
Ph.D. THESIS

Graphene-based heterostructures
under pressure

Bálint SZENTPÉTERI

Department of physics
Budapest University of Technology and Economics

Hungary
2025

Supervisor: Péter MAKK
Associate Professor
Department of Physics
BUTE



Contents

List of abbreviations 5

1 Introduction 6

2 Theoretical background 9
2.1 Electronic properties of graphene and bilayer graphene . . . . . . . . . 9

2.1.1 Single-layer graphene . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Twisted graphene structures . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Twisted graphene lattice . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Bistritzer-MacDonald model . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Derivation of the BM model . . . . . . . . . . . . . . . . . . . . 17

2.3 Role of spin-orbit coupling in graphene . . . . . . . . . . . . . . . . . . 22
2.3.1 Spin-orbit coupling in graphene/TMD heterostructures . . . . . 23
2.3.2 SOC in BLG/TMD heterostructures . . . . . . . . . . . . . . . 24

2.4 Transport in graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Ballistic transport in graphene . . . . . . . . . . . . . . . . . . . 27
2.4.2 Scattering mechanisms in graphene . . . . . . . . . . . . . . . . 28
2.4.3 Temperature-dependent transport . . . . . . . . . . . . . . . . . 32

2.5 Magneto-transport in graphene . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 Weak localization . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Shubnikov-de Haas oscillations . . . . . . . . . . . . . . . . . . . 40
2.5.3 Quantum Hall measurements . . . . . . . . . . . . . . . . . . . 41
2.5.4 Magnetic focusing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Experimental methods 47
3.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Building a vdW heterostructure . . . . . . . . . . . . . . . . . . 47
3.1.2 Making an electronic device . . . . . . . . . . . . . . . . . . . . 49

3.2 Transport measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Electrical gating . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Thermal activation measurements . . . . . . . . . . . . . . . . . 54

3.3 Pressure-dependent transport measurement . . . . . . . . . . . . . . . . 56

4 Modeling graphene heterostructures 58
4.1 SOC in BLG/WSe2 heterostructures . . . . . . . . . . . . . . . . . . . 58

4.1.1 Landau levels in BLG . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 Fermi surface of BLG/TMD heterostructures . . . . . . . . . . . 64

4.2 Twisted double bilayer graphene . . . . . . . . . . . . . . . . . . . . . . 65

2



CONTENTS 3

5 Tailoring the band structure of twisted double bilayer graphene with
pressure 71
5.1 TDBG heterostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 The pressure-dependence of the lever arms . . . . . . . . . . . . 73

5.2 Gate and pressure dependence of the resistance . . . . . . . . . . . . . 74
5.3 Acquiring the twist angle and its pressure dependence . . . . . . . . . . 77
5.4 Band gap engineering of TDBG with pressure . . . . . . . . . . . . . . 78

5.4.1 Thermal activation measurements . . . . . . . . . . . . . . . . . 78
5.4.2 Bias spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.3 Comparison between theory and experiments . . . . . . . . . . . 79

5.5 Effect of magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 The closing of the band gap at the CNP . . . . . . . . . . . . . 83
5.5.2 Signature of spin-polarized correlated states . . . . . . . . . . . 84

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Tuning the proximity-induced SOC in BLG/WSe2 heterostructures
with pressure 87
6.1 Varying the SOC in BLG/WSe2 heterostructures with pressure . . . . . 87

6.1.1 BLG/WSe2 heterostructures . . . . . . . . . . . . . . . . . . . . 88
6.1.2 Gate and pressure dependence of the resistance . . . . . . . . . 90
6.1.3 Weak localization in BLG/WSe2 heterostructures . . . . . . . . 91
6.1.4 Obtaining the Ising-type SOC strength . . . . . . . . . . . . . . 92
6.1.5 Obtaining the Rashba-type SOC strength . . . . . . . . . . . . 95
6.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Stabilizing the inverted phase in a WSe2/BLG/WSe2 heterostructure
via hydrostatic pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Effect of pressure on the transport properties of SLG 101
7.1 Low-temperature transport properties . . . . . . . . . . . . . . . . . . . 102
7.2 Magnetotransport studies . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Shubnikov-de Haas oscillations . . . . . . . . . . . . . . . . . . . 106
7.2.2 Magnetic focusing experiments . . . . . . . . . . . . . . . . . . 108
7.2.3 Weak localization measurements on device A . . . . . . . . . . . 111
7.2.4 Suppression of WL in an in-plane magnetic field on device C . . 113

7.3 Temperature-dependent transport and the role of RIP scattering . . . . 116
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Summary 123



4 CONTENTS

Thesis points 125

Acknowledgments 128

Appendix A Fabrication processes 129
A.1 Assembly of van der Waals heterostructures . . . . . . . . . . . . . . . 129
A.2 EBL and development . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.3 Evaporation of contacts and top gates . . . . . . . . . . . . . . . . . . . 130
A.4 Reactive ion etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.4.1 CHF3/O2 plasma . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.4.2 SF6/Ar/O2 plasma . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.4.3 Ar/O2 plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.4.4 SF6 plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.4.5 AlOx deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix B Derivation of LL energies in BLG 132

Appendix C Further details about BLG/WSe2 heterostructures 134
C.1 Further details of device A . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.1.1 More FFT curves . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2 Device B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.3 Device C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix D Calculation of the surface optical phonon modes 140

Appendix E Further measurements on high-mobility SLG devices 142
E.1 Calculating the charge density in SLG . . . . . . . . . . . . . . . . . . 142
E.2 Zero field transport properties . . . . . . . . . . . . . . . . . . . . . . . 143
E.3 Raw data of WL measurements of device A . . . . . . . . . . . . . . . 145
E.4 Additional data on the in-plane magnetic field dependence of WL . . . 149
E.5 SdH oscillations measurements on device D . . . . . . . . . . . . . . . . 150
E.6 Magnetic focusing measurements on device D . . . . . . . . . . . . . . 152
E.7 Temperature-dependent measurements on device D . . . . . . . . . . . 154

References 157



List of abbreviations

2D two-dimensional
2DEG two-dimensional electron gas
AFM atomic force microscopy
BLG bilayer graphene
BM Bistritzer-MacDonald
BZ Brillouin zone
CNP charge neutrality point
CVD chemical vapor deposition
DOS density of states
EBL Electron beam lithography
hBN hexagonal boron nitride
LL Landau level
mBZ moiré-Brillouin zone
NNH nearest neighbor hopping
PC polycarbonate
PDMS polydimethylsiloxane
RIP remote interfacial phonon
SdH Shubnikov-de Haas
SLG single-layer graphene
SOC spin-orbit coupling
TBG twisted bilayer graphene
TDBG twisted double bilayer graphene
TMD transition metal dichalcogenide
TMF transverse magnetic focusing
TO transverse optical
TRS time-reversal symmetry
vdW van der Waals
VRH variable-range hopping
WAL weak antilocalization
WL weak localization

5



1. Chapter

Introduction

The continuous development of our technology always needs novel materials with
the desired properties. With the gate all around field effect transistors, the conven-
tional semiconducting industry in a few years is reaching its limit by reaching the
0.5 nm node[1]. To go beyond it, a fundamental change is necessary to be able to
engineer the material on the level of atomic precision in the next generation of micro-
electronic devices[2]. An alternative approach became available with the discovery of
two-dimensional (2D) materials[3] after the first isolation of graphene[4]. Among the 2D
materials, besides graphene, which is a semimetal, there are insulators like hexagonal
boron nitride (hBN), semiconductors like transition metal dichalcogenides (TMDs),
topological insulators and so on[5, 6]. The field of 2D materials since then became one
of the most studied field in condensed matter physics. There have been various promis-
ing attempts to integrate the 2D crystals into the silicon-based technology making this
field very attractive to industry besides fundamental research[7]. Besides potentially
taking the place of silicon in conventional devices, with 2D materials, completely new
electrical elements could be realized, like reconfigurable logic and logic-in-memory, and
nanosensors[8, 9].

What makes 2D crystals unique compared to conventional materials is that they
can be placed on top of each other layer by layer with atomic precision in the vertical
direction, realizing van der Waals (vdW) heterostructures[5, 10]. Their name comes
from the fact that the bonding force between the layers are vdW forces and they
are weakly bonded compared to covalently bonded crystals. The properties of these
heterostructures are determined by the nature of the constituting materials and the
interlayer interactions[11, 12]. For example, hBN can be used as protective layers by
encapsulating the graphene within hBN layers to protect it from the environment and
improve the charge carrier mobility in it[13, 14]. In hBN/graphene heterostructures,
the lattice mismatch may lead to the formation of a moiré pattern, which depends on
the relative orientation of the crystals, the twist angle. A superlattice forms, where the
moiré pattern acts as a periodic potential[15]. At small twist angles, as the lattice mis-
match is small between the hBN and graphene, the electronic properties at low energies
are modified, leading to interesting phenomena such as Hofstadter’s butterfly[16, 17].
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7

The twisting is a unique degree of freedom of vdW heterostructures, unlike con-
ventional heterostructures. Twisting can fundamentally change the properties of a het-
erostructure, leading to new properties such as correlated phases and superconductivity
in twisted bilayer graphene[18, 19]. The field of twistronics, which focuses on the ef-
fect of twisting is dynamically growing by including newer and newer systems such as
twisted TMD heterostructures[20].

Besides twistronics, vdW materials are also exciting for the field of spintronics.
Spintronics focuses on using the spin degree of freedom of the charge carriers to realize
electronic devices, which are controlled with the manipulation of electron spins instead
of the charge[21]. The manipulation is usually done by a magnetic field or with the
help of spin-orbit coupling (SOC). Most of the spintronic devices are based on spin
valves, which are heterostructures made of magnetic layers with a nonmagnetic layer
between them. For instance, an insulator in a tunneling magnetoresistance device which
is a ferromagnet/insulator/ferromagnet heterostructure can be used as a memory el-
ement in hard drives. Moreover, a non-magnetic metal is used in spin-transfer torque
magnetic random-access memories, where the spin-polarized current is used to control
the memory state[22]. These heterostructures can also be realized with 2D materials,
where the graphene usually serves as a transport channel due to its excellent properties
like negligible SOC and the near-absence of nuclear spins[23, 24]. Moreover, combining
graphene with TMDs induces SOC in graphene with proximity effects[25], and the spin
current in these heterostructures could be controlled with electrical gating[26–29] and
with spin-to-charge conversion[30–33] bringing the 2D materials closer for industrial
applications.

In vdW heterostructures, as the interlayer interactions play a crucial role, their
properties could be altered by tuning the strength of these interactions[12]. Varying
the interlayer distance could significantly change the strength of interlayer interactions,
which could be done in practice by pressing the heterostructure[34], which can lead to
structural and electronic transitions, such as driving a material from a metallic to a
superconducting state[35–38]. Realizing novel phases with pressure could lead to new
applications and are very important in fundamental research. Therefore, the aim of this
thesis is to investigate the effect of pressure on vdW heterostructures using electrical
transport techniques.

In this thesis, I focus on the effect of pressure on graphene-based heterostructures.
The outline of this thesis is the following. At the beginning of the thesis, in Chapter
2, I introduce graphene and describe its most important properties for the experiments
presented in the main part. I give a brief introduction to the band structure of twisted
bilayer graphene and the role of SOC in graphene-based heterostructures. Apart from



8 Introduction

these, a basic introduction to the theory of transport and magnetotransport is also
given, which are used to study the devices in the main part of this thesis. In Chapter
3, the most important experimental methods for the main part are presented focusing
on the sample fabrication and the low-temperature transport measurements along with
the method of applying the pressure on nanodevices. The main part of this thesis
consists of 4 parts. In Chapter 4, the modeling of TMD and bilayer graphene (BLG)
based heterostructures are presented including the calculation of Landau levels in them
along with the calculation of the Fermi surfaces. In the second part of the Chapter,
the calculation of the pressure dependence of the band structure of twisted double
bilayer graphene is presented. In Chapter 5, the electronic properties of twisted double
bilayer graphene around the magic angle are investigated under pressure. The transport
measurements focus on determining how the pressure affects the single-particle moiré
gaps, the correlated phases and the twist angle. The findings are compared with the
model described in Chapter 4. In Chapter 6, the change of the proximity-induced
spin-orbit coupling by applying hydrostatic pressure is investigated in WSe2 and BLG-
based heterostructures with transport measurements, focusing on the change of the
SOC strength with pressure, which are determined using the calculations presented in
Chapter 4. In Chapter 7, a transport study of high-mobility devices made of single-
layer graphene (SLG), which is encapsulated within hBN crystals is presented, focusing
on the evolution of transport properties with pressure. In Chapter 8, a brief summary
is given, which is followed by the thesis points, the list of publications and the appendix.
The appendix includes fabrication recipes, details of the derivation of the Landau levels
in bilayer graphene, calculation of surface phonon modes, and further measurements of
BLG/WSe2 heterostructures and high-mobility SLG devices. At the end of this thesis,
the list of references from the literature is given.



2. Chapter

Theoretical background

In this chapter, the theoretical background of the studied materials and effects
are summarized. Firstly, single-layer graphene (SLG) and bilayer graphene (BLG) are
described, focusing on their electrical structure. Secondly, the role of the twist angle
between graphene layers is discussed and the Bistritzer – MacDonald model is derived
for twisted double bilayer graphene. Thirdly, the role of the spin-orbit coupling (SOC)
is presented. Afterward, the transport properties of graphene are described at finite
temperatures using the Boltzmann transport equation. Finally, the magneto-transport
in graphene is discussed.

2.1 Electronic properties of graphene and bilayer
graphene

a

(a) (b)

Figure 2.1: (a) Crystal structure of single-layer graphene. A and B atoms indicate the
two sublattices and are shown with blue and red circles. a1 and a2 are the lattice
vectors and a is the lattice constant. (b) Reciprocal space of SLG and BLG in b1 and
b2 reciprocal basis vectors. The hexagon is the first Brillouin zone (BZ) of graphene
with Γ at the center and K and K ′ are two non-equivalent corners.

Graphene is a single atomic sheet of graphite. It was studied experimentally for the
first time in 2004[4]. Since then, it has become one of the most studied materials in
condensed matter physics, and other 2D crystals have also been discovered. In graphene,
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10 Theoretical background

the Carbon atoms sit on a triangular lattice with two-atom unit cell with a lattice
constant of a = 2.46Å[39] as illustrated in Fig. 2.1a. The basis vectors are given by

a1 =
 a

2√
3a
2

 , a2 =
 a

2

−
√

3a
2

 . (2.1)

The Brillouin zone is a hexagon and the reciprocal basis vectors are given by

b1 =
(

2π

a
,

2π√
3a

)
, b2 =

(
2π

a
, − 2π√

3a

)
. (2.2)

The A and B sublattice positions are given by τA = 0 and τB = (a1−a2)/3. In graphite,
the perpendicular lattice constant is d = 3.35Å[40].

2.1.1 Single-layer graphene

(a) (b)

Figure 2.2: (a) Dispersion relation of SLG. The valence and conduction bands touch
each other at the Dirac points. (b) Zoom in near the K-point. The dispersion is linear
in the low-energy regime.

