation for the limit
where the prediction is no longer valid is hard. Secondly, large values of ε̄ result in strong
symmetry-breaking and, therefore, a high energy injected into the system during the quench,
which, if comparable to the UV cutoff Λ, can lead to truncation errors, ultimately spoiling
the accuracy of the THA. Additionally, really large values of the symmetry-breaking field
can renormalise the potential appearing in the Hamiltonian (7.12) to a point where the local
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Figure 7.8: The logarithm of the nucleation rate per unit volume γ computed for different
volumes l at interaction ḡ = 1.1 from the THA. The theoretical predictions (7.21) are denoted
by dashed lines. In the inset the volume dependence of the fitting parameters logC is shown.
The (barely visible) error bars represent the uncertainty of the fitting errors of the parameter
estimation.

minima, corresponding to the false vacuum, disappears entirely, which massively changes the
dynamics of the system.

Finally, we discuss the properties of the factor C(ḡ), starting by testing whether it de-
pends on the volume. We perform simulations in additional system sizes L = 25 and 30.
Convergence of the results required a mini-superspace dimension of 41 and a non-zero cutoff
nmax = 18, 22 and 24 corresponding to total Hilbert space dimensions of cc. 280000, 680000
and 680000 for l = 20, 25 and 30, respectively. The results, presented in Fig. 7.8, show
no dependence of C(ḡ) on the volume. Additionally, our findings are consistent with the
expectation that simulations in larger system sizes, where the simulation is mostly limited
by finite size effects, extend the validity of the numerical data to larger values of 1/ε̄. Also,
for small values of 1/ε̄, the disagreement grows with the volume. This suggests that instead
of the validity of the thin-wall approximation, the deviations stem from truncation effects:
the UV cutoff (4.67)

Λ =
4πnmax

l
(7.22)

is proportional to 1/l in units of m, decreasing with the increase of the system size. Finally,
Fig 7.9 shows C(ḡ) for different values of the coupling ḡ, obtained in volume l = 20. The
simulated results show that the prefactor appearing in the nucleation rate (7.21) depends
on ḡ non-perturbatively, hinting at the incompleteness of the original formula (7.10). Nev-
ertheless, the appearance of the normalisation factor C(ḡ) is unclear to us at this point,
warranting further investigation.
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Figure 7.9: The logarithm of the normalisation factor C as a function of the inverse coupling
1/ḡ together with the appropriate linear fit. The data is computed using the THA in a
volume l = 20 with a cutoff value of nmax = 18.

7.4 Summary

The Z2-broken phase of the φ4 theory is characterised by two degenerate minima of the
classical potential, corresponding to two vacua in the quantum model with equal energy
densities. An interesting setup is provided by including an explicitly symmetry-breaking
term in the Hamiltonian, analogous to an external field ε coupled to the canonical field φ̂,
which lifts the degeneracy between the ground states. As a result, the theory admits a single
ground state (the true vacuum) corresponding to the global minimum of the potential, while
the other local minimum becomes a metastable state called the false vacuum. A system stuck
in the false vacuum becomes unstable, eventually decaying through quantum mechanical
tunnelling. First described by Coleman [175], this decay happens through nucleation of
bubbles of true vacuum throughout the volume, that subsequently expands driven by the
excess energy coming from the energy difference of the true and false vacua and converting
the false into true vacuum throughout the medium. Consequently, the excess energy (also
called latent heat) produced by the nucleation and expansion of the bubbles eventually gives
rise to an abundance of particle excitations above the true ground state.

We focused on the decay of the false vacuum in the φ4 theory, one of the simplest
relativistic quantum field theories, to provide such a setup as a one-dimensional analogue of
the Higgs particle in the Standard Model. We investigate the decay by setting up a particular
quantum quench, where the system is initially prepared near the false vacuum. To study
the time evolution of the order parameter F (t) and to extract the decay rate, we apply a
version of the truncated Hamiltonian approach (THA) constructed upon the massive free
boson Fock space, together with a mini-superspace expansion, which encodes information
about the symmetry breaking already in the basis.

Analytical expressions for the bubble nucleation rate per unit volume were first provided
by Coleman [175] by considering a semi-classical approximation of quantum fluctuations
on the instanton background. Later, a prediction containing all 1-loop corrections valid in
generic one-dimensional systems was proposed by Voloshin [184], expected to hold in the
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thin-wall limit, which serves as the basis of comparison for our numerical results. Identifying
the exponential behaviour of F (t), we find that THA results for the dependence of the
nucleation rate on the latent heat agree well with the theoretical predictions by including an
overall normalisation factor (fitting parameter) C(ḡ) for various values of the coupling ḡ. The
appearance of such a factor is consistent with results obtained in a similar setup to study the
false vacuum decay in spin chains [189]. In Voloshin’s formula (7.10), the dependence on the
latent heat E comes from the exponential of the instanton action and a prefactor proportional
to E resulting from quantum fluctuations. Ultimately, we inspected the logarithm of the
decay rate log γ, whose dependence on E is dominated by the instanton action as 1/E ,
and this exact dependence (together with the factor within the exponential) is accurately
reproduced by the THA. The prefactor, corresponding to the fluctuations, contributes a log E
dependence to log γ. Although consistent with our results, the slowly changing nature of the
logarithm restricts us to more accurately verify its presence. However, our results suggest
that C(ḡ) is independent of the latent heat E and the volume L and depends solely on the
coupling ḡ in a highly non-perturbative way. The detailed origin of the prefactor is unknown
to us at present, warranting thorough investigation.

Finally, as already mentioned, the decay of the false vacuum has been studied recently in a
similar setup in quantum spin chains using tensor network methods [189]. Easily formulated
directly in infinite volume, tensor network methods show a great advantage over the THA
simulations. However, they are still limited in time due to the build-up of entanglement in
the system. Additionally, time evolution in lattice models, such as the spin chains studied,
can exhibit lattice-related effects, such as Bloch oscillations [192], that can prevent the
expansion of the bubbles and therefore, the total conversion to the true vacuum throughout
the system [193], as found recently. In contrast, the THA is formulated in terms of a field
theory, resulting in the absence of such lattice effects, which provides a great advantage.
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Chapter 8

Non-equilibrium dynamics in the
sine-Gordon model

The (1+1)d φ4 theory is an interacting relativistic quantum field theory with great signif-
icance in statistical mechanics and high-energy physics. Despite its importance, the model
admits no condensed matter realisation that allows its study in a laboratory setting. In-
stead, now we turn our focus to the non-equilibrium dynamics of the sine-Gordon model, a
paradigmatic example of an integrable relativistic quantum field theory that provides a low-
energy effective description of many gapped one-dimensional systems through bosonisation
(see App. B for a detailed example) [90–96, 98, 99]. Recent advances in ultracold-atomic
experiments provided a realisation of the model [100] with two Josephson-coupled bosonic
quasi-condensates [2, 4, 8, 101, 102], leading to a considerable rise in the interest for out-of-
equilibrium dynamics of the sine-Gordon model.

Motivated by the success of the THA for the φ4 model, we study the out-of-equilibrium
dynamics of two coupled bosonic quasi-condensates described by the sine-Gordon model by
performing quantum quench simulations using the truncated Hamiltonian space approach
built upon the massless free boson eigenstates. To achieve better accuracy, we implement
a mini-superspace treatment of the zero mode of the theory, describing a quantum pendu-
lum. The mini-superspace-based truncated Hamiltonian approach (MSTHA), discussed in
Section 4.3.2, also serves as a basis of comparison for the semi-classical truncated Wigner
approximation (see Section 4.2), previously used to approximate the time evolution of the
model [115, 173]. To understand the limitations and the validity of both approaches, we
perform two types of quenches, characterised by their small (mild quench) and large (strong
quench) injected energy densities. We do this for a large range of interaction parameters,
from the strongly interacting quantum regime to the experimentally available semi-classical
limit, where inter-mode interactions are expected to be less relevant.

8.1 Simulating the dynamics

A quantum quench in the sine-Gordon model is the unitary time evolution of some initial
state |Ψ0⟩

|Ψ(t)⟩ = e−iĤsGt |Ψ0⟩ (8.1)
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governed by the sine-Gordon Hamiltonian

ĤsG =

∫ L

0

dx :

(
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − λ cos βφ̂

)
: . (8.2)

In the following simulations, we investigate the time evolution of the cosine of the phase field

⟨: cos βφ̂ :⟩ , (8.3)

characterising the strength of phase coherence between the coupled quasi-condensates, also
accessible in experiments. Here, the expectation value ⟨.⟩ is taken in the time evolved state
(8.1). We also study the time evolution of the Fourier transform of the phase-phase correlator

⟨φ̂kφ̂−k⟩ =
1

4πk2
⟨a−kak + ā−kāk − akāk − a−kā−k + k⟩ , (8.4)

an experimentally available observable, corresponding to the mode-resolved occupation num-
bers, that allows for the identification of the momentum modes with relevant contributions
to the dynamics.

In our subsequent calculations, we parametrise the strength of interactions (corresponding
to the coupling β) via the Luttinger parameter K:

K =
π

β2
, (8.5)

with K = 1 corresponding to hard-core repulsions between the bosons forming the conden-
sates. IncreasingK decreases the sine-Gordon interaction strength, with largeK correspond-
ing to the semi-classical limit of the theory. We employ units in which m1 = 1 and therefore
define the dimensionless volume parameter as l = Lm1. Time is characterised by the di-
mensionless parameter tν1, associated to the frequency of the lightest breather ν1 = m1/2π.
To establish a connection with the experimental realisation of the sine-Gordon model using
two Josephson-coupled one-dimensional bosonic quasi-condensates, the strength of the sine-
Gordon interaction is characterised by the aforementioned Luttinger parameter K. In the
following, we present simulations for various interaction strengths, from K = 1 to the more
experimentally relevant semi-classical limit when K is large.

We simulate the dynamics in a volume of l = 10, which limits the observable dynamics
to times tν1 < 10. Even though simulation on longer time scales is theoretically possible, the
dynamics for tν1 > 10 differs from the infinite volume results due to finite size effects caused
by excitations travelling around the circle. Also, lower volumes are less computationally
demanding, and we found that the time scales provided by the choice of l = 10 did not
impair the comparison of the two methods. As a cross-check, we performed simulations in
larger volumes up to l = 18, the results of which did not alter the conclusions presented
below.

We consider two types of quantum quenches, characterised by their injected energy den-
sity during the quench. First, in Section 8.1.1, we focus on weak quenches, generating a small
energy density which subsequently limits the number of quasi-particle excitations. This gen-
erally means that quantum fluctuations contributing to the time evolution decohere to a
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lesser extent (and on longer time scales), dominating the dynamics. As a result, this setup
favours the MSTHA, and it is considered less optimal for the TWA. To achieve this setup,
we initialise the system close to the ground state of the quantum pendulum in a way that it
is naturally represented in the MSTHA basis, in contrast to previous implementations of the
TCSA [115]. Indeed, we find that the MSTHA delivers accurate, well-converged results for
the time evolution for a wide range of the interaction strength K considered here. Though
not directly relevant to experiments, these findings substantially extend the quench setups
available to Hamiltonian truncation and allow for the study of strongly coherent quantum
phenomena in the out-of-equilibrium dynamics of the sine-Gordon model.

The out-of-equilibrium dynamics of the sine-Gordon model were previously studied in a
work by Horvath et al. [115], where, along with the TWA, the authors employed the TCSA
built upon the free massless boson eigenstates and studied the time evolution following
quantum quenches initiated in the ground state of the compactified free massless boson. The
protocol is the field theoretical equivalent to the switching on of the Josephson coupling (finite
λ) between two initially decoupled one-dimensional bosonic quasi-condensates. Despite their
choice of basis for the TCSA, which strongly caters to the initial state, the TCSA was found
to be limited to the strongly interacting regime, where K is small. Here we revisit this
quench setup and simulate the time evolution via the TWA and the MSTHA. In the case
of the MSTHA, we find similar limitations, yielding well-converged results for small values
of the Luttinger parameter but breaking down in the experimentally available parameter
range. On the other hand, the large energy density induced by the quench favours the
TWA, extending its validity to stronger interactions, with reliable results also in the weakly
interacting regime accessible to experiments.

8.1.1 Quenches starting from the quantum pendulum ground state

Here, we present our results for the time evolution of the Fourier modes of the phase-phase
correlator and the cosine of the phase field starting from the quantum pendulum ground
state, corresponding to a mild quench with small injected energy density. The initial state
is constructed such that the zero mode is in its ground state

|ΨQP⟩ = |n = 0⟩ , (8.6)

and the non-zero modes are prepared in the ground states of their respective massless oscilla-
tor. This scenario is optimal for the MSTHA, as the initial state can be naturally represented
on the MSTHA basis. Also, the energy density induced by the quench is small, which further
improves the effectiveness of the Hamiltonian truncation. The time evolution is governed
by the sine-Gordon Hamiltonian (4.69) and can be interpreted as the sudden switching on
of the coupling between the quantum pendulum and a bath of massless phononic degrees of
freedom (the non-zero modes). Though this scenario is not directly relevant to experiments,
a more experimentally realistic protocol can be provided by considering the phononic modes
initiated in the ground state of the appropriate massive oscillators. The inclusion of massless
oscillator modes employed here eventually overestimates their contributions but allows for
some technical simplifications, motivating our choice. First, the gapless degrees of freedom
are more simply represented in the MSTHA. Secondly, one of the most relevant experimental
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setups is quenching from the free massless boson vacuum, which prohibits using a massive
basis due to the presence of infrared divergences. Additionally, to gauge the relevance of
the contribution of the oscillator modes to the quantum pendulum dynamics, the massless
nature of the oscillators is secondary, and it is acceptable to consider a slightly unrealistic
protocol where the contribution of the non-zero modes is overestimated.

To simulate the dynamics using the TWA, we construct the Wigner function correspond-
ing to the initial state, which can be written up as a product of the zero and non-zero mode
parts. The zero mode part can be simply calculated by numerically solving the quantum
pendulum Hamiltonian (4.88)

ĤQP =
1

2L
π̂2
0 − λL

(
2π

L

)2h

cos(βφ̂0) . (8.7)

for the wavefunction of the quantum pendulum ground state and reads

W0 (φ0, π0) =
1

2π

∫ π

−π
dφ′

0 ⟨φ0 − φ′
0/2|n = 0⟩ ⟨n = 0|φ0 + φ′

0/2⟩ e−iNφ
′
0π0 , (8.8)

where the matrix element ⟨φ|n = 0⟩ is the coordinate space representation of the quantum
pendulum ground state wavefunction. The contribution of the non-zero modes to the Wigner
function is given by [115]

Wosc =
∏
k>0

4

π2
exp

{
−σ2

kφkφ−k −
4πkπ−k
σ2
k

}
(8.9)

with

σ2
k = 4N sin

πk

N
→ 4πk for N → ∞ . (8.10)

The MSTHA and TWA results for the time evolution of the phase-phase correlator and
the cosine of the phase field can be seen in Fig. 8.1, starting from the initial state (8.6)
for a dimensionless volume l = 10 and a wide range of the Luttinger parameter K. For
the MSTHA we employed truncation values of nmax = 9, 7, 11 and 7 and ℓmax = 20, 20, 20
and 24, corresponding to Hilbert space dimensions of 32247, 25081, 39413 and 88536 for
K = 1, 1.56, 4 and 27, respectively. Here K ranges from K = 1, corresponding to hard-core
repulsion between the particles in the condensates, up to the experimentally relevant value
of K = 27.