The band structure of graphene is symmetric around the Γ point. The valence and
conduction bands are touching at the K and K ′ points, which are called Dirac points
as shown in Fig. 2.2a[41]. Around them, the bands have linear dispersion as depicted
in Fig. 2.2b. The Hamiltonian describing the bands around the K points are given by

HSLG = ℏvF (ξσxkx + σyky) , (2.3)

where ℏ is the reduced Planck’s constant, k = (kx, ky) is measured from the K(K ′)
point, vF is the Fermi velocity of graphene and it is related to the γ0 hopping1 by

1γ0 ≈ 3 eV is the nearest neighbor hopping integral between sublattice A and B[39].
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vF =
√

3aγ0/2ℏ. Here, ξ is the valley index ξ = 1(−1) for K(K ′), σi are the pseudospin
Pauli matrices acting on sublattices (A and B atoms in Fig. 2.1) of graphene. The
electronic states are described by

HSLGΨ(r) = EΨ(r), (2.4)

where the wave function is written as

Ψsk(r) = 1√
A

Fs(k)eikr, (2.5)

where A is the area of the system[42–45]. Introducing k = |k| and the angle θk in the
momentum space as kx = k cos(θk) and ky = k sin(θk), the eigen energies of Eq.(2.4)
are given by E(k) = sℏvF|k| around the K and K ′ points in the Brillouin zone with
s = 1 for the conduction and s = −1 for the valence bands, whereas Fs(k) is given by

Fs(k) = 1√
2

 e−iθk

s

 . (2.6)

The density of states (DOS) g(E) for graphene is given by

g(E) = g

4π2 2πk

∣∣∣∣∣dE(k)
dk

∣∣∣∣∣
−1

= 2E

ℏ2v2
Fπ

, (2.7)

where g is the degeneracy factor, g = 4 for graphene (spin and valley degeneracy). The
charge carrier density n relative to the charge neutral case, i.e. a filled valence band,
in the zero temperature limit is defined by

n =
EF∫
0

g(E)dE = E2
F

ℏ2v2
Fπ

= k2
F

π
, (2.8)

where EF is the Fermi energy relative to the Dirac points and kF is the Fermi wave
vector. The effective mass m∗ of SLG due to its linear dispersion depend on kF [46–48]
as

m∗(kF ) = ℏkF /vF. (2.9)

2.1.2 Bilayer graphene

BLG consists of two layers of graphene with a distance of d between them. In the
common, Bernal-stacked configuration, the B atom in the bottom layer (B1) is below
the A atom in the top layer (A2) as shown in Fig. 2.3. Unlike SLG, BLG has parabolic
band dispersion with a slight modification by the remote hopping terms (γ3 and γ4 in
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A1

A2 B2

B1

γ1

γ1

γ4
γ3

γ0

a

Figure 2.3: Crystal structure of bilayer graphene. On the bottom layers A1 and B1
atoms are shown with blue and red circles and the A2 and B2 atoms on the top layer
are shown with blue and grey circles. The γi hopping parameters are also shown with
lines between the atoms.

Fig. 2.3) at the low-energy regime and touching around the Dirac points as shown in
Fig. 2.4b. The effective low-energy Hamiltonian of pristine BLG near Dirac points can
be written in the |A1, B1, A2, B2⟩ basis[45, 49] as

HBLG =



u
2 v0π

† −v4π
† v3π

v0π
u
2 + ∆′ γ1 −v4π

†

−v4π γ1 −u
2 + ∆′ v0π

†

v3π
† −v4π v0π −u

2

 , (2.10)

where π = ℏ(ξkx + iky) and vi =
√

3a
2ℏ γi. γi are the hopping parameters[45]: γ0 = 2.61 eV

is the intralayer nearest neighbor hopping, γ1 = 0.361 eV is the interlayer coupling
between orbitals on the dimer sites B1 and A2, and γ4 = 0.138 eV is the interlayer cou-
pling between dimer and non-dimer orbitals A1 and A2 or B1 and B2. The parameter
∆′ = 0.015 eV describes the on-site energy difference between dimer and non-dimer
sites and ξ is the valley index and u is the interlayer potential difference.

The interlayer potential difference can be related to an external displacement field
D by

u = ed

ϵ0ϵ⊥
BLG

D, (2.11)

where e is the elementary charge, ϵ0 is the vacuum permittivity, d = 0.33 nm is the
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(a) (b) (c)

Figure 2.4: Band structure of bilayer graphene using the hopping parameters given
in the main text (a) at u = −10 meV, (b) at u = 0 and (c) at u = 10 meV near the
K-point. The color of the bands shows the layer-polarization with the color bar plotted
in panel (b).

BLG interlayer separation, ϵ⊥
BLG = 4.3 is the out-of-plane dielectric constant of BLG

[50]. γ3 = 0.1 eV is the interlayer coupling of A1 and B2, which is responsible for the
trigonal warping. The effect of u is illustrated in Fig. 2.4a. It opens a gap at the charge
neutrality point (CNP) and layer polarizes the bands. With positive (negative) u the
valence band electrons are localized on the bottom (top) layer and the conduction band
electrons are localized on the top (bottom) layer[51].

2.2 Twisted graphene structures

Unlike conventional semiconductor heterostructures, van der Waals (vdW) het-
erostructures are made from 2D materials and the bonding force between the layers
are vdW forces[5]. A specialty of these heterostructures is that their properties de-
pend also on the relative orientation of the 2D constituent crystals[52–58]. The angle
between their relative crystal orientation is called twist angle ϑ. Experiments showed
many interesting phenomena such as Hofstadter butterfly[16, 17, 59] and fractional
Bloch band quantum Hall effect[14, 60] in aligned hBN/graphene heterostructures[61].
A huge impact on the field of twistronics was the discovery of superconductivity[19, 62]
and correlated phases[18, 63–66] in twisted bilayer graphene (TBG) near a so-called
magic angle. At the magic angle, the bands closest to the Fermi energy become com-
pletely flat[53], and this phenomenon can be described with a continuum model called
the Bistritzer-MacDonald (BM) model. This model is discussed later in Section 2.2.2.



14 Theoretical background

2.2.1 Twisted graphene lattice

Stacking two-dimensional crystals with the same lattice structure with small relative
orientation angle and similar lattice constants leads to the formation of Moiré pattern.
The rotation of the lattice can be simply done by modifying the basis vectors with the
rotation matrix R(ϑ) defined as

R(ϑ) =
 cos(ϑ) − sin(ϑ)

sin(ϑ) cos(ϑ)

 , (2.12)

where ϑ is the angle of rotation. In the following, the case of two honeycomb lattices
is discussed. Then Eq.(2.1) is modified to

a1 = R(ϑ)
 a

2√
3a
2

 , a2 = R(ϑ)
 a

2

−
√

3a
2

 . (2.13)

The corresponding primitive reciprocal lattice vectors in Eq.(2.2) are modified to

b1 =
(

2π
a

, 2π√
3a

)
RT (ϑ) = 2π

a

(
cos(ϑ) − sin(ϑ)√

3
, sin(ϑ) + cos(ϑ)√

3

)
, (2.14)

b2 =
(

2π
a

, − 2π√
3a

)
RT (ϑ) = 2π

a

(
cos(ϑ) + sin(ϑ)√

3
, sin(ϑ) − cos(ϑ)√

3

)
.

The coordinate system is chosen such that the basis vectors of the two honeycomb
lattices are described with Eq.(2.13) with the rotation of ϑ/2 for the top and −ϑ/2 for
the bottom lattice:

at
1 = R(ϑ/2)

 at

2√
3at

2

 , at
2 = R(ϑ/2)

 at

2

−
√

3at

2

 ,

ab
1 = R(−ϑ/2)

 ab

2√
3ab

2

 , ab
2 = R(−ϑ/2)

 ab

2

−
√

3ab

2

 ,

where at
1,2 are the basis vectors of the top layer with at lattice constant and ab

1,2 are
the basis vectors of the bottom layer with ab lattice constant. The lattice constant of
the bottom layer can always be written as ab = at(1 + δ), where δ describes the lattice
mismatch.

The Moiré pattern, which is illustrated in Fig. 2.5, can be regarded as a beating of
the two lattices[67, 68] similarly to the case of sound waves. Reciprocal lattice vectors
can be constructed to this superlattice as the difference of the constituting reciprocal
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lattice vectors. Here, they are defined as

b(s)
1 = bb

1 − bt
1, (2.15)

b(s)
2 = bt

2 − bb
2,

where bt/b
i are the original reciprocal lattice vectors of the top and bottom layers which

are given by Eq.(2.14) as depicted in Fig. 2.5a. These vectors form a triangular lattice in
the reciprocal space and its Wigner-Seitz cell is called the moiré-Brillouin zone (mBZ).
If the lattice constants of the two layers are the same (like TBG), then Eq.(2.15) can
be written as

b(s)
1 = 2π

a
· 2 sin(ϑ/2) ·

(
1√
3

, −1
)

, (2.16)

b(s)
2 = 2π

a
· 2 sin(ϑ/2) ·

(
1√
3

, 1
)

.

From Eq.(2.16) the basis vectors can be calculated with the relation of aibj = 2πδij.
The length of the superlattice basis vectors defines the Moiré-wavelength as a(s) = λ =

a
2| sin(ϑ/2)| for δ = 0. The area of the Moiré-unit cell is given by

Am =
√

3
2

(
a

2 sin(ϑ/2)

)2

. (2.17)

The maximum electron density per Bloch band is given by 1/Am. In the case of
graphene, these bands are 4-fold degenerate due to the spin and valley degeneracy,
thus a quantity of ns = 4/Am can be introduced, which is the charge carrier density of
these degenerate bands.

2.2.2 Bistritzer-MacDonald model

The moiré pattern leads to a rearrangement of the band structure in the mBZ and
moiré Bloch bands form in the electronic structure of twisted materials. The Bistritzer-
MacDonald (BM) model describes these electronic states with a low-energy continuum
Hamiltonian, which consists of the Hamiltonians of the isolated layers and tunneling
terms, which describes the hopping between the layers[69]. The model Hamiltonian and
its derivation are shown in Section 2.2.3.

The result of the Bistritzer-MacDonald model for twisted bilayer graphene, which
consists of two layers of SLG, is plotted for a few angles in Fig. 2.6 in the mBZ. At large
angles, the layers are decoupled, and the spectrum resembles the band structure of SLG
as shown in Fig. 2.6a at ϑ = 5°. The bands of the SLG layers are folded into the mBZ,
and the valance and conduction bands are touching at the KM and K ′

M points of the
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(a) (b)

Figure 2.5: (a) Brillouin-zone (BZ) of the top (red) and bottom (blue) graphene with
their basis vectors. The black honeycomb is the Moiré-BZ with its corresponding re-
ciprocal basis vectors of b

(s)
i . (b) Moiré-pattern formed from two honeycomb lattices.

a(s)
1 and a(s)

2 are the lattice vectors of the formed superlattice.

(a) (b) (c)

Figure 2.6: Calculated band structure of twisted bilayer graphene using the BM model
plotted in the mBZ using the hopping parameters given in the main text with γ = 3.1 eV
and w = 110.7 meV at (a) ϑ = 5°, (b) ϑ = 1.05° and (c) ϑ = 0.5°.

mBZ. As the twist angle is decreased, the interlayer interaction strength is increasing
leading to hybridization of the layers. At the magic angle ϑm ≈ 1.05° (Fig. 2.6b), the
interlayer coupling leads to completely flat bands near the Fermi level. At even smaller
angles, the layers are strongly coupled leading to narrow, but not completely flat bands
near and away from the Fermi level as shown in Fig. 2.6c.
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2.2.3 Derivation of the BM model

The effect of twisting on the band structure can be described with a continuum
model[69] described in the following. Assume that, the crystal states |Ψn,k⟩ of twisted
structures can be expanded as a linear combination of the Bloch-states |Φ(l)

sk⟩ of the
layers as

|Ψn,k⟩ =
∑

l

∑
s

c
(l)
sk |Φ(l)

sk⟩ , (2.18)

where l indexes the layers and s is the site index2 in layer l and k is the wave vector
in the reciprocal space. The Bloch states are defined as

|lsk⟩ = |Φ(l)
sk⟩ = 1√

N

∑
R(l)

n

eik(R(l)
n +τs) |R(l)

n − τs⟩ , (2.19)

where |R(l)
n − τs⟩ = |lsRn⟩ are the Wannier-states3 of atom s with atomic positions of

τs in layer l on site Rn and N is the number of unit cells in layer l. In general, the
system can be described with a Hamiltonian (H) consisting of a kinetic and a potential
term, which includes lattice periodic potentials. H acts on the crystal states of |Ψn,k⟩
as ∑

k′
Hkk′ |Ψn,k′⟩ = En(k) |Ψn,k⟩ , (2.20)

where En(k) are the eigenenergies of the system of the nth band. The Hamiltonian is
non-diagonal in k as shown later unlike the untwisted case like Eq.(2.10) for Bernal-
stacked BLG.

To calculate the band structure of twisted systems, Eq.(2.20) needs to be solved.
For this purpose, Hkk′ must be diagonalized in k space. To do this, the lattice vectors
of the bottom layer are chosen as

Rn = n1a1 + n2a2. (2.21)

The top layer is rotated with ϑ counter-clockwise and its Bravais lattice is described
with

R′
m = R(ϑ)(n1a1 + n2a2) + d, (2.22)

where d is the shift between the two lattices. To solve (2.20), the matrix element
between the Bloch-states defined in Eq.(2.19) can be constructed as

⟨lsk|H|l′s′k′⟩ = 1√
NN ′

∑
Rn,R′

m

⟨lsRn|H|l′s′R′
m⟩ e−ik(Rn+τs)eik′(R′

m+τs′ ), (2.23)

2In case of SLG s = 1 for sublattice A and s = 2 for sublattice B atoms.
3Atomic orbitals of atom s in layer l on site Rn in linear combination of atomic orbitals (LCAO)

method.
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where ⟨lsRn|H|l′s′R′
m⟩ is the hopping amplitude that depends on the local coordination

of the layers l and l′ and the sites within the 2D crystal unit cell labeled with s.

The l = l′ terms are the intralayer matrix elements. In this case, Rn and Rm are
on the same layer. In two-center approximation, ⟨lsRn|H|ls′R′

m⟩ depend only on the
difference between atomic positions4 and by introducing R = Rn − R′

m, Eq.(2.23) can
be rewritten as

⟨lsk|H|ls′k′⟩ = 1
N

∑
Rn

e−i(k−k′)Rn
∑
R

e−ik′R ⟨lsR|H|ls′0⟩ e−ikτs+ik′τs′ . (2.24)

The summation of Rn can be carried using the orthogonality relations of

∑
Rn

ei(k−k′)Rn = N
∑
Gp

δk−k′,Gp , (2.25)

where Gp = p1b1 + p2b2 are reciprocal lattice vectors, where pi are integers and δi,j is
the Kronecker delta function. Therefore,

⟨lsk|H|ls′k′⟩ =
∑
Gp

δk−k′,Gp

∑
R

e−ik′R ⟨lsR|H|ls′0⟩ e−ik′(τs−τs′ )−iGpτs = (2.26)

=
∑
Gp

δk−k′,GpHls,ls′(k + Gp), (2.27)

where, as we are only interested in the low-energy regime, we can restrict k and k′ to
be in the first BZ, i.e. Gp=0. The intralayer hopping terms results

⟨lsk|H|ls′k′⟩ = δk,k′Hls,ls′(k), (2.28)

where Hls,ls′(k) is the Hamiltonian of a separate layer. For example, for SLG in nearest-
neighbor approximation, Hls,ls′(k) is given by Eq.(2.3) around the K and K′ point in
the low-energy regime.

In two-center approximation as ⟨lsRn|H|l′s′R′
m⟩ depends only on the difference of

the atomic positions as (Rn + τs − R′
m − τs′), its Fourier transform can be written as

⟨lsRn|H|l′s′R′
m⟩ = 1

N

∑
q

eiq(Rn+τs)Hls,l′s′(q)e−iq(R′
m+τ ′

s), (2.29)

where Hls,l′s′(q) is the Wannier representation Bloch-band Hamiltonian and it is a non-
trivial function of the displacement of the top layer with respect to the bottom layer.
Inserting Eq.(2.29) in Eq.(2.23) and using the the orthogonality relations of Eq.(2.25),

4In LCAO method, the atomic potentials U(r) are lattice periodic and this approximation is exact.
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⟨lsk|H|l′s′k′⟩ can be written as

⟨lsk|H|l′s′k′⟩ =
∑

Gp,G′
q

eiGpτse−iG′
qτs′ Hls,l′s′(k + Gp)δk+Gp,k′+G′

q
. (2.30)

In this expression, the Moiré pattern is hidden in the Kronecker delta. To make it
more apparent, δk+Gp,k′+G′

q
can be rewritten as δk−k′,G′

q−Gp , where G′
q −Gp = G(s) are

the reciprocal lattice vectors of the super lattice if l ̸= l′. This means that, the only
non-zero matrix elements of ⟨lsk|H|l′s′k′⟩ for l ̸= l′ are those where k − k′ = G(s).

In transport studies, the low-energy regime is interesting. In the case of graphene,
these states are close to the Dirac points K and K′, which is indexed in this section as
Kξ, where ξ = ±1 stand for the K and K′ points. Around these points, the intralayer
terms are described in Section 2.1.1 for SLG and in Section 2.1.2 for BLG. It is conve-
nient to introduce q = k − Kξ and q′ = k′ − K′

ξ, which are measured from the Dirac
points5. For small twist angles, it’s enough to consider only these states. To separate
the intra and interlayer terms, Eq.(2.30) can be rewritten after introducing q as

⟨lsk|H|l′s′k′⟩ = δl,l′Hls,l′s′(Kξ + q)δk,k′ + (1 − δl,l′)Tls,l′s′(Kξ + q)δk+G,k′+G′ , (2.31)

where the first term is diagonal in k and it is the Hamiltonian of an isolated layer. The
second term with

Tls,l′s′(Kξ + q) =
∑

G,G′
eiGτse−iG′τs′ Hls,l′s′(Kξ + q + G) (2.32)

describes the interlayer tunneling processes.

The tunneling amplitude ⟨lsRn|H|l′s′R′
m⟩ between the layers depends only on the

distance between the sites, which can be written as
√

r2 + d2 , where r is the in-
plane distance of sites and d is the distance between the layers. d is larger than the
distance between the atoms within the layers (a/

√
3). The hopping is decaying with

the distance between the sites, and it is the strongest when the atoms are on top of
each other. The tunneling amplitude for farther atoms, where the in-plane distance is
comparable to or larger than the distance between the layers, is exponentially small.
Thus, the tunneling amplitude is only large in a certain point of the space, where
the atoms are on top of each other. As the other terms are exponentially small, their
Fourier transform of Hls,l′s′(k) is sharp and goes to zero rapidly with k when |k| ·d > 1
[54, 69]. In Eq.(2.31), the tunneling amplitude Hls,l′s′(Kξ + q + G) is the largest at
G = 0, and due to the C3 symmetry (around the Γ-point) of graphene, there are

5Here, Kξ are the K-points of layer l and K′
ξ are the K-points of layer l′.
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3 equivalent points6 with Gi as G1 = 0, G2 = −ξb1, and G3 = −ξb2. In short,∑
G Hls,l′s′(Kξ + q + G) = ∑3

i=1 Hls,l′s′(Kξ + q + Gi) and all the other terms can
be neglected. Ab initio supercell density-functional theory results in the same non-
negligible terms [70].

As q ≪ Kξ + Gi, the q dependence of Hls,l′s′(q + Kξ + Gi) is assumed to be
negligible for l ̸= l′: Hls,l′s′(q + Kξ + Gi) ≈ Hls,l′s′(Kξ + Gi). The C3 symmetry of
Hls,l′s′(Kξ + Gi) produces the same matrix elements for every Gi as

Hls,l′s′(Kξ + Gi) = Hls,l′s′(Kξ). (2.33)

This is shown perturbatively in Ref[71]. Substituting Eq.(2.33) in the interlayer term
of Eq.(2.31) and writing out the summation of Gi leads to

Tls,l′s′(Kξ + q)δk+G,k′+G′ = Hls,l′s′(Kξ)
∑
G′

[
e−iG′τs′ δKξ+q,K′

ξ
+q′+G′ + (2.34)

e−i(ξb1τs+G′τs′ )δKξ+q−ξb1,K′
ξ
+q′+G′ + e−i(ξb2τs+G′τs′ )δKξ+q−ξb2,K′

ξ
+q′+G′

]
.

At small twist angles, as |q| ≪ |Kξ| and |q′| ≪ |K′
ξ|, there is only one G′ reciprocal

lattice vector for each term in Eq.(2.34), that satisfies the Kronecker delta of the term:
in the first term δKξ+q,K′

ξ
+q′+G′ ̸= 0 if G′ = 0, in the second term δKξ+q−ξb1,K′

ξ
+q′+G′ ̸=

0 if G′ = −ξb′
1 and in the last term δKξ+q−ξb2,K′

ξ
+q′+G′ ̸= 0 if G′ = −ξb′

2. Writing these
back to Eq.(2.34) and using the original notation of k and k′, the simplified expression
is given for the interlayer tunneling matrix element as

Tls,l′s′(Kξ + q)δk+G,k′+G′ = Hls,l′s′(Kξ) [δk,k′ + e−i(ξb1τs−ξb′
1τs′ )δk−ξb1,k′−ξb′

1
+ (2.35)

e−i(ξb2τs−ξb′
2τs′ )δk−ξb2,k′−ξb′

2

]
.

With the derived expressions above, the matrix elements of the Bistritzer-
MacDonald Hamiltonian are given by

⟨lsk|H|l′s′k′⟩ = δl,l′Hls,l′s′(k)δk,k′ + (1 − δl,l′)Ts,s′(K) [δk,k′ + (2.36)

e−i(ξb1τs−ξb′
1τs′ )δk−ξb1,k′−ξb′

1
+ e−i(ξb2τs−ξb′

2τs′ )δk−ξb2,k′−ξb′
2

]
,

where l is the layer index, s is the sub lattice index and ξ = ±1 for the K and K ′ points,
respectively. k is a k-space vector and δl,l′ is the Kronecker delta function, which is 1
for l = l′ and zero otherwise. The first term describes the intralayer tunnelling with the
k-space Hamiltonian of each individual layer of Hls,l′s′(k) = H

(l)
s,s′(k). The second term

describes the interlayer tunneling, where Ts,s′(K) is the tunneling matrix amplitude
6The graphene has 3 equivalent Kξ-points.
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Figure 2.7: Illustration of the coupled k-points in the k-space of the BM model, where
a(s) is the length of the superlattice unit vector. The positions of the red dots correspond
to the matrix elements with k′ of the top layer. These points are coupled to the blue dots
which positions corresponds to the matrix elements from the bottom layer. The coupling
between them is illustrated with black, red, and blue for the tunneling amplitudes of
T0, T+, and T−, which are defined in Eq.(2.38), respectively. The qi vectors, shown in
the figure, connect the two layers and they are defined in Eq.(2.39).

between the layers. In the BM model, the tunneling matrix amplitudes are constants
Ts,s′(K) = w[69].

Rewriting Eq.(2.35) in matrix notation (for the sublattice index s) for graphene,
the final expression of the interlayer tunneling is given by

Tls,l′s′(Kξ + q)δk+G,k′+G′ = Tq0δq′−q,q0 + Tq−δq′−q,q− + Tq+δq′−q,q+ , (2.37)

where

Tq0 =
 HA,A′(K) HA,B′(K)

HB,A′(K) HB,B′(K)

 , (2.38)

Tq− = eib′
1d

 HA,A′(K) HA,B′(K)e−ξi2π/3

HB,A′(K)eξi2π/3 HB,B′(K)

 ,

Tq+ = eib′
2d

 HA,A′(K) HA,B′(K)eξi2π/3

HB,A′(K)e−ξi2π/3 HB,B′(K)
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are tunnelling matrices connecting q with q′ = q + qi, where

q0 = Kξ − K′
ξ, q− = Kξ − ξb1 − (K′

ξ − ξb′
1), and q+ = Kξ − ξb2 − (K′

ξ − ξb′
2) (2.39)

wave vectors connect the layers in k-space. The tunneling amplitudes Hs,s′(K) can be
obtained from ab initio supercell density-functional theory[70, 72, 73]. The full matrix
in the k-space is illustrated in Fig. 2.7.

The Hamiltonian connects an arbitrary k-point from the top layer with a diagonal
term of H1s,1s′(k), to three other k + qi points on the bottom layer with diagonal
matrix elements of H2s,2s′(k + qi). The off-diagonal terms which connect these points
are Tls,l′s′(Kξ + q)δk′,k+qi

. The k + qi points of the bottom layer are also connected
to three other points from the top layer, which are also connected to 3 other points
from the bottom layer, and so on. These couplings are shown with colored lines in
the figure. The constructed matrix is infinitely large. It is solved by introducing a
truncation vector such that the change of the low-energy levels is negligible by further
increasing the size.

2.3 Role of spin-orbit coupling in graphene

The spin-orbit coupling (SOC) is a relativistic effect and in the representation of
2s2p states of carbon, it can be represented as HSOC = λL × s, where λ is the coupling
strength, L is the orbital moment operator and s is the spin operator[74, 75]. From
this, in graphene, the symmetry only allows one term in the second order, which can
be written as

Hint = λintξσzsz, (2.40)

where λint is the intrinsic spin orbit strength[76]. From first-principle calculations,
λint ≈12 µeV [77]. This opens a 24 µeV gap, which can be neglected in transport. A
finite perpendicular electric field may also induce spin-splitting as it breaks the inver-
sion symmetry, allowing an additional SOC term, the Rashba-type SOC. Its strength
depends on the electric field and approximately λR = 10 µeV nm V−1 · Ez, where Ez

is the perpendicular electric field[77, 78]. This is of no importance with the reachable
electric fields with gate electrodes in experiments.

This negligible SOC and hyperfine coupling make graphene an ideal material for
spintronics[24, 79]. The long spin relaxation times combined with the large mobilities
of the charge carriers lead to an exceptionally long spin relaxation length of several
tens of micrometers[24, 79–81]. These properties also make graphene an ideal platform
for spin qubits defined by quantum dots[82–86]. In bilayer graphene (BLG), where the
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electrons can be confined using electric fields, more than 100 µs to even half second of
spin relaxation time have been demonstrated[87–90].

2.3.1 Spin-orbit coupling in graphene/TMD heterostructures

The proximity of different materials to the graphene can substantially change its
properties[5]. There are a lot of fascinating 2D materials that can be combined with
graphene. Among them, the transition metal dichalcogenides are very interesting to the
field of spintronics as they exhibit large intrinsic SOC [91, 92]. TMDs have a similar
lattice structure to graphene and by placing graphene on a TMD, their bands can
hybridize which increases the SOC in the graphene[25]. The enhancement of SOC in
these heterostructures was demonstrated with weak localization measurements[27, 93–
98], Shubnikov-de Haas (SdH) oscillations[93, 94, 99–101], spin valves[26, 28, 102–
105] and quasiparticle interference imaging[106]. Similar measurements are shown in
Chapter 6.

The proximity of the TMD breaks the inversion symmetry, which allows new SOC
terms to add to the Hamiltonian of the graphene[107, 108]. From these terms, the most
important is the Ising-type

HI = ξ
λI

2 σz (2.41)

also called valley-Zeeman SOC and the Rashba-type SOC

HR = λR

2 (ξσxsy − σysx). (2.42)

Here, si and σi are Pauli-matrices acting on the spin and sublattice degree of freedom,
respectively. λR and λI are the SOC strengths of the Rashba-type and Ising-type SOC,
respectively. Their theoretical values are in the meV range and depend on the TMD[107]
and also on the twist angle between the TMD and the graphene[109–111]. The Ising-
type SOC leads to an effective valley-dependent magnetic field, that splits the spin
degeneracy.

To use graphene in spintronic devices, electrical control of the spin information is
necessary[25, 112], for which the induced SOC in graphene offers a way. The control of
the spin currents in graphene/TMD heterostructures was successfully performed with
electrical gating[26–29] and with spin-to-charge conversion, where a charge current
induces a transverse spin current by SOC[30–33]. Moreover, the low-energy behavior is
greatly influenced by the SOC not only in Bernal-stacked[112, 113] but also in twisted
structures[114–117].
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2.3.2 SOC in BLG/TMD heterostructures

(a) (b)

(c) (d)

K valley

K valley K valley

K’ valley

Figure 2.8: Effect of SOC on the band structure of BLG with only a bottom TMD layer
(λt

I = λt
R = 0) using (a,b) λb

I = 2.5 meV, λb
R = 0, in the K and K ′ valley, respectively,

and (c) λb
I = 0 and λb

R = 10 meV and (d) λb
I = 2.5 meV and λb

R = 10 meV. The color of
the bands shows the spin polarization with the color bar plotted in panel (a).

The proximity effect is short-ranged in van der Waals heterostructures. As a result, in
BLG/TMD heterostructures, the TMD affects only the closest layer of BLG[45, 118].
In general, BLG can be encapsulated between two TMDs, which induces SOC in both
layers, but their strength can be different depending on the TMD and the twist angle
between the BLG and TMD. This can be modeled with the addition of SOC terms in
both layers in Eq.(2.10). The Hamiltonian of the heterostructure can be written in the
(|A1⟩ , |B1⟩ , |A2⟩ , |B2⟩) ⊗ (|↑⟩ , |↓⟩) basis as

H = HBLG + HSOC, (2.43)

where HSOC is the spin-orbit coupling term, defined as

HSOC =


ξλb

Isz/2 iλb
Rsξ

− 0 0
−iλb

Rsξ
+ ξλb

Isz/2 0 0
0 0 ξλt

Isz/2 iλt
Rsξ

−
0 0 −iλt

Rsξ
+ ξλt

Isz/2

 . (2.44)

HSOC describes the proximity-induced Ising-type SOC with the parameters of λi
I and

Rashba-type SOC parametrized with λi
R[113, 119]. Here, sξ

± = 1
2(sx + iξsy) and t and

b indexes the top and bottom layers, respectively.
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In a BLG/TMD heterostructure, there is SOC at only one layer of the BLG (e.g.
λt

I = λt
R = 0). The band structure of the heterostructure is shown in Fig. 2.8. In panels

(a) and (b), the effect of Ising-type SOC is shown at the K and K ′ point: it splits
the spin degeneracy of the bands and makes them spin-polarized in the out-of-plane
direction oppositely in the two valleys. The Rashba-type SOC splits the spin degeneracy
at larger k points, as illustrated in Fig. 2.8c, and gives a complex in-plane spin texture.
The combined effect of SOC terms makes the band spin-polarized in the out-of-plane
direction at low energies, whereas for higher energies a more complicated, canted spin
structure arises[112].

(a) (b)

(d)

(c)

(e) (f)

Figure 2.9: Effect of SOC and u on BLG encapsulated within two TMDs using λR = 0.
(a-c) With the same SOC strength in both layers of λb

I = λt
I = 2.5 meV. If λb

I = λt
I,

without u in (a) there is no gap. (b,c) Above |u| ≈ |λb
I − λt

I|/2 a gap begins to open
similar to pristine BLG. (d-f) With opposite sign of the Ising-type SOC strengths in
the layers as λb

I = 2.5 meV and λt
I = −2.5 meV. (d) At u = 0 a non-trivial gap opens.

(e) At u ≈ ±|λb
I − λt

I|/2, the non-trivial gap closes. (f) Above |u| ≈ |λb
I − λt

I|/2 a trivial
gap opens as in (panel c). The color of the bands shows the spin polarization with the
color bar plotted in panel (a).

In a TMD/BLG/TMD heterostructure, SOC is induced in both graphene layers.
Depending on the twist angle of the TMDs, the induced Ising-type SOC can be the
opposite in the two layers[120]. If the TMDs are aligned, then λb

I = λt
I. In this case, the

Ising-type SOC behaves as an effective magnetic field and splits the bands as shown
in Fig. 2.9a. Applying an electric field has a similar effect as in pristine BLG, it opens
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a band gap, but in this case, a band only opens if |u| > |λb
I | as illustrated in Fig. 2.9b

and Fig. 2.9c.
If the relative twist angle between the TMDs is 60°±120°, then λb

I = −λt
I[113].

This is similar to Kane–Mele SOC[76]. In this case, Ising-type SOC opens a band gap,
but the bands remain spin degenerate as shown in Fig. 2.9d. This gap is topologically
different from the electric field opened gap. However, it is not a strong topological
insulator, due to the 2π Berry phase in BLG[50]. This gap can be closed by electric
field by applying u ≈ ±|λb

I −λt
I|/2 as shown in Fig. 2.9e. Applying a larger electric field

opens a topologically trivial gap similarly to the case of λb
I = λt

I.