The MSTHA data presented in Fig. 8.1 is well-converged with respect to the truncation
and can be considered essentially exact across all values of the Luttinger parameter. Due
to the initial state (8.6), the method requires very few quantum pendulum basis states to
converge even for the experimentally relevant K = 27, which is generally unobtainable for
the usual formulation of the TCSA. On the other hand, the TWA provides reliable results
when in the weakly interacting regime (large K), including K = 27, but breaks down when
the coupling becomes large enough, as indicated by the deviations from the numerically exact
MSTHA results. This is in agreement with the expectation that (given the semi-classical
nature of the TWA) for strong interactions, the dynamics are dominated by quantum effects,
which are generally inaccessible to semi-classical methods. Additionally, the choice of the
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Figure 8.1: Time evolution of the expectation value of : cos βφ̂ : (top row) and the phase-
phase correlator ⟨φ̂kφ̂−k⟩ (bottom row) for a wide range of the Luttinger parameter K and
l = 10. During the quench, the system is initiated in the quantum pendulum ground state
(8.6). The MSTHA is shown in solid lines, while the joined markers denote the TWA results.
The difference between the two methods becomes invisible for the two largest values of K.
The dashed red line denotes the (numerically) exact solution of the zero-mode (quantum
pendulum) dynamics.

initial state (8.6) results in a small injected energy density that is insufficient to produce
high excitation numbers in the non-zero modes, which also contributes to the strong quantum
effects. As a result, for small K, the TWA substantially overestimates the dephasing of the
condensates, as shown in Fig. 8.1.

Single-mode approximation of the Hamiltonian results in the Hamiltonian (8.7), leading
to trivial time evolution, given the initial state (8.6) is its eigenstate. In this case, the
importance of the oscillator modes on the quantum pendulum dynamics can be inferred
from the amplitudes of the oscillations of the cosine expectation value, which decreases
rapidly with growing K, becoming very small for the experimentally relevant K = 27, as
can be seen in Fig. 8.1. This indicates that the zero mode is very weakly coupled to the
oscillator modes in the semi-classical parameter range.
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8.1.2 Quenches starting from the free massless boson ground state

Now we consider quenches starting from the vacuum of the λ = 0 free massless boson

|ΨFB⟩ = |ν = 0⟩ . (8.11)

The setup is equivalent to quenching two initially decoupled bosonic quasi-condensates to
some finite value of λ, which gives rise to non-equilibrium time evolution in the coupled
system. This scenario was studied in detail in the previous work [115] using TWA and the
original version of the TCSA introduced in Sec. 4.3.2. In this formulation of the TCSA, the
initial state (8.11) can be naturally represented on the truncated basis, but this also comes
with the drawback that the applicability of the TCSA was limited to small values of K far
from the experimentally relevant regime.

In the MSTHA, the initial state (8.11) can be represented by expanding the plane wave
state |ν = 0⟩ in the quantum pendulum eigenbasis (for details c.f. App. A) as

|ΨFB⟩ = |ν = 0⟩ =
N∑

n=−N

Cn |n⟩ (8.12)

However, for large values of K, the state (8.11) corresponds to a highly excited state in
the quantum pendulum eigenbasis, requiring a large number of zero mode eigenstates for
accurate representation. This is a similar problem that arises in the TCSA; nevertheless, we
found that the mini-superspace treatment of the zero mode still extended the validity of the
MSTHA to higher values of K than previously available.

Turning to the TWA, the Wigner function corresponding to the ground state of the free
massless boson can be simply calculated [115] and factorises into zero and non-zero mode
parts. The contribution of the zero mode is given by

W0{φ0, π0} =
θ(φ0 + π)θ(π − φ0)

2π
δπ0,0 , (8.13)

corresponding to a uniform distribution of the initial phase φ0 over the range [−π, π] with
definite initial canonical momentum π0 = 0. The part related to the oscillator modes is the
same as before, given in (8.9).

In Fig. 8.2, the time evolution of the cosine of the phase field and the phase-phase
correlator can be seen, starting from the initial state (8.11) in a volume l = 10 and for
multiple values of the interaction strength K. For the MSTHA calculations, we opted for
zero mode cutoff parameters nmax = 11, 17, 35 and 225 for K = 1, 1.56, 4 and 27, respectively.
These values were chosen in a way that the dynamics remained unchanged with respect to
increasing nmax, and clearly illustrate the fact that for large K, the initial state spans a
wide range of quantum pendulum states. Again, as before, the largest value of K (K = 27)
corresponds to the experimentally relevant interaction strength. The oscillator modes were
truncated using values ℓmax = 26, 20, 28 and 20, corresponding to a total Hilbert space
dimension of 251339, 60911, 2521750 and 806175 for K = 1, 1.56, 4 and 27, respectively.

The MSTHA results converge well for K = 1 and 1.56, providing essentially exact quan-
tum evolution. For K = 4, the results do not strictly converge for the cutoff values studied
here but are very close to the exact results. However, for larger values of the Luttinger
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Figure 8.2: Time evolution of the expectation value of : cos βφ̂ : (top row) and the phase-
phase correlator ⟨φ̂kφ̂−k⟩ (bottom row) for a wide range of the Luttinger parameter K and
l = 10. During the quench, the system is initiated in the quantum pendulum ground state
(8.11). The MSTHA is shown in solid lines, while the joined markers denote the TWA results.
The difference between the two methods becomes invisible for the two largest values of K.
The dashed red line denotes the (numerically) exact solution of the zero-mode (quantum
pendulum) dynamics.

parameter, the MSTHA results showcase much slower convergence, requiring the inclusion
of higher excitations in the oscillator modes, which makes the method very computationally
expensive. This limits its validity to parameters outside of the experimental range, where
the method requires smaller truncation values to converge.

Similarly to before, the TWA struggles to capture the correct dynamics for K = 1,
when the quantum effects are strong, signalled by the deviations from the numerically exact
MSTHA results. However, the accuracy of the TWA is improved forK = 1.56, matching with
the MSTHA. This improvement originates from the initial state (8.11), as during the quench
a large energy density is injected into the system, giving rise to large excitation numbers in
the oscillator modes, subsequently decohering the dynamics of the quantum pendulum, as
can be seen in Fig. 8.2. This behaviour persists for smaller interaction strengths K ≥ 2,
all the way to the experimental parameter range, where the TWA can be considered very
accurate. This is contrasted by the behaviour found in the case where the initial state is the
quantum pendulum ground state 8.6, where the small induced energy density forbids the
accumulation of large occupation numbers (presented in Fig 8.1) that could decohere the
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zero mode dynamics. When the system is initialised in the free boson vacuum (8.11), the
large energy of the initial state with respect to the post-quench ground state is transferred
to the oscillator modes during the quench. These occupations grow with K, as seen in Fig.
8.2, resulting in the matching of the two methods for K = 1.56 and 4, and the accuracy of
the TWA for the experimental parameter K = 27.

Again, the red dashed lines in Fig. 8.2 show the single-mode dynamics governed by the
zero mode Hamiltonian (8.7). For large values of K, the zero mode dynamics is close to the
MSTHA and TWA simulations, suggesting that the zero mode dominates the dynamics of the
sine-Gordon model. However, the presence of the oscillator modes contributes substantially
to the dynamics even for the experimentally relevant weakly interacting regime, consistent
with the observation that the large energy transfer to the non-zero modes counteracts their
weak coupling to the quantum pendulum, resulting in large occupation numbers in the
respective modes influencing the dynamics.