2.4 Transport in graphene

Graphene has remarkable transport properties. Its electrical mobility (µ), which
describes how fast a charge carrier can move through the material with an electric
field (E), can exceed 105 cm2/Vs[121–136]. In experiments, the mobility is usually de-
termined using the Drude formula

σxx = neµ, (2.45)

where σxx is the longitudinal conductivity. The conductivity is theoretically calcu-
lated either with the semiclassical Boltzmann transport theory or using the Kubo
formalism[137]. The former fails to describe quantum phenomena like weak localiza-
tion (described in Section 2.5.1), which is a quantum correction derived from the Kubo
formalism.

In this section, the transport properties of graphene are described using the Boltz-
mann equation. The conductivity tensor in relaxation time approximation is given by

σ = e2

2

∫
dϵg(ϵ)vk

2τm(ϵ)
(

−∂f

∂ϵ

)
, (2.46)

where vk = ℏ−1 dE(k)
dk is the group velocity, τm(ϵ) is the momentum relaxation time

also called transport scattering time, f(E(k)) = {1 + exp[(E(k) − µ)/kBT ]}−1 is the
Fermi–Dirac distribution where kB is the Boltzmann constant, T is the temperature
and µ(T ) is the chemical potential[138]. At T = 0, EF = µ(T = 0) and the longitudinal
component of the conductivity tensor is given by

σxx = e2v2
F

2 g(EF)τm(EF). (2.47)

The transport scattering time τm arises from impurity scattering such as charged im-
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purities, adsorbates, substrate corrugations, ripples, and also from phonon scattering.
The mobility is related to τm by

τm = m∗µ/e. (2.48)

There is another important characteristic time in transport, the single-particle relax-
ation time also called quantum scattering time (τq), which determines the quantum
level broadening Γ = ℏ/2τq of the momentum eigenstates[139]. The difference between
τ and τq from the following relations

τ−1
m =

π∫
0

Q(θ)(1 + cos θ)(1 − cos θ)dθ (2.49)

τ−1
q =

π∫
0

Q(θ)(1 + cos θ)dθ (2.50)

is the (1 − cos θ) weighting factor[140, 141]. Here, Q(θ) is a function defined by the
scattering mechanisms, and θ is the angle of scattering. The (1−cos θ) term weights the
backward scattering of charge carriers by impurities, and makes the forward scattering
relatively unimportant in τm, i.e. in the resistivity. The (1 + cos θ) is absent in normal
2D systems and it comes from the overlap of the wave function of graphene7 and it is
associated with Klein tunneling. This factor suppresses the large-angle scattering. Thus
τq is sensitive only to small angle scattering events, while τ is insensitive to both small
and large angle scatterings and the dominant contribution comes from the θ = π/2
"right angle" scattering.

In the following, the T = 0 limit is investigated in the ballistic and diffusive regime.
In the second part of this section, the T -dependence of σxx is described.

2.4.1 Ballistic transport in graphene

The elastic mean free path (lm) gives the average length a charge carrier can travel
without significant back scattering. It is related to the transport scattering time as

lm = vFτm. (2.51)

The transport is considered ballistic when lm is longer than the length of the device
(L) between the source and drain (lm ≫ L). In this regime, the conductivity can be

7From Eq.(2.6), F †
s (k)Fs′(k′) = [exp(iθk′ − iθk) + ss′]/2. In the calculation of the scattering times,

a term of |F †
s (k)Fs′(k′)|2 appears. Considering only elastic scatterings (s = s′)[44], |F †

s (k)Fs(k′)|2 =
(1 + cos(θk′ − θk)/2, where the scattering angle is θk′ − θk = θ.
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calculated using the Landauer formalism as

σxx = L

W

4e2

h
M(EF), (2.52)

where M(EF) is the number of transport channels assumed to be M(EF) ≫ 1 and W

is the width of the device[142]. Using the periodic boundary condition, M(EF) can be
approximated as M(EF) = WkF /π = W

√
n/π by assuming perfect transmission. Here,

Eq.(2.8) is used to convert kF . In this approximation, σxx ∝
√

n as shown in Fig 2.10
with a red line, which is observed in high-mobility devices[143]. Another signature of
ballistic transport is the visibility of transverse magnetic focusing, which is described
in Section 2.5.4.

2.4.2 Scattering mechanisms in graphene
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n (1012cm 2)
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Figure 2.10: The conductivity of SLG. In the ballistic limit(red curve), σxx ∝
√

n
plotted with Eq.(2.52) with parameters of L = W =1 µm. In the diffusive limit (blue
curve), the combined conductivity of the short-ranged and long-ranged scatterers is
plotted using Eq.(2.62) with the parameters of κ = 4.3, ni = 1 · 1015 cm−2, nd =
1 · 1014 cm−2 and V0 = 100 eV·Ac.

In real graphene samples, like in metals, the mobility is hindered by the disor-
der. Depending on the type of the disorder, there are different scattering mechanisms
present, which are hidden in τm(ϵ) in Eq.(2.46). The most important scatterers at low
temperatures are the charged impurities, short-range impurities and ripples[138, 144].



Transport in graphene 29

Scattering on charged impurities

One of the main limiting factors of mobility is the presence of charged impurities,
which can be inside the substrate or near the graphene/substrate interface. Assuming
random charge distribution, the relaxation time can be calculated as

τ (Coulomb)
m =

√
n

F1(2rs)vF
√

πni

, (2.53)

where ni is the number of impurities per unit area,

F1(x)
x2 = π

4 + 3x − 3πx2

2 + x(3x2 − 2)f(x) (2.54)

with

f(x) =


arcosh(1/x)√
1−x2 for x < 1

arccos(1/x)√
x2−1 for x > 1

(2.55)

rs = e2/κℏvF4πϵ0 is the effective fine structure constant for SLG, κ is the substrate
dielectric constant8[44, 138, 144, 145] and ϵ0 is the vacuum permittivity. rs is in range
of 0 ≤ rs ≲ 2.29 and rs ≈ 0.51 for a hBN encapsulated graphene (κ = 4.3). As rs is
independent of n in SLG, from Eq.(2.53) τm ∝

√
n and the conductivity has a linear

dependence on n as g(ϵ) ∝
√

n in Eq.(2.47).
The quantum scattering time can be calculated within the random phase approxi-

mation (RPA)[140] as

τ (Coulomb)
q = 2

√
n

F2(2rs)vF
√

πni

, (2.56)

where
F2(x)

x2 = 1
x

+ xf(x) − π

2 . (2.57)

The ratio of τ (Coulomb)
m /τ (Coulomb)

q depends on rs and it is always larger than 2. In the
weak screening limit, when rs → 0, τ (Coulomb)

m /τ (Coulomb)
q diverges.

Scattering on short-ranged impurities

Atoms (eg. hydrogen) or molecules (eg. hydrocarbon) can be absorbed on the surface
of graphene[146] and they can act as short-ranged scatterers[147]. The short-ranged
scatterers can be weak or strong. In the weak limit, the scattering time is given by

τ (short)
m = 4ℏ2vF

ndV 2
0

√
πn

, (2.58)

8κ is the mean value of the dielectric constant of the medium above and below the graphene.
9In vacuum (κ = 1) rs ≈ 2.2.
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where nd is the 2D impurity density and V0 is the strength of the short-ranged disorder
potential and has units of Jm2[148]. It can be calculated as V0 ≈ AcVeff , where Ac =
√

3a2/2 is the area of the unit cell of graphene and Veff ∼ 100 eV is the effective
impurity potential[149]. This gives a charge density independent conductivity as the
DOS is g(ϵ) ∝

√
n in Eq.(2.47).

Adsorbed hydrocarbons or vacancies give strong local potentials and the formula
above gives an inappropriate result for them[149]. When V0 is strong, eg. a hydrogen
atom binds covalently to a carbon atom, it acts as a resonant impurity at that site of
the graphene[150, 151] meaning that it increases the likelihood of a charge carrier to
be trapped in the vicinity of the adatom for a longer time, i.e. generating a resonant
state[147]. Cracks and vacancies have similar effects, they all give rise to midgap states
(zero-energy states)[147, 152]. The disorder potential can be modeled with a circularly
symmetric potential with V (r < R) = ∞ and V (r > R) = 0, which corresponds to a
circular void of radius R, where the electron wave function is zero. Scattering at this
potential induces a phase shift of the wave function of the scattering electron[153] and
the phase shift (δk) at small k-vectors are given by

δk ≈ −π

2
1

ln(kR) . (2.59)

In the strong scattering limit, the scattering rate of s-wave elastic scattering is given
by

1
τm

= 8nd

πℏg(E) sin2(δk). (2.60)

From Eq.(2.59) and Eq.(2.60) the scattering time for midgap states is

τm = k ln2(kR)
π2vFnD

, (2.61)

which gives a sublinear n dependency of the conductivity mimicking the effect of
charged impurities.

The combined effect of different scattering mechanisms on the conductivity can be
taken into account (see the blue curve in Fig 2.10) using Matthiessen’s rule (τ−1

m =
τ (Coulomb)

m
−1 + τ (short)

m
−1) and the resistivity is given by

ρxx = 1
σCoulomb

+ 1
σshort

, (2.62)

where the first term is computed from Eq.(2.53) and the second term is computed in
case of weak short-range scattering from Eq.(2.58).

The quantum transport time can also be calculated for short-ranged scattering (e.g.
see Eq.(17b) in Ref.[140]). The ratio of τm/τq depends on rs and its value is always
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between 1 and 2 for SLG. As for short-ranged scattering the ratio of τm/τq ≤ 2 and
for long-range scattering τm/τq ≥ 2, the ratio can help in determining the relevant
scattering mechanism is disordered graphene. In experiments, τm/τq were found in the
range of 1.5 − 5 of graphene devices on SiO2 indicating that the long-ranged scattering
dominates over short-ranged scattering in high-mobility devices[141, 154, 155].

Surface corrugations

Graphene is not atomically flat, it exhibits surface corrugations such as wrinkles,
ripples, and crumples. They are formed around defects, edges, or impurities and also
due to the substrate and thermal fluctuations[156, 157]. For instance, out-of-plane
corrugations can originate from the substrate roughness or the strain during the fabri-
cation. The deformation of graphene changes its properties[158], including its electrical
structure. It suppresses weak localization (discussed in Section 2.5.1), opens a band
gap[159], and also generates random pseudomagnetic fields[160], which leads to scat-
tering.

Generally, ripples can be described with the height-height correlation function,
which grows with the distance r as ⟨(h(r) − h(0))2⟩ ∼ r2H , where H characterizes
the fractal dimension of ripples[161, 162]. The scattering rate (τ−1) is proportional to
the correlation function of the scalar and vector potential induced by the corrugations,
which have similar dependency as the height-height correlation function[160].

An exponent of 2H < 1 leads to density-independent conductivity, while an expo-
nent of 2H = 1 indicates short-range correlations and σxx ∝ 1/ ln2(kF a). For 2H > 1,
σxx ∝ n2H−1 [162] and the electron scattering off ripples would mimic short-range
disorder.

An exponent of 2H = 2 indicates a thermally excitable membrane, which is only
loosely bound to the substrate. In this limit, scattering mimics the long-range Coulomb
scattering as σxx ∝ n[162, 163]. It is debated whether the main scattering mechanism in
mediocre quality devices or negligible[144, 163]. The temperature induces such corru-
gations, and this conductivity contribution is proportional to σxx ∝ n/T 2. During the
fabrication of samples, when the graphene touches the substrate, the vdW forces pin
the rippled configuration. Therefore, due to the substrate, the corrugations induced
by the temperature become T -independent[162]. Besides ripples, a finite amount of
wrinkles may also lead to linear n-dependence of the conductivity of SLG[164].

Remarks

According to experiments, in devices with mobility less than tens of thousands in
cm2/Vs, the conductivity is limited by screened charged impurities[123, 143, 165, 166].
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The effect of short-ranged impurities is the deviation of the conductivity from linear
behavior, such as saturation at high densities[167], as shown in Fig 2.10 with the blue
curve at large n, which implies that the long-range Coulomb scattering becomes ir-
relevant in the high-density limit. Higher mobility devices (µ > 10 000 cm2/Vs) show
sublinear conductivity[165, 168], in accordance with the long-range scattering being
suppressed at large densities while other scattering mechanisms such as short-range
scattering dominate, which most likely originate from the edge of the sample or corru-
gations varying on the atomic scale.

In the low-density regime (n → 0), the conductivity saturates due to density inho-
mogeneity (puddles), which is due to charged impurities and ripples[138, 147]. More-
over, even in the intrinsic limit, when there is no disorder, the conductivity at n → 0
remains finite and has a universal value of σmin = σxx(n → 0) = 4e2/πh due to the
relativistic nature of electrons in graphene[142].

In BLG, similar scattering mechanisms determine the conductivity. However, the
calculated conductivity is qualitatively different. For example, the short-ranged scat-
tering gives σ ∝ n and the screened Coulomb disorder gives σ ∝ nα, where α is n

dependent and changes from 1 at low density to 2 at high density[138].

2.4.3 Temperature-dependent transport

Besides the scattering mechanisms presented in the previous section, the electron-
phonon interaction also plays an important role at finite temperatures. For example,
in normal metals (eg. Cu) the electron-phonon scattering dominates their resistance
such that by increasing temperature, their resistivity increases. On the other hand, in
an insulator, the conductivity increases by increasing the temperature due to thermal
activation or variable-range hopping transport (see Eq.3.3). Due to the combination of
different scattering mechanisms, both behaviors can be observed in graphene: it shows
a metallic behavior at high densities and it can also show insulating behavior at low
densities[169–171].

Temperature-dependence of the Coulomb scattering

In the previous section, τ (Coulomb)
m is discussed in the zero temperature limit. At fi-

nite temperatures, the Coulomb scattering has two independent sources of temperature
dependency: from the definition10 of σxx in Eq.(2.46) and from the temperature depen-
dence of the dielectric function through screening11[173]. Their combined effect leads to

10The explicit temperature dependence is in the Fermi-Dirac distribution.
11The dielectric function contains the polarizability function, and its T dependence come from the

Fermi-function in it (for the explicit formula, see for example Eq.(3) in Ref.[172]).
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a non-monotonic dependence: at low temperatures (T ≪ TF) the conductivity decreases
quadratically with the temperature as σCoulomb(T )/σCoulomb(T = 0) ≈ 1 − C1(T/TF)2,
where TF = EF/kB is the Fermi temperature and C1 is a positive constant that
depends on rs. At high temperatures (T ≫ TF) conductivity increases with T as
σCoulomb(T )/σCoulomb(0) ≈ C2(T/TF)2 with a positive constant of C2[173]. As the Fermi
temperature is very high (TF ≳ 1000 K for n ≳ 1011 cm−2), the large temperature limit
usually only applies near the Dirac point in experiments.

Moreover, there is another effect of the impurity-scattering, the collisional level
broadening[174], which suppresses the temperature-dependent screening. For T ≲ TD,
where TD = Γ/(πkB) is the Dingle temperature with the impurity-scattering induced
collisional level broadening of Γ = ℏ/2τq, the temperature-dependence of screening is
suppressed by scattering effects12[174–176]. This suppression leads to effectively linear
instead of quadratic T dependence of the resistivity at low temperatures (T < TD)[173],
which is consistent with the experimental findings[143].

Temperature-dependence of the short-ranged scattering

The temperature-dependence of the conductivity from the short-range disorder can
be calculated from Eq.(2.46) as

σshort(T ) = σshort(T = 0)
1 + e−βµ

, (2.63)

where β = 1/kBT . µ is the chemical potential and σshort(T = 0) =
e2v2

Fg(EF)τ (short)
m /2[173]. This temperature dependence is suppressed at low-

temperature, but in the large T limit it approaches σ(0)short/2.

Electron-phonon scattering

At low temperatures (typically T ⪅ 20 K[177] depending on the sample quality and
the charge density13) the T dependence of ρxx(T ) is completely dominated by disorder.
At higher temperatures, the electron-phonon coupling starts to dominate ρxx(T ). In
graphene, there are three different types of phonon scattering: intravalley acoustic and
optical phonon scattering and intervalley phonon scattering[138]. In graphene, for the
acoustic modes, the Debye temperature (ΘD), which is the temperature scale of the
highest phonon mode if all modes are occupied, is quite high ΘD = 2300 K[179]. At
T < ΘD, mainly phonons with kph = kBT/ℏvph < kD are populated, where kD = ωD/vph

12In an illustrative way, as long as the collision level broadening is larger than the thermal broadening
(kBT ), the polarizability function has a negligible T dependence[174].

13At higher n as the screening is enhanced, the effect of charge impurities is less pronounced[178].
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is the Debye wave vector14 and vph is the sound velocity of a given phonon mode.
In the low-density regime, which is important in transport in graphene, kF ≪ kD,
electrons can scatter only on a small fraction of the acoustic phonons, those with
kph < 2kF

15. This defines the Bloch-Grüneisen (BG) temperature (TBG = 2ℏvphkF /kB).
Below T < TBG, the largest momentum of most of the occupied acoustic phonon
modes is smaller than ℏkF , which allows only small-angle scattering processes. Above
T > TBG, the acoustic phonon modes are well populated above ℏkF in the momentum
space allowing also large-angle scatterings.

In Fig. 2.11a, the acoustic phonon contribution to the resistance is shown at two
different densities. There are two regions depending on TBG. If T ≪ TBG, ρac(T ) ≈
ρ0+αT 4 with ρ0 the residual resistance from the disorder. If T ≳ TBG, ρac(T ) ≈ ρ0+γT

with the proportionality factors of

γ = πD2
AkB

4e2ℏρmv2
Fv2

ph

(2.64)

and
α = 12ζ(4)πD2

Ak4
B

e2ℏ4ρmv2
Fv5

ph

(πn)−3/2 , (2.65)

where DA ≈ 10 − 30 eV[180–183] is an effective acoustic deformation potential16, ρm =
7.6 · 10−7 kg/m−2 is the graphene mass density, vph = 2 · 104 m/s[185] is an effective
acoustic phonon velocity and ζ is the Riemann-Zeta function[177, 180, 184, 186–188].
The charge density dependence of TBG is illustrated with red and black curves in
Fig. 2.11a, which are plotted at different charge densities as a function of T . As n is
increased, the transition temperature, when the behavior of ρxx changes from linear T

to T 4 dependence and characterized with TBG, increases.
At temperatures above T ≳ 270 K, the optical phonon modes, especially the optical

A,
1 intervalley phonon mode[189], gives a non-negligible contribution to the temperature

dependence of the resistance which can be calculated numerically from Eq.(2.46)[190,
191].

Remote phonon scattering

Besides ripples and remote charge impurities, the substrate has another important
scattering mechanism that limits the mobility at higher temperatures (T ≳ 200 K[178]):
scattering by surface optical phonons at the substrate which is called remote interfacial
phonon (RIP) scattering[178, 191–193]. It originates from the transverse optical (TO)

14With ℏωD = kBΘD.
15The factor of 2 comes from the full backscattering.
16Here, the effect of acoustic phonon modes is described by scattering on a single effective phonon

mode[184].
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Figure 2.11: Temperature dependence of the resistivity of SLG. (a) The resistivity
contribution from the acoustic phonons of graphene. The full formula[177] is used
here instead of the asymptotic ones in Eq.(2.64) and Eq.(2.65) defined as ρac =
8D2

AkF fs(TBG/T )/e2ρmvphv2
F, where fs(z) =

∫ 1
0

zx4√
1−x2ezx

(ezx−1)2 dx and DA = 19 eV is used.
At T ≲ 0.1TBG, ρxx(T ) ∝ T 4 and at T ≳ 0.2TBG, ρxx(T ) ∝ T . (b) The combined
resistivity (ρtot) using Eq.(2.67) which consists of ρac (blue dashed lines) and ρRIP (red
dotted lines). The parameters used here are DA = 19 eV, n = 2 · 1012 cm−2, α = 1,
B = 5 · 1019 cm2Ohm, ℏω1 = 102.12 meV, ℏω2 = 198.3 meV and S = 2.05.

phonon modes of the substrate. The contribution of RIP scattering to the resistivity
of graphene is given as

ρRIP(T, n) = B

nα

( 1
eℏω1/kBT − 1 + S

eℏω2/kBT − 1

)
, (2.66)

where the resistivity coefficient Bn−α is n dependent with phenomenological constants
of α and B. Here, only two modes exhibiting the largest oscillator strength with fre-
quencies of ω1 and ω2 are considered with the ratio between their coupling strength of
S.

By combing the scattering mechanism described in this section, for a good quality
device at higher densities, where the temperature-dependence of the resistance is due
to the electron-phonon scattering, the resistivity can be well described with

ρxx(T, n) = ρ0(n) + ρA(T ) + ρRIP(n, T ), (2.67)

where ρ0(n) is the residual resistivity at low temperature, ρA(n, T ) = πD2kBT
4e2ℏρmv2

Fv2
ph

is the
contribution from the acoustic phonons (see Eq.(2.64)) and ρRIP(n, T ) as defined in
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Eq.(2.66). Eq.(2.67) is plotted at n = 2 · 1012 cm−2 in Fig 2.11b. As described, ρxx(T )
is dominated by RIP scatterings above T ≳ 200 K and below ρxx(T ) ∝ T due to the
acoustic phonons in graphene.

Temperature dependence of the low-density regime

At low charge densities (n < nr, where nr is the magnitude of disorder-induced
carrier density fluctuation also called residual doping), σmin is expected to vary with
temperature only for kBT > Epuddle, where Epuddle = ℏvF

√
πnr for SLG[13, 143, 194].

The combined effect of the temperature dependence of the short-range and long-range
disorder and the phonon contribution lead to the temperature dependence of σmin[195]
as

σmin(T ) =
[(

σshort(T ) + AcT
2
)−1

+ BpT + ρRIP

]−1
, (2.68)

where σshort(T ) is defined in Eq.(2.63), Ac is a coefficient related to the Coulomb dis-
order17 and Bp is related to acoustic phonon scattering (γ defined in Eq.2.64).

2.5 Magneto-transport in graphene

When a material is placed in an external magnetic field, the charge carriers are
affected by the magnetic field during transport. The magnetic field dependence of the
resistance is called magnetoresistance, and it is a versatile tool to study the properties
of the materials. In magneto-transport, a variety of interesting phenomena occurs, like
weak localization, Shubnikov-de Haas oscillations, quantum Hall effect, large magne-
toresistance, or magnetic focusing. In this section, a short description of these effects
is given below.

2.5.1 Weak localization

Due to inelastic scatterings, the charge carriers’ energy changes which leads to a
loss of coherence. The time scale that characterizes this is called phase coherence time
τϕ. The semiclassical Boltzmann equation which is discussed in Section 2.4, doesn’t
include coherence effects. However, the coherence effects lead to modification of the
conductivity, and in shorter length scales than the phase coherence length (Lϕ =

√
τϕD,

where D is the diffusion coefficient) the transport is coherent. The coherence length
decreases with the temperature as T leads to thermal broadening of the energy of the
particles (dephasing), and also at higher temperatures, the number of inelastic electron-
phonon scattering events is increased. Let’s consider the probability of a charge carrier

17Ac is related to C2 in the (T >> TF) limit, which is relevant near the CNP.
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going from r1 to r2 with the probability amplitudes of the path Ai as

P (r1, r2) =
∣∣∣∣∣∑

i

Ai

∣∣∣∣∣
2

=
∑

i

|Ai|2 +
∑
i ̸=j

AiA
∗
j . (2.69)

The first term describes the classical probability of propagation, and the second term
comes from the interference. In a diffusive system, the phase of Ai is random, and they
average to zero in the second term except when r1 = r2 (backscattering). In the case
of backscattering, if the time-reversal symmetry (TRS) is conserved, the phase of a
backscattered trajectory is the same as the phase of its time-reversed pair. These pairs
interfere constructively and the probability of backscattering is twice as much as in the
classical case when the second term in Eq.(2.69) is absent. This coherent backscattering
is called weak localization (WL)[196].

A
Atr

Figure 2.12: An example of a closed loop that contributes to the interference. Multiple
scattering events lead to backscattering. If TRS is present, the backscattered path and
its reversed path interfere constructively (destructively in the presence of SOC). The
enclosed surface is shown with a gray area, which ϕAB depends on.

If SOC is present, then Ai become 2×2 matrices in the spin space and can be written
as Ai = A0

i12×2 + A · s, where A0
i is the spin-independent part of Ai, A is the spin-

dependent probability amplitude and s = (sx, sy, sz) is the vector of Pauli matrices.
The time reversed pair of Ai is T Ai = A0

i1 − A · s. The different sign of Ai and T Ai

results in a probability of backscattering which is half of the classical value, which
results in destructive interference, which is called weak antilocalization (WAL)[197]. In
a magnetic field, the particles pick up another phase called the Aharonov-Bohm phase
(ϕAB = 2eπBS/h). As ϕAB depends on the enclosed surface S perpendicular to B, as
B is increased, first the contribution from the largest circles is suppressed by averaging
over the trajectories and the contribution from the smallest ones remain unchanged.
Thus, as the magnetic field is increased, fewer and fewer closed paths contribute to the
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interference and the resistance drops to its classical value.

In graphene, elastic scattering can happen between the valleys, which is character-
ized by the intervalley scattering time (τiv), or within a valley, which is characterized by
the intravalley scattering time τz. The intravalley scattering is caused by long-ranged
scattering, whereas the intervalley scattering is due to atomically sharp scatterers.
The trigonal warping in graphene breaks the p → −p symmetry within a valley as
ϵ(K±, p) ̸= ϵ(K±, −p), but due to the TRS, it has an opposite sign in the two valleys
leading to ϵ(K±, p) = ϵ(K∓, −p). As a result, the trigonal warping suppresses the in-
terference effects from intravalley scattering while the correction to the resistance from
the intervalley scatterings is unchanged. A time scale can also be attributed to the
trigonal warping τw. These scattering mechanisms contribute the following correction
to the magnetoconductivity[198]

∆σ(B) = σ(B) − σ(0) = e2

πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Biv

)
− 2F

(
B

Bϕ + Biv + B∗

)]
,

(2.70)
where F (x) = ln(x) + Ψ(1/2 + 1/x) with the digamma function Ψ(x), Bj = ℏ/(4eDτj)
and τ∗ = (1/τw + 1/τz)−1. For simplicity, in the rest of this thesis, τ∗ is referred as the
intravalley scattering time. Eq.(2.70) is plotted in Fig. 2.13a for the relevant scenarios.
The colors in the figure show curves with different phase coherence times, which changes
the curvature of the curves around B = 0. In the limit of τϕ > τiv, the magnetoresistance
has a WL behavior meaning that ∆σ increases by increasing the magnetic field, which
is usually observed in graphene samples[163, 199–202]. The other limit is when τiv >

τ∗ ≥ τϕ, when the magnetoresistance shows WAL-like behaviour meaning that ∆σ

decreases by increasing the magnetic field[200].

The presence of SOC in graphene, like in graphene/TMD heterostructures, intro-
duces new scattering mechanisms, which are characterized by τR for the Rashba-type
SOC and τV Z for the Ising-type SOC. The scattering mechanisms can be combined
into z → −z symmetric part τsym, which depend on τV Z and an antisymmetric part
τasy, which depend on τR. The magnetoconductivity correction in the limit when the
intervalley scattering dominates is described by[203]

∆σ(B) = − e2

2πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Basy

)
− 2F

(
B

Bϕ + Basy + Bsym

)]
. (2.71)

If τiv and τ∗ are comparable with the other scattering times, more correction terms have
to be included, and it can be described with Eq.(28) in Ref.[204]. The relevant scenarios
of Eq.(2.71) are shown in Fig. 2.13b. In the case of small τasy and τsym compared to τϕ,
it shows WAL behavior, and the background is mostly affected by τsym. If τasy ≫ τϕ
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Figure 2.13: Magnetoresistance corrections for different scattering times. (a) Eq.(2.70)
with τiv = 1 ps and τ∗ = 0.1 ps at different phase coherence times. If τϕ > τiv > τ∗,
the curve has WL behaviour (orange curve). If τiv > τ∗ ≥ τϕ, the (blue) curve has
WAL-like behaviour, i.e. negative magnetoconductance. If τiv ≫ τ∗ ≫ τϕ, there is no
effect (black). (b) Eq.(2.71) at different scenarios. If τϕ is similar to τasy and τsym there
is WL and if τϕ is larger than τasy and τsym, there is WAL.

the curve shows WL behavior due to the cancellation of the first two terms.

In an ideal two-dimensional system, the in-plane magnetic field B∥ spin polarizes
the graphene carriers through the Zeeman effect leading to positive B2

∥ dependent
magnetoconductance[205], while having no effect on the interference corrections[206].
However, real 2D systems are rippled and they have out-of-plane corrugations origi-
nating from the substrate roughness or the strain during the fabrication. The height of
the corrugations usually follows a Gaussian distribution with root-mean-square (RMS)
height fluctuations of Z. The in-plane expansion of corrugations is characterized by
the lateral correlation length of the corrugations R. When the 2D crystal is put in B∥,
it has random out-of-plane magnetic field components originating from corrugations.
These out-of-plane components lead to dephasing and changes the dephasing rate by
τ−1

ϕ → τ−1
ϕ + τ−1

∥ [201, 202, 207, 208], where

τ−1
∥ =

√
π

e2

ℏ2 vFZ2RB2
∥ . (2.72)

The dephasing rate in Eq.(2.72) holds for Gaussian correlated corrugations with an
in-plane correlation length of R and with the RMS height fluctuations of Z.
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2.5.2 Shubnikov-de Haas oscillations

The Shubnikov-de Haas (SdH) effect is the appearance of oscillations in the magne-
toresistivity as a function of magnetic field, B at low temperatures when kBT ≪ ℏωc,
where kB is the Boltzmann constant, T is the temperature and ωc = eB/m∗ is the
cyclotron frequency [209, 210]. The oscillation is periodic over 1/B and the periodicity
is given by

∆
( 1

B

)
= 2πe

ℏSF
, (2.73)

where SF is greatest cross-section of the Fermi surface perpendicular to the magnetic
field[210–212]. The origin of the oscillations is the formation of Landau-levels in a
magnetic field, which leads to a magnetic field-dependent DOS. The scattering rate is
proportional to the DOS in Born approximation and the longitudinal resistivity ρxx

is proportional to the scattering rate [213]. Therefore, the oscillations in the magne-
toresistivity and in the DOS at the Fermi level are due to the Landau level quanti-
zation. Generally, the longitudinal resistance can be written in the region of the SdH
oscillations[48, 214–217] as

ρxx = ρ0

[
1 + c

∞∑
s=1

D(sx)e− sπ
ωcτq cos

(
s
ℏSF

eB
− sπ + sϕ0

)]
, (2.74)

where c is a constant prefactor, τq is the lifetime of the charge carrier, which is de-
fined with Eq.(2.50), s is the harmonic order, ϕ0 is the Berry phase, which is zero in
conventional 2D systems, π in SLG[47, 218] and 2π in BLG[219, 220]. D(sx) is the
temperature damping factor given as

D(sx) = s2π2kBT/ℏωc

sinh(s2π2kBT/ℏωc)
. (2.75)

At a low magnetic field, it is enough to sum only at the first few harmonics of s[215]
and in experimental studies, usually only the s = 1 term is considered[47, 221–223].