8.2 Summary

To study the low-energy out-of-equilibrium dynamics of two tunnel-coupled one-dimensional
bosonic quasi-condensates, we performed quantum quenches in the sine-Gordon model. The
parameter range accessible to experiments corresponds to a very weak (sine-Gordon) interac-
tion strength between the modes, motivating the use of semi-classical methods to study the
dynamics. Therefore, we apply the semi-classical truncated Wigner approximation (TWA)
that has been previously applied to study the dynamics of the model [115, 173]. However,
the accuracy of the TWA is hard to control and needs to be carefully validated against other,
better-controlled methods.

To this end, we also implement a version of the truncated Hamiltonian approach (THA).
Though previous versions of the method, called the truncated conformal space approach
(TCSA) have been recently used to study the dynamics [132] and also to validate the TWA
[115], their use was limited to the strongly interacting regime characterised by small values
of the Luttinger parameter K. Due to the weak coupling between the zero and non-zero
modes in the experimentally available regime corresponding to large K, it is natural to ask
whether the non-zero modes substantially affect the dynamics of the zero mode. Therefore,
we develop an improved version of the TCSA by including a mini-superspace treatment of
the zero mode by separating it from the non-zero modes and pre-diagonalising it numerically
exactly. The sine-Gordon model can be considered to describe a quantum pendulum (the
zero mode) coupled to a bath of non-linearly interacting phononic degrees of freedom (non-
zero modes). The resulting mini-superspace-based THA (MSTHA) is advantageous in many
regards: it makes the distinction between the zero and non-zero modes apparent, improves
on the previous TCSA by extending its validity to larger values of K, and naturally allows
for simulating quench protocols that have been previously unavailable to the original TCSA.

To better understand the role of non-zero modes and the applicability of both the TWA
and MSTHA, we considered quantum quenches starting from two types of initial states,
corresponding to small and large injected energy densities. For the mild quench, starting
from the ground state of the quantum pendulum, the MSTHA performed excellently, giving
well-converged results for all values of K studied, from very strong interactions K = 1 to the
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experimentally available K = 27, a regime inaccessible by previous implementations of the
TCSA [115]. In the case of the stronger quench, the system is initiated in the free massless
boson vacuum. Here, we find that the MSTHA performs similarly well for strong interactions
K ≲ 4, yielding essentially (numerically) exact results. However, for large K close to the
experimentally relevant parameters, the method fails to converge for the truncation values
studied here due to the computationally tasking representation of the initial state and the
large occupation numbers of the non-zero modes required to reproduce the exact quantum
dynamics.

According to expectations, we find that the TWA performs very well for weak interac-
tions, even when the energy density injected by the quench is small, signalled by its close
match with the MSTHA results. However, deviations between the methods start to grow
with decreasing K, and the TWA breaks down close to the limit of hard-core repulsion
between the bosons forming the condensates, K ≈ 1. This behaviour also carries over to
stronger quenches, starting from the free massless boson ground state; nevertheless, the
TWA shows strong improvements due to the larger energy density, allowing for the build-up
of larger occupation numbers in the phononic modes. As a result, the validity of the TWA
is extended to up to K ≥ 1.56 and is considered very accurate in the large K limit directly
relevant to experiments.

We find that the contribution of the non-zero modes to the quantum pendulum dynamics
is minor whenever the inter-mode interaction is weak, particularly for mild quenches. How-
ever, in the case of strong quenches, even in the experimentally available weakly interacting
regime, the eventual build-up of excitations in the phononic degrees of freedom affects the
dynamics substantially, rendering the single-mode dynamics impractical when describing the
dynamics of the condensates.

Overall, our findings establish the TWA and MSTHA as powerful complementary meth-
ods to study the dynamics of the sine-Gordon model. Ultimately, the choice should depend
on the quench protocols studied and the strength of interactions: the MSTHA performs
excellently in the case of mild quenches or strong quenches and strong interactions, while
the TWA is a great choice for quenches when the energy density injected into the system is
large, or the interactions are weak, even in the case of mild quenches.
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Chapter 9

Conclusions

The dynamics of isolated quantum many-body systems has attracted prominent attention in
contemporary theoretical physics. Recent advances in cold-atomic experiments [2–8] opened
the possibility of probing the non-equilibrium dynamics of many strongly correlated con-
densed matter systems, leading to a rise in interest in corresponding theoretical investiga-
tions.

One of the cornerstones of one-dimensional quantum many-body research is integrable
models characterised by an infinite set of local conserved charges and factorised scattering
of quasi-particles. On the one hand, as discussed in Chapter 2, time evolution is strongly
affected by integrability, and the details of their equilibration are generally an open question.
On the other hand, integrability allows for powerful analytical approaches to study the
spectrum and the dynamics in these systems, in many cases leading to exact results.

Quantum spin chains provide a prevalent platform for studying integrability and its
breakdown in quantum many-body systems. Apart from analytic and numerical investi-
gations, today, their dynamics can be realised and studied experimentally in a laboratory
setting [71–75]. In the context of integrable spin chains, one of the main focus is on the
construction and categorisation of the local conserved charges and corresponding generalised
currents that contribute to the integrable nature of these systems. Recently, the problem
gained renewed interest due to the so-called generalised hydrodynamics (GHD) that de-
scribes the non-equilibrium dynamics of integrable systems at the Euler scale [138,139] with
many new exact results for the expectation values of generalised currents [76, 137].

Recently, it was discovered in [137] that the existence of exact formulae for the expectation
values of generalised currents is strongly connected to the long-range deformations of inte-
grable spin chains known in the Ads/CFT correspondence. As a result, the authors showed
that perturbing an integrable spin chain by one of its currents preserves integrability at first
order in perturbation theory in the integrability breaking parameter g. Similar behaviour has
been observed in T T̄ -deformations of integrable quantum field theories [148–151] with strong
connections to the long-range deformations. This new class of integrability breaking has been
dubbed weak in contrast with the usual strong integrability breaking that occurs already at
first order in perturbation theory. The distinction between the two types of integrability
breaking is a novel one: in a recent work [153], the authors argue that weak integrability
breaking corresponds to moving along the tangent space of the manifold of integrable mod-
els embedded in the full space of quantum many-body systems, and as a result, the onset
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of chaos is much slower compared to the usual strong integrability breaking, equivalent to
’radially’ moving away from the integrable system.

To investigate the weak integrability breaking of quantum spin chains, we compared the
current and next-to-nearest-neighbour (NNNI) perturbations of the spin-1/2 XXZ spin chain.
While the latter is a well-known example of a strongly integrability-breaking perturbation,
the generalised current perturbation is expected to break integrability at higher orders in
perturbation theory. The breakdown of integrability can be probed via some indicator of
(non-)integrability, such as the distribution of normalised consecutive level spacings. While
for a finite system, the level spacing statistics can continuously vary between the Poissonian
and Wigner-Dyson distributions (characterising integrable and non-integrable behaviour,
respectively), in the limit of infinite system size any finite value of the integrability-breaking
parameter g results in the sudden change from the Poissonian to the Wigner-Dyson statistics.
Therefore, the deciding factor between weak and strong integrability breaking is the scaling
of the rate of crossover with the system size [166,169,170].

Through numerical exact diagonalisation, we demonstrated that the current perturbation
scales more slowly in the volume L than the NNNI perturbation, signalling weak integra-
bility breaking in both the gapless and gapped phases. In particular, in the gapless phase,
the scaling is expected to be described by a power-law L−b. In the NNNI case, our value for
bNNNI ≈ 3 agrees with previous results found in the literature [170]. The value 3 is eventually
claimed to be universal in gapless spin chains with strongly broken integrability, albeit with-
out analytical evidence. For the current perturbation J , we obtain the value bJ ≈ 2 for the
exponent. Though the order at which integrability is broken cannot be deduced from these
results, the marked difference between the exponents is clear and supports the idea that
perturbing an integrable spin chain via one of its generalised currents preserves integrability
at first order.