In experiments, SF can be obtained from the oscillation frequency using Eq.(2.73)
and if there is more than one Fermi surface, all of them can be determined from the
magnetoresistivity. From the exponential part of Eq.(2.74), which is called the Dingle
factor, τq can be obtained. Lastly, from the T dependence, the effective mass can also
be obtained.
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2.5.3 Quantum Hall measurements

In magnetic field (B), the charge carriers, with v velocity, experience the Lorentz
force

F = −e (E + v × B) , (2.76)

which leads to finite off-diagonal matrix elements of the conductivity tensor as

σxy = ne/B, (2.77)

which is called classical Hall conductivity. The Hall resistance can be calculated as

ρxy = σxy

σ2
xx + σ2

xy

, (2.78)

which increases linearly with B as shown at low magnetic fields in Fig. 2.14c. At higher
magnetic fields, ρxy starts to behave non-linearly and has plateaus of h/e2ν, where
ν is the Landau level filling factor. This quantization of the Hall resistance was first
discovered in two-dimensional electron gas (2DEG)[224].

The quantized Hall resistance (quantum Hall effect) can be understood as the fol-
lowing. In a magnetic field Landau levels (LL) form. Their energy can be calculated by
replacing the canonical momentum in the Hamiltonian with the kinetic impulse, and
then the wave vector k is replaced with q = k − e

ℏA, where A is the vector potential.
For 2DEG, the solution is given by

EN =
(

N + 1
2

)
ℏωc, (2.79)

where ωc = eB/m∗ is the cyclotron frequency and N quantum number indexes the LLs
and it is a non-negative integer number[210]. The degeneracy of these levels is given by

Np = g
Φ
Φ0

, (2.80)

where g is the degeneracy factor (g = 2 for spin degeneracy), Φ0 = h/e is the magnetic
flux quantum and Φ = BA is the magnetic flux. The charge density is defined as the
number of occupied states divided by the volume or in 2D the area, which is for the
Nth occupied LL given as

n = NNp

A
= gNBe

h
, (2.81)

which can be rewritten for the filling factor, which gives the amount of filled LLs
(ν = gN) as

ν = nh

eB
. (2.82)
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Figure 2.14: Quantum Hall effect in graphene. (a) Schematic illustration of the LL
structure of SLG as a function of y or k. (b) Illustration of the edge states of ν = 6 in
SLG with red and magenta arrows in a Hall-bar geometry in perpendicular B field. The
chemical potentials of the contacts are labeled with µi. (c-d) Hall resistance ρxy and
magnetoresistance ρxx as a function of out-of-plane magnetic field (c) in SLG and (d)
in BLG. ρxx is calculated with Eq.(2.74) with ϕ0 = π for SLG and ϕ0 = 2π for BLG.
ρxy is calculated with Eq.(2.78), where ν is calculated with Lorentzian Landau-level
broadening[225] as ν = g

∫ ∞∑
n=0

gLL(E)f(E)dE, where g is the LL degeneracy (g = 4
for graphene), f(E) is the Fermi-Dirac distribution and gLL = 1

πΓ[1+(E−EN )2/Γ2] , where
Γ is the quantum level broadening and EN is calculated with Eq.(2.85) for SLG and
Eq.(2.87) for BLG. (c) QHE in SLG calculated with the parameters n = 1012 cm−2,
T = 5 K and Γ = 0.5 meV. (d) QHE in BLG calculated with EF = 56.6 meV, from
which n ≈ 1.5 · 1012 cm−2, T = 5 K and Γ = 0.5 meV.

Real samples have finite size and the physical boundaries give a confining po-
tential, which bends the LLs. The Landau states can be written in the form of
Ψ(x, y) = eikxϕ(y) with a wave number k in the x direction and ϕ(y) which is the
harmonic oscillator solution of Hamiltonian of the system with Hermite-polynomials
and centered to yk = ℏk/eB. In Fig. 2.14a the bending is illustrated as a function k or
y-coordinate. The LLs in the middle of the sample look like the LLs in an unconfined
system. However, near the edge of the sample, there are allowed states. Consequently,
when the Fermi energy lies between two LLs, only states near the edge of the sample
are allowed. These are called edge states and have a velocity parallel to the edge[226].
These propagating states, which carry charge current in one direction, are spatially
separated from those which carry the charge in the opposite direction. This separation
leads to an exponentially small overlap of the wave functions of the states carrying
current in the opposite direction, which leads to the suppression of backscattering. As
a result, in Fig. 2.14b the edge states carry current from left to right and from right
to left on the opposite side of the sample. The edge states moving to the right (left)
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are in equilibrium with the contact on the left (right) with a chemical potential of
µL(µR). As a result, the chemical potential of the floating contact is µ2 = µ3 = µL and
µ1 = µR[227]. The longitudinal voltage is zero, as Vxx = (µ2 − µ3)/e = 0. Whereas
the longitudinal voltage is finite Vxy = (µ1 − µ2)/e = (µL − µR)/e. In the Landauer
formalism, the current is given by

I = e

h
M(µL − µR), (2.83)

where M is the number of transport channels, which is in this case the number of edge
states M = ν. Thus, the longitudinal resistance (Rxx = Vxx/I) is zero and the Hall
resistance is

RH = Vxy

I
= h

νe2 . (2.84)

These statements above are only valid if the Fermi level is between the LLs, If the
LLs are partially filled, there are states in the bulk allowing backscattering, and the
Hall conductance is no longer quantized. In real systems there is disorder. The disorder
leads to the broadening of the LLs, characterized by the level broadening Γ. The states
induced by the disorder are localized, thus the bulk is insulating and the current is
carried by the propagating edge states[209].

For single-layer graphene, the LL energies are given by[75]

EN = sgn(N)
√

2ev2
Fℏ|NB|, (2.85)

where N is an integer. This is non-equidistant and the N = 0 LL has zero energy
unlike Eq.(2.79). In graphene, there is usually spin and valley degeneracy, therefore
g = gsgv = 4 and as the N = 0 state is equally shared by electrons and holes, it
contains half as many states as all the other states when counting only to electrons or
holes, thus the LL filling factor is given as ν = g

(
N + 1

2

)
, which takes the values of

ν = ±2, ±6, ±10 . . . . The Hall resistance for SLG is given by

ρxy = h

gsgv

(
N + 1

2

)
e2

, (2.86)

and it is shown in Fig. 2.14c with black curves as a function of the magnetic field. At
large magnetic fields, only the zeroth LL is occupied, and as B is decreased other LLs
are filled which are 4-fold degenerate.

For bilayer graphene, if the remote hoppings are neglected, the LL energies are
given by

E
(±)
N = ±ℏωc

√
N(N − 1), . (2.87)
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where m∗ in ωc is given by m∗ = γ1/2v2
F[45]. The degeneracy of the LLs for N ≥ 2 is

the same as in SLG, but the zeroth and first levels are degenerate. The Hall resistance
is the same as for a 2DEG, but there is no plateau at n = 0:

ρxy = h

gsgvNe2 , (2.88)

N is a non-zero integer18. ρxy for BLG is shown in Fig. 2.14d with black curves as a
function of B. Plateaus of ρxy occur at h/N4e2. The effect of remote hoppings, the
electric field, and SOC on the LL energies is discussed in Section 4.1.1.

The longitudinal resistance ρxx is shown with blue curves in Fig. 2.14c for SLG and
Fig. 2.14d for BLG as a function of B at fixed n. ρxx has zero value when the LLs are
filled and the Fermi level lies between two LLs. When EF is on a LL, it has a non-zero
value (see Eq.(2.74)).

2.5.4 Magnetic focusing

The transport is ballistic when the mean free path is larger than the dimension of
the sample, i.e. the electron can travel long distances without scattering. In this case,
an out-of-plane magnetic field may focus electrons in a certain device geometry, which
phenomenon is called transverse magnetic focusing (TMF). Generally, the states that
are detectable in transport are only those within a kBT window near the Fermi level
and are moving with Fermi velocity[228]. The electron trajectories can be obtained
from the semiclassical equation of motion

ℏ
dk
dt

= −e
d
dt

r × B, (2.89)

which gives that, the real space trajectory of the electrons can be obtained by rotating
the Fermi surface by 90° and scaling it by ℏ/eB. If the Fermi surface is a circle, then
the cyclotron radius is

rc = ℏkF

eB
. (2.90)

In TMF experiments, the charge carriers are injected from narrow contacts isotrop-
ically as illustrated in Fig. 2.15a. Near the boundary, the charge carriers bounce back
leading to skipping orbits[229] which bunch into caustics[230, 231]. The resulting focal
points are at integer multiples of 2rc as illustrated for one bouncing of the edge in
Fig. 2.15b. By placing a detector contact at a distance of L from the injector contact,

18For BLG, ν = gsgvN = ±4, ±8, ±12 . . .
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Figure 2.15: (a-b) Classical trajectories of electrons injected from a point contact
isotropically when the Fermi surface is a circle. Electrons are focused at 2rcp, where
p is an integer. Trajectories (a) without reflections of the y = 0 lower boundary and
(b) including one bounce. (c) Schematic set-up of the TMF measurements: the injector
(I) contact is used to inject the charge carriers of the material by injecting I current
and the collector (c) contact is used to detect the signal by measuring Vc. (d) TMF
peaks from Eq.(2.92 as a function of n and B. Inset in (c): schematic illustration of
Rnl = Vnl/I at n = 1012 cm−2 as a function of B. The area of the first peak is marked
with grey color.

as illustrated in Fig. 2.15c, the magnetic field required to focus the electrons is

Bj = 2ℏkBp

eL
, (2.91)

where j = 1, 2, . . . and j − 1 is the number of reflections from the boundary. In SLG
kF can be calculated from Eq.(2.8) leading to

Bj = 2ℏ
√

πnp

eL
, (2.92)

which is plotted in Fig. 2.15d. An equidistant series of peaks appear at a fixed n and the
deflection of the charge carrier depends on the sign of the charge of the carriers[232–
234].

The temperature affects the TMF as the energy window of the excited carriers is
∼ kBT near the Fermi level. At low temperatures, the electrons are phase coherent,
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and the TMF signal exhibits a fine structure[235–237]. When the temperature-induced
broadening of the Fermi wave vector (kF) is comparable with 1/L, the electrons are
no longer coherent, and the quantum interference is lost[238] which affects the fine
structure of the TMF signal. On the other hand, T introduces new scattering channels
at high temperatures, which leads to the loss of ballistic behavior of charge carriers,
thus the TMF signal. In metals, mainly the electron-phonon scattering is responsible
for the loss of TMF signal as the temperature is increased[239]. The suppression of
the TMF signal upon heating is caused by electron-electron scattering in graphene
superlattices[233, 234] and also in 2DEGs[240].

In experiments, the area under the first focusing peak A1, which is shown with grey
are in the inset of Fig. 2.15d, can be used to study the effect of temperature[233]. A1

is proportional to the fraction of charge carriers, that propagate from the injector to
the collector ballistically along the semicircle. The electrons need t = πL/2vF time
to propagate along the semicircle, where L is the distance between the injector and
collector. A1(T ) can be expressed as

A1(T ) = A1(Tbase)e− πL
2vFτeff , (2.93)

with an effective scattering time τeff . In experiments, τeff can be extracted as

τeff(T ) = − πL

2vF
/ ln

(
A1(T )

A1(Tbase)

)
. (2.94)

If the temperature-dependent scattering mechanism is mainly scattering on acoustic
phonons, τ−1

eff (T ) depends linearly on T [180, 232]. If the electron-electron scattering is
the main source of the loss of TMF signal, quadratic T dependence is expected[233,
234].



3. Chapter

Experimental methods

In this chapter, experimental methods that are important to this thesis are pre-
sented. The first part is devoted to the sample fabrication including the fabrication
of van der Waals (vdW) heterostructures and electrical contacts to them. The second
part focuses on electrical transport measurements including the measurement set-up,
the method of applying pressure, and the background of some important measurement
techniques which is used in the following chapters.

3.1 Sample fabrication

Since many of the investigated phenomena are only observable on samples with
large mobilities, it is very important to fabricate samples with high quality. In this
section, I introduce the fabrication method I have used to make devices including the
exfoliation of crystals which are used to assemble VdW heterostructures.

3.1.1 Building a vdW heterostructure

(a)

SLG
~5 nm

BLG

~28 nm

20 µm20 µm20 µm

(b) (c)

Figure 3.1: Optical microscope image of exfoliated (a) graphene, (b) hBN, and (c)
WSe2 crystals on Si/SiO2 wafers. (a) The SLG, BLG, and thicker graphite flakes are
well distinguishable from each other.

A vdW heterostructure is made of different layered crystals and held together by

47
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the van der Waals interaction. The initial step to build them is the preparation of
starting materials. There are various methods to synthesize 2D crystals such as chemical
vapor deposition (CVD), and mechanical and liquid phase exfoliation[5]. Among them,
mechanical exfoliation provides one of the highest quality flakes. However, the yield
is far worse than CVD[241]. During the exfoliation, a low adhesive tape1 is used as a
transfer medium: the top layers of the bulk are peeled off with it and transferred to
a Si/SiO2 substrate. The exfoliated flakes are inspected on the wafer with an optical
microscope. In Fig. 3.1 examples of exfoliated graphene, hBN, and WSe2 are shown.
The visibility of the flakes depends on their thickness and the substrate[242]. From the
color of the flakes, their thickness can be estimated. To distinguish SLG and BLG from
each other and thicker graphite flakes, their contrast can be used[243–245].

vdW stacking

(a)
glass

PDMS
PC

hBN

SiO2  60-100 °C

Pick up

(b)
glass

PDMS
PC

graphene

SiO2  60-100 °C

Pick uphBN

(c)
glass

PDMS
PC

SiO2  150 °C

Deposit
stack

Figure 3.2: Schematic representation of the process of dry stacking of vdW heterostruc-
tures. (a) A PC/PDMS stamp is prepared on a glass slide and used to pick up the first
layer (hBN) by placing the stamp on the wafer which is heated to 60-100 °C. (b) Pick-
up of the second layer (graphene) with the top layer. (c) Stamping the finished stack
onto an empty wafer and melting the PC onto the substrate.

In general, any kind of layered materials can be placed on top of each other
(which is called stacking for simplicity) under a transfer stage[121, 246]. The pro-
cess is illustrated in Fig 3.2. It involves using transparent polymers on a glass slide: a
polydimethylsiloxane (PDMS) piece is put on a glass slide and a polycarbonate (PC)
film is placed on top of it. This stamp is mounted on an XYZ-stage under the transfer
microscope (in the figure, it is illustrated with the PC and PDMS on a glass slide).
Then the wafer (SiO2 in the figure) with the flake intended as the top layer is placed
on the xy-stage of the microscope. A clean region of the PC layer is pushed to the
surface of the wafer at the position of the chosen flake. Then the stage is heated up

1Eg. Nitto ELP-BT-150P-LC
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to 100 °C, which increases the adhesion between the polymer and the flake. After the
wafer is heated up, the stamp is slowly retracted while the flake is peeled off from the
substrate. Then the wafer with the flake intended as the second layer is placed on the
stage and the flake is picked up by the layer on the stamp. This process continues until
all the desired crystals are picked up and then the whole heterostructure is stamped
on a wafer. It is heated to 180 °C to melt the PC on the wafer. The stamp is slowly
retracted and the PC with the heterostructure remains on the substrate. After this, the
heterostructure is annealed at 180 °C for 5 minutes to increase the adhesion between
the substrate and the heterostructure. Heating and stacking at large temperatures also
help to reduce the amount of contamination in the samples[130, 135]. Afterwards, the
PC is dissolved in chloroform and the heterostructure is ready to be made into a device
for transport measurements.

Characterization of the heterostructures

To have a high-quality sample, it is essential to perform the following studies
before further fabrication steps on the heterostructure. The most widely used non-
invasive methods are Raman spectroscopy and atomic force microscopy (AFM). With
Raman spectroscopy for example nanometre-scale strain variations can be spatially
resolved[247], which limits the mobility in high-quality graphene samples[163].

The AFM is a type of scanning probe microscope. The tip is moved by piezoelectric
transducers and it is mounted on a cantilever which gets deflected when it interacts
with the sample. The deflection is measured optically: a laser beam gets reflected from
the cantilever to a four-segment photodetector. From the deflection, feedback control
is used to keep the force or the distance between the tip and the surface[248]. The
AFM can be used to determine the accurate thickness of the layers and to map the
surface topology of the heterostructure. In Fig. 3.3 an optical microscope image and an
AFM image are shown on the same heterostructure. The darker spots in the optical
image are contamination between the layers, probably organic residuals. These along
with a lot of smaller ones are more pronounced in Fig. 3.3b. Two bubble-free regions
are circled in the figure, which can be used later in the fabrication. The reason behind
avoiding the bubbles is that they induce local strain fluctuations[249, 250] which lead
to lower mobility.

3.1.2 Making an electronic device

Electronic devices made from heterostructures are usually made by the following
steps: the sample geometry is chosen to be suitable for the application. Then electrical
contacts are made by lithography and the sample is shaped in the designed geometry.
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Figure 3.3: Comparison of an optical microscope and an AFM image of a heterostruc-
ture. (a) Optical microscope image of a heterostructure. (b) AFM image of the same
heterostructure. The white circles are bubbles of contamination between the layers.
The black-circled regions are contamination-free and could be used to fabricate elec-
trical devices.

Designing the sample

The samples made for transport measurements are most commonly made into Hall
bar or Corbino geometry as well as two-terminal geometries[251]. The Corbino geom-
etry is a cylindrical symmetric configuration where the sample is the annulus between
the inner and outer contacts as shown in Fig. 3.4a. In this configuration σxx is mea-
sured as the radial part of the electric field is responsible for the measured current. As
there are no sample edges between the contacts, the bulk response dominates and good
electrical contact is not as important as in Hall bar geometries[252] to observe eg. frac-
tional QHE[253]. On the other hand, the Hall bar geometry allows the measurements of
ρxx

2 and ρxy
3 simultaneously by measuring the longitudinal and transverse Hall voltage

on the terminals shown in Fig. 3.4b. This is the most widely used geometry, and the
measurements presented in this thesis are also performed in this configuration.

After the heterostructure is finished, a clean region and the geometry is chosen. A
design for the next steps is made by a vector graphics software4. A design of a device
is shown in Fig. 3.5a. In the figure, the differently colored polygons belong to different
lithography steps including contact evaporation and etching of the sample, which are
described in the next paragraphs.

2From the longitudinal voltage (Vxx), the measured current (I) and the geometrical parameters,
the width W and the length L of the sample ρxx = W/L · Vxx/I.

3From the transverse voltage (Vxy) and the measured current (I) ρxy = Vxy/I.
4Eg. Adobe Illustrator, Inkscape, or Autodesk AutoCAD
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Figure 3.4: Schematic device geometries. (a) Corbino geometry. The grey region is the
sample and the conductance can be measured between the two yellow contacts. (b)
Hall bar geometry. The sample is formed into the gray area and longitudinal voltage
Vxx and transverse voltage Vxy can be measured at once. The sample width is W and
the length between the side arms of the Hall bar is L.

(a) (b)

Figure 3.5: Designing a sample. (a) The yellow polygons outlined in black are the areas
where electrical contacts are to be fabricated, the red ones are the areas where the
crystals are planned to be etched away, and the darker yellow areas are where the top
gate is to be placed. (b) Almost completed device: the contacts are finished, and the
device is shaped, but the top gate is yet to be fabricated.

Electron beam lithography

Electron beam lithography (EBL) offers a very high resolution (up to 10 nm)
nanofabrication method and it is very flexible, as the electrons are deflected to ex-
pose a mask and create any custom design[254]. Thanks to these properties, this is one
of the most commonly used patterning methods in the field of 2D materials. Before the
lithography, the wafer is coated with a resist. During the lithography, the resist gets
irradiated at a designed pattern. After this, the resist is developed, which means that
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the regions that were exposed to the electron beam are removed for positive resist and
the opposite happens for negative resist.

After the pattern is made in the resist, it can be used in various ways: the sample
can be shaped using reactive ion etching, or contacts for electrical measurements can
be made for electrical measurements. An example is given in Fig. 3.5: in panel (a) the
colored polygons are the design of different lithography steps: the outer yellow ones are
directly evaporated by Cr/Au in Fig. 3.5b, the inner yellow ones were first etched (to
access the graphene) then evaporated to make edge contacts[121]. The brown one in
the bottom left is etched till the bottom graphite is reached to contact it as a bottom
gate. The red ones are the regions that were etched completely to achieve a Hall bar
shape. The fabrication recipes I used in the samples presented in this thesis are given
in Appendix A.1.

3.2 Transport measurement

Certain phenomena, such as weak localization and SdH oscillations presented in the
previous chapter, are only observable at low temperatures. In this thesis, the presented
experiments were carried out in different cryogenic measurement set-ups in which the
base temperature is 35 mK, 1.5 K or 4.2 K. In Helium-4 cryostats, the dewar5 is filled
with liquid 4He, for which boiling point is at 4.2 K at atmospheric pressure, and cryo-
genic liquid is directly used to cool down the sample. If a variable temperature insert
(VTI) is placed in the dewar, then by letting in liquid He and pumping the volume
of the VTI, the latent heat is removed by evaporation, and temperatures as low as
1.5 K can be reached thanks to the small pressure and the large vapor pressure6 of
4He. In a VTI a heater is also present allowing to control the temperature between
1.5 K to 300 K. To achieve 35 mK, a 3He/4He dilution refrigerator is used, where the
cooling power comes from dilution of 3He from the concentrated phase to the diluted
phase[255]. The 4.2 K cryostats is equipped with a 15 T out-of-plane magnet, one of
the Helium-4 cryostat has a 8 T magnet, and the other one has a 9/3 T vector magnet,
and the 3He/4He dilution refrigerator has a similar 9/3 T vector magnet.

Electronic measurements were carried out using standard lock-in techniques to mea-
sure the differential conductance and resistance. Low-noise and low-drift current and
voltage amplifiers were used to amplify the signal. DC voltage sources were used on
the gates. All measurements were controlled with our measurement codes based on
QCoDeS[256], which is a Python-based data acquisition framework.

5A double-walled vacuum isolation vessel.
6At 10 mbar the boiling point of liquid 4He is around 1.67 K.
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In the rest of this section, the effect of gating on heterostructures is introduced,
and a useful method of determining the band gap of the sample.

3.2.1 Electrical gating

The electrochemical potential and thus the charge carrier density n in a field
effect transistor can be tuned by applying voltage on a capacitively coupled gate
electrode[210]. Similarly, in graphene, the gate voltage also tunes n[4]. In BLG, as
a result of gate voltage, a potential difference can be formed between the layers, and
a band gap opens[219, 257, 258] as it was shown in Section 2.1.2. Experimentally, this
can be well controlled with a dual-gated geometry as in this case the charge density
(n) and electric displacement field (D) are related to the top and bottom gate voltage
by

n = αTGVTG + αBGVBG + n0 (3.1)
D

ϵ0
= e

2ϵ0
(αTGVTG − αBGVBG) + D0

ϵ0
,

where αTG and αBG are the lever arms7 for the top and bottom gate respectively,
ϵ0 is the vacuum permittivity, VTG and VBG are the top and bottom gate voltage,
respectively[259, 260]. n0 = −αTGVTG0 − αBGVBG0 is the carrier density when the gate
voltages are set to zero, whereas D0 = − e

2 (αTGVTG0 − αBGVBG0) is a built-in offset
electric field. VTG0 and VBG0 are the values of the top and bottom gate at the zero
density and zero displacement field point.

The procedure to obtain the lever arms can be done by measuring the resistivity
ρxx as a function of the gate voltages and magnetic field. For example, the ratio of the
lever arms s = αTG/αBG in dual-gated samples can be obtained from the slope of the
charge neutrality line (CNL) at n = 0. A typical ρxx measurement as a function of gate
voltages is plotted in Fig 3.6a. Here, the high resistance region corresponds to the CNL,
and the slope of the dashed line which shows the direction of D is the ratio between
the lever arms. After obtaining the ratios, for BLG, n0 and D0 can be obtained from
the position of the CNL and from the minimum resistance along the CNL. After these
actions, the charge carrier density can be tuned with the gates. Using the quantum
Hall effect, which is described in more detail in Section 2.5.3, n can be easily calculated
as at certain magnetic fields B, the resistance ρxx shows minima and the charge carrier

7In a parallel-plate capacitor model, α = ϵ/ed, where ϵ is the dielectric constant of the oxide
between the graphene and the gate electrode and d is the thickness of the oxide.
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density can be calculated from the LL filling as

n = eBν

h
, (3.2)

where ν is the LL filling factor. The absolute value of the lever arms can be obtained
as shown in Fig. 6.2 or Fig. 5.5. In these figures, the quantum Hall features at integer
LL filling (constant integer ν) can be used to scale the x-axis according to Eq.(3.2).

(a) (b)

Figure 3.6: Conversion of the gate voltages to n and D. (a) ρxx as a function of the
top and bottom gate voltages of a BLG device. The high resistance region is the CNL.
The dashed white lines show the direction of increasing n and D. (b) The same as (a)
but plotted as a function of n and D.

3.2.2 Thermal activation measurements

At high temperatures, semiconductors, insulators and also BLG possess a conduc-
tivity even when the chemical potential is in the gap due to the thermal activation of
charge carriers across the gap (∆) between the valence and conduction bands[261]. At
small temperatures, where the intrinsic charge carrier concentration is smaller than the
carrier concentration induced by impurities, the conduction is determined by the impu-
rities. The conduction at small temperatures occurs by the hopping of electrons through
localized states of impurities, which is called nearest neighbor hopping (NNH). At even
smaller temperatures, the conduction happens via electron-assisted hopping through
localized states far from each other, which is called variable-range hopping (VRH)[261].
These processes act as parallel conduction channels, and the temperature dependence
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of the conductivity can usually be well described with

σxx = ρ−1
1 e

− ∆
2kBT + ρ−1

2 e(− T1
T ) + ρ−1

3 e(− Tα
T )α

, (3.3)

where ρi are constant prefactors and Ti are phenomenological constants. The resistance
is plotted in Fig. 3.7: at large temperatures, the first term of Eq.(3.3) dominates, which
is the Arrhenius equation that corresponds to contributions from thermal activation of
the band gap (∆)8. At intermediate temperatures, the second term of Eq.(3.3) domi-
nates, when conduction happens through the NNH of carriers within the defect band.
The third term of Eq.(3.3) comes from VRH[262] and dominates at low temperatures.
α in VRH is less than 1 and it is expected to be α = 1/3 in two dimensions like in
BLG near the CNP[260, 263, 264].

At high temperatures, thermal activation dominates. As the thermal activation is
the main contribution to the conductance at high temperatures, the gap energy can be
determined from the T dependence of the resistivity at high temperatures by a linear
fit of 1/T as

ln(ρxx) ∝ ∆
2kBT

. (3.4)

(a) (b)

Figure 3.7: Simulated thermal activation of a gap. (a) Resistance as a function of the
temperature using the parameters of ρ1 = 0.01 Ω, ρ2 = 10 Ω and ρ3 = 100 Ω with
∆ = 50 meV, T1 = 29 K and T2 = 3 K for the blue and ∆ = 100 meV, T1 = 58 K and
T2 = 8 K for the red curves, respectively. (b) Arrhenius plot of resistance as a function
of 1/T .

8The activation energy is usually larger than the real gap due to the disorder-induced
localization[227].
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3.3 Pressure-dependent transport measurement

In layered materials, like a vdW heterostructure, the interlayer interactions play
an essential role in determining their properties. The strength of these interactions
depends vastly on the interlayer distance, thus the properties of layered materials can
be tuned by varying the interlayer distance[12]. Application of hydrostatic pressure
on a solid leads to compression, i.e. interlayer distance can be decreased by pressing
a layered material. As the constituting particles get closer to each other, the overlap
of the electron wavefunction increases, which leads to a change in the band structure.
Besides the decrease of the lattice constants, the pressure can induce a structural
phase transition. For example, with pressure, the NaCl crystal with face-centered cubic
structure can change to a primitive cubic lattice like that of CsCl[265]. In the field of
vdW materials, pressure is a very important experimental tuning knob for tuning the
strength of the proximity effect between the layers.

1

2

3

4
5

6

7

(a)

(b)

(c)

Figure 3.8: (a) Schematic view of the pressure cell. 1. CuBe upper screw. 2. WC push
rod. 3. WC piston backup. 4. NiCrAl/CuBe double-layered cell wall. 5. WC piston. 6.
Teflon cup. 7. CuBe plug. (b) Optical image of the cell. (c) Optical image of the sample
holder plug.

Pressure is usually applied with commercial pressure cells, however, to apply it on a
nanodevice and perform electrical measurements a specially designed cell is necessary.
The design of our pressure cell is described in Ref.[266] and its simplified schematic is
shown in Fig. 3.8. In short, it is a piston-cylinder pressure cell with a sample holder
plug with a PCB that allows us to bond the sample to connect it to the measurement
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instruments. Its small size, with its diameter of 25 mm (Fig. 3.8b), allows us to put it
in all of our cryostats to make low-temperature measurements.

The process of applying pressure is the following: after the device is fixed to the
PCB on the plug (7 in Fig. 3.8a), which is shown in Fig. 3.8c, the sample is bonded.
Then a Teflon cup (6 in Fig. 3.8a) is filled with a pressure mediating special inert
hydraulic oil9 and it is placed on the plug. This structure is placed in the pressure cell
as shown schematically in Fig. 3.8 and the cell is assembled. The cell is placed into a
hydraulic press and the piston is pressed with the help of a pushing rod (2 in Fig. 3.8a).
When the desired pressure is reached, the screw on the top is tightened which holds the
applied pressure in the cell. This procedure is done at room temperature. To change
the pressure applied to the sample, it has to be warmed up to room temperature.

9We use Daphne 7373 kerosene compound.



4. Chapter

Modeling graphene heterostructures

In this chapter, modeling of different heterostructures is presented including the
effect of pressure. Firstly, the effect of a transition metal dichalcogenide (TMD) on
BLG is modeled. Secondly, the calculation of the band structure of twisted double
bilayer graphene (TBDG) is discussed.

4.1 SOC in BLG/WSe2 heterostructures

Among the TMDs, the SOC in the valence band of WSe2 is one of the strongest[267],
and the induced SOC strength that is inherited in graphene is also one of the
largest[107]. The effect of WSe2 on the band structure of graphene is described in
Section 2.3. Here, the influence of the SOC on the electric field-induced gap and the
Landau levels is described.
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Figure 4.1: Band gap at the CNP in bilayer graphene with λR = 0 and different Ising-
type SOC strengths. The black line corresponds to the pristine BLG. The blue line
corresponds to a BLG/WSe2 heterostructure. And the red and green lines correspond
to a WSe2/BLG/WSe2 device.

The electric field opens a gap in BLG, which can be modified with SOC as illustrated
in Fig. 4.1. Without SOC in a pristine BLG, a gap opens and increases linearly with

58
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|u| (black line). In a BLG/WSe2 heterostructure, where λb
I ̸= 0, but λt

I = 0, the gap
opens if |u| > λb

I /2 (blue line). Otherwise, if |u| is smaller a correlated insulating phase
can form[268, 269]. In a WSe2/BLG/WSe2 device, depending on the twist angle, the
relative sign of the SOC strength can be the same or the opposite. If both are positive
(or negative), then a gap opens if |u| > |λb

I + λt
I|/2 (red line). On the other hand,

if their sign is the opposite, there is already a gap present at u = 0, which closes at
|u| = (|λb

I | − |λt
I|)/2 (green line). At larger |u|, a new gap opens similarly to the other

cases. This is experimentally studied in Chapter 6.