The universality of these exponents is still an open question. In a recent work [166], the
authors investigated the weak integrability breaking in a field theoretic setting and observed
that the difference between the exponents corresponding to strong and weak breaking is
similarly close to 1, albeit their values are different and therefore cannot be declared universal.
The work [194] describes the breakdown of integrability and the onset of many-body quantum
chaos as a Fock-space delocalisation process that depends continuously on the system size
with some appropriate scaling exponents.

Close to the critical point, the dynamics of the relevant (large-scale) degrees of freedom
of lattice models are described by an appropriate quantum field theory (QFT) [1]. As
discussed in Chapter 4, the dynamics of interacting QFTs can not be solved exactly and
calls for approximations and numerical methods. Therefore, understanding the validity of
different approaches is crucial in understanding the dynamics of these many-body systems.

A textbook example of interacting non-integrable relativistic QFTs is the (1 + 1)-di-
mensional φ4 model. It describes the scaling limit of the Ising model and serves as an
ideal platform to study the validity of semi-classical approximations for the non-equilibrium
dynamics of non-integrable field theories. Two such widely used approaches are the self-
consistent Hartree-Fock (SCA or mean field) approximation [104–111] and the truncated
Wigner approach (TWA) [112–115] introduced in Chapter 4. The SCA for the φ4 model
was developed by Cardy and Sotiriadis in [111]. It approximates the time evolution by
omitting the connected part of the interaction, reducing the dynamics to a free boson with
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a self-consistently obtained time-dependent mass. In the TWA, the dynamics is computed
by Monte Carlo averaging an ensemble of classical trajectories distributed accordingly to
a Wigner quasi-probability distribution describing the quantum fluctuations in the initial
state.

To determine their range of validity, we simulated the time evolution of expectation val-
ues of local observables following quantum quenches [19,20], a paradigmatic, experimentally
viable protocol to investigate the out-of-equilibrium time evolution (for more details c.f.
Chapter 2). As a general rule, the accuracy of semi-classical approximations is hard to con-
trol, and as a benchmark, we also simulate the time evolution via the truncated Hamiltonian
approach (THA) built upon the free massive boson basis, which has been previously applied
successfully to study the properties of the theory [81–83,89]. The THA is a non-perturbative
approach for studying the spectral properties and time evolution of relevant perturbations
of (solvable) quantum field theories originally developed by Zamolodchikov and Yurov [116].

The validity of semi-classical approaches was tested by simulating the non-equilibrium
time evolution of the Fourier transform of the correlator following general quenches in the Z2-
symmetric phase of the φ4 theory consisting of changing the massm and the quartic coupling
λ. For the wide range of interaction strengths studied, the THA proved very successful in
computing the time evolution and showed negligible cutoff dependence, practically yielding
exact results and serving as a reliable benchmark for the semi-classical simulations.

According to expectations, in the limit of small λ, the SCA agrees with the THA and
successfully reproduces the exact time evolution. However, the SCA breaks down when
the interactions become stronger, signalled by the large deviations from the THA curve.
The TWA exhibited similar behaviour and produced accurate results in the case of small
interactions. For larger values of λ however, the TWA results show quick relaxation to a
symmetry-broken classical steady state in contrast to the THA due to mass renormalisation:
the TWA is formulated on the lattice using the bare (non-renormalised) mass of the system.
For large values of λ, the bare mass becomes negative, giving rise to a classically spon-
taneously symmetry-broken potential, causing the relaxation to a steady state and failing
to reproduce the exact quantum evolution. Our findings have important consequences for
the TWA when applied to other field theories with additive mass renormalisation, such as
higher-order Ginzburg-Landau theories. The TWA has also been applied to the sine-Gordon
model [115,174], where this effect is missing due to the multiplicative renormalisation of the
mass in the theory.

Apart from its quantum statistical mechanical importance, the (1+1)d φ4 theory provides
a one-dimensional analogue of the Higgs field in the Standard Model. Recently, it has gained
additional attention due to the indication of the metastability of the Higgs vacuum [77,177],
which resulted in a newfound interest for the tunnelling in quantum field theories, a.k.a. the
decay of the false vacuum. Perturbing the φ4 model via an odd function of the field φ̂ in the
spontaneous symmetry broken phase gives rise to a metastable state in the spectrum called
the false vacuum. A system prepared in the false vacuum will eventually decay through
quantum mechanical tunnelling, driven through nucleations of finite regions (bubbles) of the
true vacuum (the true ground state of the theory). These bubbles then expand, propelled
by the energy difference between the false and true vacua, converting the available space to
the true ground state. The false vacuum decay is usually studied in the context of high-
energy physics; however, the recent advances in cold-atomic experiments enabled the study

88



of the phenomena in various condensed matter setups [178–183], also resulting in its recent
theoretical study in various systems [177,186,187].

The main quantity of interest in this context is the bubble nucleation or tunnelling rate Γ.
In his seminal works [175,176], Coleman proposed a semi-classical formula for Γ, which was
later extended to generic one-dimensional systems taking into account all 1-loop corrections
by Voloshin [184] and expected to be valid in the thin-wall limit when the size of walls of the
bubble is much smaller than its volume. Similar results are available for spin chains [185].
Here, we focus on the (1+1)d φ4 theory and compute the tunnelling rate per unit volume
γ by simulating the false vacuum decay following quantum quenches using the truncated
Hamiltonian approach. Therefore, we apply a special treatment of the zero mode called the
mini-superspace approach consisting of separating and pre-diagonalising the zero mode to
consider the main part of the symmetry breaking. The tunnelling rate γ can be extracted
from the time evolution by preparing the system close to the false vacuum and identifying
the exponential decay in the time evolution of the order parameter indicated by a linear drop
in its logarithm.

We find that the obtained tunnelling rate as a function of the latent heat E agrees
well with Voloshin’s formula (7.21) [184] up to fitting an overall normalisation factor. Such
redefinition of the normalisation is ultimately expected: Voloshin’s formula for the tunnelling
rate, expected to be valid for all one-dimensional systems, does not agree with the one
proposed for the Ising model by Rutkevich [185]. Additionally, a similar numerical study
of the vacuum decay in the Ising and tricritical Ising field theories required the redefinition
of the normalisation of the tunnelling rate [188]. The precise origin of the re-normalisation
factor is generally an open question with promising directions in recent research in higher
dimensions [177,186,187]. To sum up, our findings establish the THA as a powerful tool to
probe strongly-correlated, non-perturbative phenomena in non-equilibrium dynamics, such
as the false vacuum decay, with definite and precise numerical results that can serve as a
benchmark for this highly researched open problem.

The one-dimensional φ4 theory is a paradigmatic model in statistical and high-energy
physics that exhibits interesting physical phenomena such as false vacuum decay. Currently,
however, there are no condensed matter realisations of the system that would serve as the ba-
sis to study its dynamics experimentally. Instead, experiments using two Josephson-coupled
one-dimensional bosonic quasi-condensates [2, 4, 8, 101, 102] provided an effective quantum
simulator for non-equilibrium dynamics of the sine-Gordon model. The sine-Gordon model
is a prevalent example of integrable quantum field theories that describes the dynamics
of collective degrees of freedom of many gapped one-dimensional condensed matter sys-
tems [90–96, 98, 99] through bosonisation, such as the coupled condensates realised in the
experiments [100]. However, the non-equilibrium time evolution observed in the experiments
suggests dynamics beyond the sine-Gordon model [195–197], attributed to additional relevant
degrees of freedom such as the symmetric modes or the transverse modes originating from
the quasi-one-dimensional geometry. Therefore, identifying the relevant degrees of freedom
and constructing the simplest theoretical model describing the experimental observations
is crucial to understanding the dynamics and is generally an open question. Answering it
requires a precise numerical description of the sine-Gordon dynamics in the parameter range
available to the experiments.

In the context of experiments, the strength of sine-Gordon interactions is typically char-
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acterised by the Luttinger parameter K. In the experimental setup, K is large K ≈ 27,
which corresponds to very weak interactions between the sine-Gordon modes. As a result,
a natural viewpoint is to consider the sine-Gordon model as a quantum pendulum (the zero
mode) coupled to a bath of non-linearly interacting phononic degrees of freedom (non-zero
modes).

Based on the quantum pendulum picture and motivated by the success of THA for the
φ4 model, we study the non-equilibrium dynamics of the sine-Gordon model using a trun-
cated Hamiltonian approach built upon the basis of the massless free boson based on a
mini-superspace treatment of the zero mode (MSTHA). The mini-superspace approach has
two main advantages: firstly, it helps achieve better accuracy by treating the zero mode
of the phase field exactly. Secondly, it allows for the precise control of the modes in the
theory by treating the zero mode separately, motivated by the quantum pendulum picture.
Previous installations of the THA constructed on the conformal basis (TCSA) have been
applied to study the spectral properties and dynamics of the model [115, 124, 131, 132] gen-
erally successfully, but failed to reproduce the exact dynamics in the semi-classical regime
characteristic to the experiments. The MSTHA also serves as a benchmark for the trun-
cated Wigner approach that has proved to be successful in approximating the dynamics of
the condensates [115,173].

To understand the validity and limitations of both approaches, we perform quantum
quenches starting from two distinct initial states corresponding to mild and strong quenches
characterised by their injected energy densities, starting from the quantum pendulum and
free boson ground states, respectively. While the former has no direct experimental relevance,
the latter corresponds to a sudden coupling between the initially independent condensate
pair and can be investigated experimentally. For the mild quench starting from the quan-
tum pendulum ground state, the MSTHA shows negligible truncation effects and can be
considered practically exact for the wide range of sine-Gordon interaction strengths studied,
all the way up to the experimentally relevant values. In contrast, the TWA works well in
the semi-classical regime characteristic of the experiments but breaks down whenever the
correlations grow strong enough.

In the case of the strong quench, the TWA works similarly well for large values of the
Luttinger parameter K (corresponding to weak interactions), and its validity is extended to
stronger interactions due to the increased energy density injected into the system. This is
eventually expected, as the increase in the energy results in the growing number of excitations
that decohere the dynamics, favouring the TWA. However, this scenario is not favourable
for the MSTHA when K is too large: the large occupation numbers necessary to reproduce
the exact dynamics require very large cutoff values inaccessible to the MSTHA, ultimately
rendering it unreliable in the experimentally relevant parameter regime. Nevertheless, these
results establish the TWA and the MSTHA as powerful complementary methods for studying
the non-equilibrium dynamics of the sine-Gordon model for a wide range of parameters and
various quench scenarios. Depending on the injected energy density during the quench, both
methods offer accurate ways of computing the non-equilibrium dynamics in the parameter
range accessible to experiments.

The success of the TWA for large values of the Luttinger parameter suggests that in
the experimental regime, the role of quantum fluctuations is greatly suppressed by the large
occupation numbers that decohere the dynamics. Additionally, the role of the non-zero
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modes on the dynamics shows a strong dependence on the quench scenario: for small injected
energy densities, the phononic degrees of freedom have limited effect on the time evolution
of the quantum pendulum when the inter-mode interactions are relatively weak. When the
injected energy density during the quench is large, apart from an initial transient, the low-
momentum phononic modes strongly affect the dynamics when their occupation number
becomes large in the experimentally relevant weakly interacting regime.

Moreover, we find that the sine-Gordon model does not account for the experimentally ob-
served phase-locking [195], suggesting the presence of additional relevant degrees of freedom
contributing to the experimental dynamics. One of the main candidates is the symmetric
modes of the condensate that, in the presence of inhomogeneities (due to the spatially de-
pendent longitudinal trapping potential), couple strongly to the relative degrees of freedom
described by the sine-Gordon model. As of now, however, the extended system has only been
studied using mean field theory [198] where the authors demonstrated that the coupling of
the (anti)symmetric sectors leads to very little effects on the sine-Gordon time evolution. In
light of the results of our simulations, a more fruitful approach would be the extension of
the TWA to contain the symmetric modes as well.
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Summary of thesis points

I. I demonstrated that the weak integrability breaking of the spin-1/2 XXZ
spin chain induced by perturbing it with one of its conserved generalised
currents can be captured in the level spacing statistics of the perturbed
system.

It has been previously shown that perturbing an integrable spin chain by one of its
higher conserved currents preserves the integrable properties of the system at first
order in perturbation theory – in contrast to the usual ‘strong’ integrability breaking
– therefore only ‘weakly’ breaking integrability.

Applying exact diagonalisation and computing the level spacing statistics as an indi-
cator of the integrability breaking, I compared the finite size scaling of the crossover
coupling of the strongly integrability-breaking next-to-nearest-neighbour interaction
and the current perturbation and demonstrated that the latter breaks integrability in
the weak sense. My findings were published in [85].

II. I determined the range of validity of two popular semi-classical approaches,
the self-consistent Hartree-Fock approximation (SCA) and the truncated
Wigner approach (TWA), by simulating quantum quenches in the (1+1)d φ4

theory and comparing the non-equilibrium time evolution to the truncated
Hamiltonian approach (THA).

I demonstrated the applicability of the THA for studying the non-equilibrium dynamics
by quenching the mass and interaction parameters and analyzing the cutoff dependence
of the time evolution of the one-point function for a wide range of quench strengths. I
demonstrated the failure of the semi-classical approximations for increasing interaction
strength and the rise of a symmetry-broken steady state in the TWA anytime the bare
mass becomes negative. These results were published in [199].

III. I simulated the decay of the false vacuum and numerically determined the
bubble nucleation rate in the spontaneously symmetry-broken (1+1)d φ4

theory.

Using the truncated Hamiltonian approach, I simulated the real-time decay following
quantum quenches in a system initiated close to the false vacuum and extracted the
decay rate. The numerical results agree with the theoretical predictions up to an overall
(numerical) normalisation factor that only depends on the interaction coupling of the
theory. Moreover, these results establish the THA as a powerful tool to investigate
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strongly non-perturbative phenomena, even in a non-equilibrium setting. I published
my results in [200].

IV. I simulated the non-equilibrium dynamics of the sine-Gordon model, par-
tially describing a pair of Josephson-coupled one-dimensional bosonic quasi-
condensates. The results establish that in the experimentally available
weakly interacting regime, the dynamics can be well approximated by a
semi-classical description and also clarify the role of the phononic modes of
the theory.

Using a novel version of THA based on a mini-superspace (MSTHA) and the truncated
Wigner approximation, we simulated the time evolution of the one-point function and
occupation numbers for a wide range of interaction strengths and two classes of quench
protocols corresponding to small and large energy densities. Additionally, our results
demonstrate that the MSTHA accurately describes the time evolution from the hard-
core boson limit to the weakly interacting regime available in experiments when the
injected energy density is sufficiently small. These findings were published in [174].
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Appendix A

Computation of THA matrix elements

A.1 Massive free boson basis

Now we discuss the finite matrix representation of the finite volume Hamiltonian

Ĥ = Ĥm
KG +

N∑
n=0

gnV̂n ; V̂n =

∫ L

0

dx : φ̂n : (A.1)

in the basis of the massive free boson, given by the Klein-Gordon Hamiltonian

Ĥm
KG =

∫ L

0

dx :

(
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 +
1

2
m2φ̂2

)
: . (A.2)

Here, normal ordering is carried out with respect to the free theory (A.2) and is denoted by
semicolons. The free theory (A.2) can be diagonalised via Fourier transformation of the field
φ̂:

φ̂(x, t) =
∑
k

1√
2ωkL

[
ake

−i(ωkt−kx) + a†ke
i(ωkt−kx)

]
(A.3)

where the one-particle energies are given by ωk =
√
m2 + k2 and the momentum modes k

form a discrete set which depends on the boundary condition:

k =
2πn

L
(A.4)

with

n = 0,±1,±2,±3, . . . for periodic boundary condition φ̂(x+ L) = φ̂(x)

n = ±1

2
,±3

2
,±5

2
, . . . for antiperiodic boundary condition φ̂(x+ L) = −φ̂(x) .

(A.5)

In Eq. (A.3), the field φ̂ is expressed in terms of creation/annihilation operators a†k/ak that
satisfy the canonical commutation relations

[ak, al] = [a†k, a
†
l ] = 0, [ak, a

†
l ] = δkl . (A.6)
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Substituting (A.3) into (A.2), the Klein-Gordon Hamiltonian becomes diagonal

Ĥm
KG =

∑
k

ωk a
†
kak . (A.7)

Its eigenvectors are multiparticle states

Ĥm
KG |n1, n2, n3, . . .⟩ =

(∑
k

nkωk

)
|n1, n2, n3, . . .⟩ (A.8)

characterised by the occupation numbers nk of the momentum modes k. They are created
from the vacuum |0⟩:

|n1, n2, n3, . . .⟩ = (a†1)
n1(a†2)

n2(a†3)
n3 . . . |0⟩

ak |0⟩ = 0
(A.9)

and span the Hilbert space of the free massive boson, called the Fock space.
The matrix element of an operator V̂n can be straightforwardly computed using the action

of creation and annihilation operators on the Fock vectors

a†k |n1, n2, n3, . . . , nk, . . .⟩ =
√
nk + 1 |n1, n2, n3, . . . , nk + 1, . . .⟩

ak |n1, n2, n3, . . . , nk, . . .⟩ =
√
nk |n1, n2, n3, . . . , nk − 1, . . .⟩ ,

(A.10)

together with the appropriate selection rules corresponding to momentum conservation orig-
inating from the integral in V̂n (A.1):∑

j

k+j −
∑
j

k−j = 0 (A.11)

where the {k+j } and {k−j } are the set momentum modes corresponding to the set of creation

(+) and annihilation (-) operators appearing in any given term in V̂n.

A.2 Massless free boson basis

In the MSTHA formalism, the sine-Gordon Hamiltonian

ĤsG =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2 − λ

2

(
eiβφ̂ + e−iβφ̂

)]
: . (A.12)

is represented by a finite matrix on the eigenbasis free massless boson

ĤFB =

∫ L

0

dx :

[
1

2
(∂tφ̂)

2 +
1

2
(∂xφ̂)

2

]
: . (A.13)

To evaluate the matrix elements of the perturbing exponential operators, we first analytically
continue the time t to Euclidean signature τ = −it. The resulting space-time cylinder can
be mapped to the complex plain parametrised by z by the conformal transformation

z = exp

{
2π

L
(τ − ix)

}
, z̄ = exp

{
2π

L
(τ + ix)

}
. (A.14)
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The transformation maps the exponential operators defined on the cylinder to the ones
defined on the (z, z̄)-plane as

: eiβνφ̂ :cyl=

(
2π|z|
L

)2hν

: eiβνφ̂ :pl (A.15)

with

hν =
ν2β2

8π
. (A.16)

Their matrix element between arbitrary eigenstates |ψ⟩ of the free Hamiltonian (A.13) can
be computed as

L∫
0

dx ⟨ψ′| : exp {iνβφ̂(0, x)} :cyl |ψ⟩ = L

(
2π

L

)2−2hν

⟨ψ′| : exp {iνβφ̂(1, 1)} :pl |ψ⟩ δsψsψ′

(A.17)
where the Kronecker delta ensures momentum conservation. Therefore, representing the
cosine operator on the free boson basis reduces to computing the matrix elements

⟨ψ′| : exp {iµβφ̂(1, 1)} :pl |ψ⟩ , (A.18)

which can be straightforwardly performed [131]. Explicit formulas are given below.
To discuss the eigenstates |ψ⟩ of (A.13), we first consider the Hamiltonian(s) truncated

to the zero mode, equivalent to basic quantum mechanics with no spatial dependence. In the
single-mode approximation, the sine-Gordon Hamiltonian (A.12) corresponds to a quantum
pendulum

ĤQP =
1

2L
π̂2
0 − λL

(
2π

L

)2h

cos(βφ̂0) . (A.19)

Diagonalisation of the free part

ĤFQM =
1

2L
π̂2
0 = − 1

2L
∂2φ0

(A.20)

yields solutions {|ν⟩} in the form of plane waves:

|ν⟩ =
√

β

2π
eiβνφ0 (A.21)

1

2L
π̂2
0 |ν⟩ =

(νβ)2

2L
|ν⟩ . (A.22)

which are created by the exponential operators from the vacuum |0⟩:

|ν⟩ = eiβνφ̂0 |0⟩ , |0⟩ = β

2π
. (A.23)

The exponential operators act as ladder operators on the plane wave basis:

e±iµβφ̂0 |ν⟩ = |ν ± µ⟩ . (A.24)
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Finally, the eigenstates of the free boson (A.13) are multiparticle states built upon the plane
wave basis {|ν⟩}:

HFB =
⊕
ν∈Z

Fν , (A.25)

where each Fock module Fν is composed of free multiparticle states (containing left- and
right-moving particles) built upon the appropriate plane wave |ν⟩

Fν =

{
|ψ⟩ =

∏
k>0

ark−kā
r̄k
−k |ν⟩

∣∣∣∣rk, r̄k ∈ N+

}
. (A.26)

Now we compute the matrix elements (A.18) of the exponential operators

⟨ψ′| : exp {iµβφ̂(1, 1)} :pl |ψ⟩ (A.27)

between the free boson eigenstates

|ψ⟩ = 1

Nψ

∞∏
k=1

ark−kā
sk
−k |ν⟩

|ψ′⟩ = 1

Nψ′

∞∏
k=1

a
r′k
−kā

s′k
−k |ν

′⟩ .
(A.28)

The normalisation factors have the form

N2
ψ =

∞∏
k=1

⟨arkk a
rk
−k⟩ ⟨ā

sk
k ā

sk
−k⟩ =

∞∏
k=1

(rk!k
rk)(sk!k

sk) (A.29)

and ensure that the conformal basis is orthonormal:

⟨ψ′|ψ⟩ = δν,ν′
∞∏
k=1

δrk,r′kδsk,s′k . (A.30)

Due to the normal ordering, the exponential operators at positions z = z̄ = 1 take the form

: exp {iµβφ̂(1, 1)} :pl= eiµβφ̂0

∞∏
k=1

eα
a−k
k e−α

ak
k eα

ā−k
k e−α

āk
k (A.31)

where

α =
µβ√
4π

. (A.32)

The matrix element (A.18) can now be expressed as

⟨ψ′| : exp {iµβφ̂(1, 1)} :pl |ψ⟩ =

=
1

NψNψ′
δν′,ν+µ

∞∏
k=1

⟨ar
′
k
k e

α
a−k
k e−α

ak
k ark−k⟩ ⟨ā

s′k
k e

α
ā−k
k e−α

āk
k āsk−k⟩

=
1

NψNψ′
δν′,ν+µ

[
∞∏
k=1

⟨ar
′
k
k e

α
a−k
k e−α

ak
k ark−k⟩

][
∞∏
k=1

⟨ās
′
k
k e

α
ā−k
k e−α

āk
k āsk−k⟩

]
.

(A.33)
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Finally, the contribution of a single mode to the expectation value can be evaluated as
follows:

⟨ar
′
k
k e

α
a−k
k e−α

ak
k ark−k⟩ =

∞∑
j′=0

∞∑
j=0

(−1)j

j!j′!

(α
k

)j+j′
⟨ar

′
k
k a

j′

−ka
j
ka

rk
−k⟩ , (A.34)

where

⟨ar
′
k
k a

j′

−ka
j
ka

rk
−k⟩ = kj+j

′
(
rk
j

)(
r′k
j′

)
j!j′!(rk − j)!krk−jδrk−j,r′k−j′ . (A.35)
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Appendix B

Bosonisation of a pair of coupled
bosonic quasi-condensates

The dynamics of a one-dimensional bosonic quasi-condensate is governed by the Hamiltonian

ĤQC =

∫
dz ψ̂†(z)

[
− ℏ
2m

∂2z + V (z)− µ

]
ψ̂(z) +

g

2

∫
dz ψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z) , (B.1)

where the bosonic field operators satisfy the common canonical commutation relations

[ψ̂(z), ψ̂†(z′)] = iδ(z − z′) . (B.2)

The atoms are subject to a longitudinal trapping potential V (z), µ is the chemical potential,
and g is some effective one-dimensional coupling. The strength of the interactions between
atoms is characterised by the parameter

γ =
mg

ℏ2ρ0
, (B.3)

where ρ0 is the longitudinal density of atoms. Bosonisation of the condensate starts by
expressing the field variable in terms of density ρ̂(z) and phase fields θ̂(z) as

ψ̂(z) =
√
ρ̂(z)eiθ̂(z); ρ̂ = ρ0 + δρ̂ . (B.4)

the density fluctuations δρ̂ and the phase field θ̂ obey the commutation relations [θ̂(z), δρ̂(z′)] =
iδ(z − z′). Substituting (B.4) to (B.1) and expanding to second order in density and phase
fluctuations yields a low-energy effective field theory in the form of the Tomonaga-Luttinger-
liquid Hamiltonian

ĤTLL =
ℏ
2π

∫
dz
[
νNπ

2δρ̂2 + νJ(∂z θ̂)
2
]
. (B.5)

The parameters νN/J are called the density/phase stiffness and can be written in terms of
the parameters characterising the condensate:

νJ =
πℏρ0
m

, νN =
1

πℏ
∂ρ0µ

γ≪1
≈ g

πℏ
. (B.6)
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Due to the confining potential V (z), the background density ρ0 and the parameters (B.6)
carry a z-dependence. We focus on homogeneous systems so the spatial dependence can be
dropped. Introducing the Luttinger parameter K̃ and sound velocity c

K̃ =

√
νJ
νN
, c =

√
νJνN , (B.7)

the Hamiltonian (B.5) can be brought to the usual Luttinger liquid form:

ĤTLL =
ℏc
2

∫
dz

[
π

K̃
δρ̂2 +

K̃

π
(∂z θ̂)

2

]
. (B.8)

Loading a pair of bosonic one-dimensional quasi-condensates to a longitudinally elon-
gated double well potential, the finite potential barrier instigates a coupling between the
condensate pair through quantum mechanical tunnelling. The system can be described by
the Hamiltonian:

ĤQCP =
∑
j=1,2

∫
dz ψ̂†

j(z)

[
− ℏ
2m

∂2z + V (z)− µj

]
ψ̂j(z) +

g

2

∫
dz ψ̂†

j(z)ψ̂
†
j(z)ψ̂j(z)ψ̂j(z)

−ℏJ
∫
dz
[
ψ̂†
1ψ̂2 + ψ̂†

2ψ̂1

]
,

(B.9)

where the last term describes the tunnelling of particles between the condensates with tunnel
coupling J . Setting µ1 = µ2 = µ and introducing the density-phase variables as

ψ̂j(z) =
√
ρ̂j(z)e

iθ̂j(z); ρ̂ = ρ0 + δρ̂j , (B.10)

the coupled condensate pair can be bosonised by substituting (B.10) to (B.9) and expanding
the Hamiltonian up to the second order in the fluctuations. The resulting Hamiltonian
describes a pair of Luttinger liquids

ĤQCP = ĤTLL, 1(K̃) + ĤTLL, 2(K̃) + ĤJ(θ̂1 − θ̂2) (B.11)

with an interaction Hamiltonian ĤJ coupling them together. Here, we explicitly indicated
the Luttinger parameters that parameterise the TLL Hamiltonians. Since ĤJ only depends
on the relative phase θ̂1 − θ̂2, it is helpful to perform a change of variables of the form

δρ̂c = δρ̂1 + δρ̂2

δρ̂r =
δρ̂1 − δρ̂2

2

θ̂c =
θ̂1 + θ̂2

2

θ̂r = θ̂1 − θ̂2 .

(B.12)

Here, the subscripts r/c denote the relative/common (or antisymmetric/symmetric) degrees
of freedom. The Luttinger liquid of the Hamiltonian (B.11) can be brought to the form

ĤTLL, 1(K̃) + ĤTLL, 2(K̃) = ĤTLL, c(Kc) + ĤTLL, r(Kr) (B.13)
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with Kc = 2K̃ and Kr = K̃/2. The interaction Hamiltonian ĤJ can be expanded in the
density fluctuations up to second order to yield

ĤJ = −ℏJ
∫
dz [2ρ0 + δρ̂c] (cos θ̂r − 1) +

ℏJ
ρ0
δρ̂2r cos θ̂r

≈ −2ℏJρ0
∫
dz cos θ̂r . (B.14)

The second line is obtained by neglecting the density fluctuations and results in the decou-
pling of the common and relative degrees of freedom:

Ĥc =
ℏc
2

∫
dz

[
π

2K̃
δρ̂2c +

2K̃

π
(∂z θ̂c)

2

]
(B.15)

Ĥr =
ℏc
2

∫
dz

[
2π

K̃
δρ̂2r +

K̃

2π
(∂z θ̂r)

2

]
− 2ℏJρ0

∫
dz cos θ̂r , (B.16)

revealing the relative mode dynamics to be described by the sine-Gordon model. We can
bring Ĥr to a more familiar form by redefining the canonical variables as

φ̂ = β−1θ̂r , π̂ = βδρ̂r (B.17)

with

β =

√
2π

K̃
=

√
π

Kr

, (B.18)

leading to the usual form of the sine-Gordon model:

ĤsG =
1

2

∫
dz
[
π̂2 + (∂zφ̂)

2
]
− λ

∫
dz : cos βφ̂ : . (B.19)

The normal ordering in the above Hamiltonian is obtained by redefining the coupling λ,
which now has a dimension [energy]2−2h, where 2h = β2/4π is the anomalous dimension
of the cosine operator. Here, we remark that throughout the main text, we consider the
dynamics of the relative phase and omit the contributions coming from the common degrees
of freedom, and so we drop the subscript of the relative Luttinger parameter Kr and simply
refer to it as K.
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time evolution and rephasing in the quantum sine-Gordon model,” Phys. Rev. A 100
(2019) 013613, arXiv:1809.06789 [cond-mat.quant-gas].

[116] V. P. Yurov and A. B. Zamolodchikov, “Truncated Comformal Space Approach to
Scaling Lee-Yang Model,” International Journal of Modern Physics A 5 (1990)
3221–3245.

[117] T. Rakovszky, M. Mestyán, M. Collura, M. Kormos, and G. Takács, “Hamiltonian
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[172] M. Lüscher, “Volume dependence of the energy spectrum in massive quantum field
theories: II. Scattering states,” Communications in Mathematical Physics 105 (1986)
153–188.

[173] E. G. Dalla Torre, E. Demler, and A. Polkovnikov, “Universal Rephasing Dynamics
after a Quantum Quench via Sudden Coupling of Two Initially Independent
Condensates,” Phys. Rev. Lett. 110 (2013) 090404, arXiv:1211.5145
[cond-mat.quant-gas].

[174] D. Szász-Schagrin, I. Lovas, and G. Takács, “Nonequilibrium time evolution in the
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