4.1.1 Landau levels in BLG

The SOC also modifies the Landau level (LL) spectrum in BLG. To calculate the
LL spectrum in a large out-of-plane magnetic field, I follow the footsteps of Ref. [270].
The γ3 hopping is neglected, which would introduce a small mixing of the LLs at
small magnetic fields[219]. The ladder operators are introduced as â = lB

2 (qx + iqy),
â† = lB

2 (qx − iqy), which can be written back to the original Hamiltonian in Eq.(2.10).
In the ladder operators, lB =

√
ℏ/e|B| is the magnetic length and qi = ki − e/ℏAi

is the canonical impulse with the vector potential Ai. In valley K, π =
√

2eBℏâ and
π† =

√
2eBℏâ†, which can be substituted in the Hamiltonian as

HK
BLG =


u v0

√
2eBℏâ† −v4

√
2eBℏâ† 0

v0
√

2eBℏâ u + ∆′ γ1 −v4
√

2eBℏâ†

−v4
√

2eBℏâ γ1 −u + ∆′ v0
√

2eBℏâ†

0 −v4
√

2eBℏâ v0
√

2eBℏâ −u

⊗ s0. (4.1)

In the K ′ valley, π = −
√

2eBℏâ† and π† = −
√

2eBℏâ and the Hamiltonian can be
written as

HK′

BLG =


u −v0

√
2eBℏâ v4

√
2eBℏâ 0

−v0
√

2eBℏâ† u + ∆′ γ1 v4
√

2eBℏâ

v4
√

2eBℏâ† γ1 −u + ∆′ −v0
√

2eBℏâ

0 v4
√

2eBℏâ† −v0
√

2eBℏâ† −u

⊗ s0. (4.2)

The magnetic field also leads to spin splitting, which introduces an additional term,
the Zeeman term HZ = EZsz in Eq.(2.43), where EZ = −µBB is the Zeeman energy
with the Bohr magneton µB. The eigenenergies Eξ,n,sz of H = HBLG + HSOC + HZ are
defined as

H |ξ, n, sz⟩ = Eξ,n,sz |ξ, n, sz⟩ , (4.3)

with the eigenstates of |ξ, n, sz⟩, where n = 0, 1, . . . is the orbital number. The single-
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particle LL energies can be obtained from the matrices derived from Eq.(4.3) in Ap-
pendix B.

BLG/WSe2 heterostructures

(a) (b) (c)
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Figure 4.2: Landau levels in BLG. (a) Schematic representation of the real-space local-
ization of the LL orbits. They can be represented with 3 quantum numbers: the valley
(+/−), the orbital number (n = 0, 1...) and the spin (↑ / ↓). The + orbits are localized
at the bottom and the − are localized at the top layer of the BLG. As the WSe2 is at
the bottom, the SOC only modifies the + orbit energies. The n = 1 LLs with the same
valley index are localized on the same layer as the n = 0 LLs (solid lines in b and c).
(b) and (c) Calculated LL energies as a function of the interlayer potential difference
(u) with (b) λI = 0 and (c) λI = 1.6 meV at B = 8 T. The values of the hopping
parameters are given in Section 2.1.2. The ν = ±3 crossing points are marked with a
red and a blue dot and are found at u = u∗

±3. The arrows with the letter p-s next to
them show how the LL energies change by increasing pressure i.e. increasing the λI in
(c). The LL filling factors are shown with black numbers between LLs.

If all the parameters except γ0 and γ1 are set to zero, the first 8 LLs (zeroth LLs)
are degenerate (spin, valley and n = 0, 1 orbital degeneracy) with zero energy (see
Eq.(2.87)). The other parameters lift this degeneracy. Since for the low-energy bands,
only A1 and B2 atoms (non-dimer sites) play a role, the layer and the pseudo-spin
(sublattice) degree of freedom become identical. Moreover, the lowest LLs from the
K valley (+) are localized on the bottom layer, while the lowest LLs with K ′ index
(-) are localized on the top layer, which is illustrated in Fig. 4.2a. As a result, the LL
energies of different valleys depend oppositely on the application of the electric field.
In Fig. 4.2b the LLs are shown if λI = 0 at B = 8 T. In this case, the LLs are spin split
due to the Zeeman term and also split in the orbital index due to γ4 and ∆′. A finite
u further splits these LLs and their energy is linear in u. In the figure, the LL filling
factors ν with numbers between the LLs are also shown. There are several crossings
observable between the LLs, from which the LL crossing points at ν = ±3 are marked
with red and blue dots. The position of these crossings without SOC remains at u = 0
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independently of the applied magnetic field. These crossings are interesting since their
position is unaffected by the electronic interactions[51] and their position is strongly
affected by the VZ interaction. This is illustrated in Fig. 4.2c by including λb

I = 1.6 meV
in a geometry shown in Fig. 4.2a. In this geometry, as the SOC has an effect only at the
bottom layer, it affects only the LLs with + index. Since the Ising-type SOC behaves
as an effective B-field, as we increase λI, LL energies of the bottom layer (indicated
by the solid lines in Fig. 4.2b) shift according to their spin polarization, as indicated
by the arrows with letter p-s next to them in the figure. The effect of λR is negligible
on these crossings, and only the Ising-type SOC has a measurable effect on the lowest
LLs[270].

As the SOC also modifies the LL spectrum, it allows the extraction of the Ising
term[50, 271, 272] in BLG/TMD heterostructures. For this, the magnetic field depen-
dence of the ν = ±3 crossings can be calculated as shown in Fig. 4.3a, which I also
measured on my devices and it is discussed in Chapter 6. At small magnetic fields,
the Ising-type SOC is stronger than the Zeeman splitting, and u∗

3 is negative. The LLs
with spin ↑ in K valley have larger energy than the LLs indexed with spin ↓ as op-
posed to the LLs in the K ′ valley (Fig. 4.3b). The external magnetic field, as increased,
compensates the SOC at 2gµBB ≈ λb

I , u∗
3 = u∗

−3 ≈ 0 as shown in Fig. 4.3c. At larger
B fields, u∗

3 > 0 as shown in Fig. 4.2c. By further increasing B, near 4gµBB ≈ λb
I

the slope changes in Fig. 4.3a and at this magnetic field, the LLs with spin ↑ in K

valley have the same energy as the LLs indexed with spin ↓. At larger magnetic fields,
these LLs change position and the LLs that cross at ν = ±3 have the same spin and
orbital number but different valleys as opposed to smaller magnetic fields. As shown in
Chapter 6, I have used these crossings to extract the pressure tuning of the Ising-type
SOC coupling strength[273].

WSe2/BLG/WSe2 heterostructures

In a TMD/BLG/TMD heterostructure, the LLs indexed with K are influenced by
the induced SOC from the bottom TMD, and the LLs indexed with K ′ depend on
the SOC induced from the top TMD. If the induced SOC is the opposite in the layers
(λb

I = −λt
I), the spectrum is very similar to the spectrum of a pristine BLG without

SOC. The ν = ±3 crossing points are at u∗
±3 = 0 and they are independent of B. On

the other hand, the positions of the other crossing points are different compared to
both the case of without SOC and in the case of induced SOC only at one layer.

When λt
I and λb

I have an opposite sign but their magnitudes are different, the u,
−u symmetry is lost, leading to non-zero ±u∗

3 crossings as shown in Fig. 4.4b with
λb

I = 1.2 meV and λt
I = −0.8 meV. In this case, u∗

±3 depend on B as shown with solid
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(a) (b) (c)

Figure 4.3: (a) u∗
±3 magnetic field dependence with λb

I = 1 meV (dashdotted lines)
and λb

I = 1.5 meV (solid lines). The u∗
±3 lines cross at 2gµBBcomp ≈ λI. (b) and (c)

Calculated LL energies as a function of the interlayer potential difference (u) with
λb

I = 1.5 meV at (b) B = 4 T and (c) at B = Bcomp = 6.188 T. The ν = ±3 crossing
points are marked with a red and a blue dot.

(a) (b) (c)

Figure 4.4: LLs in a TMD/BLG/TMD heterostructure. (a) and (b) Calculated LL
energies as a function of the interlayer potential difference (u) at B = 5 T with (a)
λb

I = −λt
I = 1 meV and (b) λb

I = 1.2 meV and λt
I = −0.8 meV. The ν = ±3 crossing

points are marked with a red and a blue dot and are found at u = u∗
±3. (c) Magnetic

field dependence of u∗
±3 with λb

I = λt
I = 1 meV (dashdotted lines) and λb

I = 1.2 meV
and λt

I = −0.8 meV (solid lines).

lines in Fig. 4.4c. Comparing this scenario with the B dependence of the crossings
in a BLG/TMD heterostructure, which is shown 4.3a, the tendency differs. In this
case, u∗

±3 are more or less constant with B with |u∗
3 − u∗

−3| ∼ |λb
I − λt

I| and near
4gµBB ≈ |λb

I − λt
I|/2 they change sign. u∗

±3 in the symmetric case of λb
I = λt

I, which
is shown with dashdotted lines in Fig. 4.4c, shows similar tendency as in a BLG/TMD
heterostructure, but there’s no crossing at 2gµBB ≈ |λb

I + λt
I|/2.

The magnetic field dependence of the other crossings can also be calculated. In
Fig. 4.5 and Fig. 4.6, the Landau level crossings are plotted, with SOC and without
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Figure 4.5: Landau level crossings at ν = 0 as a function of B with (a) λb
I = −λt

I =
−5.6 meV, (b) λb

I = −λt
I = −2 meV and (c) λb

I = λt
I = 0.

SOC, for ν = 0 and ν = ±1, respectively. Without SOC the crossings go to zero as
B → 0 as opposed to the case of λb

I = −λt
I ̸= 0. Comparing these figures with the

measurements discussed in Section 6.2, the experiments show similarities to the model:
the ν = 1 crossings show a similar tendency, so do the higher u∗

0 branches in the ν = 0
crossings. The discrepancy between the model, which is calculated in a single-particle
picture, and the experiment comes from the fact that in the model electron-electron
interactions are neglected [51].
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Figure 4.6: Landau level crossings at ν = ±1 as a function of B with (a) λb
I = −λt

I =
−5.6 meV, (b) λb

I = −λt
I = −2 meV and with (c) λb

I = λt
I = 0.
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4.1.2 Fermi surface of BLG/TMD heterostructures

In the previous section, I showed that the LL spectroscopy can be used to extract
λb

I from the LL crossings. Here, I show that from SdH oscillations, which is presented
in Section 2.5.2, λb

R can also be obtained from the difference of the Fermi surfaces
(dSF). From the period of the SdH oscillations, the spin-split Fermi surface S

(σ)
F can

be extracted.
To calculate S

(σ)
F , where σ =↑, ↓ indexes the spin split bands, I start from the

Hamiltonian of the BLG/TMD in Eq.(2.44). I calculate the dispersion relation Eσ(k)
and numerically integrate the Fermi function near the K valley to obtain S

(σ)
F as

S
(σ)
F =

∫∫
f(Eσ(k) − µ)dk2, (4.4)

where µ is the chemical potential and f(Ei −µ) is the Fermi-Dirac distribution defined
as

f(E − µ) = 1
1 + e(E−µ)/kBT

. (4.5)

The charge density n can be calculated similarly as

n = 1
2π2

∑
σ

∫∫
f(Eσ(k) − µ)dk2 = 1

2π2

∑
σ

S
(σ)
F , (4.6)

where the valley degeneracy is included with a factor 2.

(a) (b)

Figure 4.7: (a) Calculated Fermi surfaces of BLG/TMD heterostructure with λb
R =

10 meV. The black dashed line denotes the degenerated case when SF = π2n. (b)
Difference of the two spin split Fermi surface dSF as a function of n using λb

R = 10 meV
and λb

R = 20 meV.

In the calculations, S
(σ)
F and n are calculated as a function of µ. Then µ is converted

to n. The calculated Fermi surface as a function of the charge density is shown in
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Fig. 4.7a using λb
R = 10 meV. The average of the two spin split SF is equal to the

degenerate case, when λb
R = 0, which is shown in black dashed lines and equals SF =

π2n. To visualize the splitting, the difference of the spin split Fermi surfaces dSF =
|S(1)

F − S
(2)
F | is shown in Fig. 4.7b for λb

R = 10 meV and λb
R = 20 meV: the larger λb

R, the
larger the splitting. This is fitted on my experiments on BLG/WSe2 heterostructures
in Section 6.1.5.

4.2 Twisted double bilayer graphene

Vint = 0
u = 0

    Vint ≠ 0
  u = 0

    Vint ≠ 0
u ≠ 0

(a) (b) (c)

Figure 4.8: Illustration of the band structure of TDBG in a corner of the Brillouin
zone: (a) No coupling between the top and bottom BLGs which are depicted with red
and blue colors respectively, (b) a small coupling is introduced between the two BLGs
which hybridizes the bands and leads to avoided crossings, (c) an external electric field
can open a band gap at the Dirac points.

The twisted double bilayer graphene (TDBG) consists of two BLGs with a rotation
angle of ϑ between them. The rotation between the top and bottom BLG lattices,
illustrated in Fig. 5.1b, leads also to a rotation between their Brillouin-zones (BZ) as
it was shown in Section 2.2.1. These, along with the simplified BLG spectrum of each
lattice, are presented in Fig. 4.8a with red and blue for the top and bottom bilayer,
respectively. For small rotation angles, the spectrum of the bottom and top bilayers
overlap. The coupling Vint between the closest monolayers of the BLGs hybridizes the
bands as shown in Fig. 4.8b. Moreover, at magic twist angles the low-energy moiré
bands become flat [69, 274–276] due to the strong interlayer coupling driven avoided
crossings. Unlike TBG, in TDBG the electric field opens a bandgap as illustrated in
Fig. 4.8c.

To model the TDBG, the BM model is applied, which is derived in Section 2.2.3. It
is assumed that only the nearest graphene layers have non-negligible tunneling matrix
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elements between them. This is the case in the lowest order when only nearest neighbor
hoppings are taken into account between the layers. This can be used to construct a
continuum Hamiltonian from 2 × 2 blocks encoding the BLG structure as these blocks
are 4×4 matrices due to the two sublattices. In Eq.(2.36) the diagonal terms are given
by the Hamiltonian of BLG defined in Eq.(2.10). The coordinate system is chosen
such that, the top layer is rotated with ϑ/2 counter-clockwise and the bottom layer is
rotated with −ϑ/2, i.e. π → πe±iϑ/2. In this representation Eq.(2.10) for the top layer
is modified to

Ht(q, ϑ) =



u
2 v0π

†e−iϑ/2 −v4π
†e−iϑ/2 v3πeiϑ/2

v0πeiϑ/2 u
2 + ∆′ γ1 −v4π

†e−iϑ/2

−v4πeiϑ/2 γ1 −u
2 + ∆′ v0π

†e−iϑ/2

v3π
†e−iϑ/2 −v4πeiϑ/2 v0πeiϑ/2 −u

2

 (4.7)

and the Hamiltonian for the bottom layer is given as Hb(k, ϑ) = Ht(q, −ϑ), where q
is measured from the Dirac point of the top layer.

The BM model, with the Hamiltonian given in Eq.(2.36), is a tripod model in a
sense that it connects a q-point on the top layer, which is measured from the Dirac
points, with three other q + qi-points of the bottom layer in the k-space, where qi

are defined in Eq.(2.39), i.e. the Hamiltonian of the BM model is constructed in basis
of {|q, t⟩ , |q + q0, b⟩ , |q + q+, b⟩ |q + q−, b⟩}, where t and b stand for top and bottom
layer and qis are defined in Eq.(2.39). In BM model, there is tunneling only between the
neighboring layers and in a matrix notation in the basis defined here the Hamiltonian
can be written as

H(q) =


Ht(q, ϑ) T0 T+ T−

T †
0 Hb(q + q0, ϑ) 0 0

T †
+ 0 Hb(q + q+, ϑ) 0

T †
− 0 0 Hb(q + q−, ϑ)

 , (4.8)

where the tunneling matrices between the top and bottom bilayer graphene are defined
as

Ti =
 0 0

Tqi
0

 , (4.9)

where Ti is acting only between the upper layer of the BLG and the bottom layer of
the top BLG and Tqi

is defined in Eq.(2.38).

To calculate the band structure more conveniently, the coordinate system is shifted
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to the center of the mBZ (ΓM -point) by introducing

qt = b(s)
1 + 2b(s)

2
3 = 8π

3a
sin(ϑ/2)

(√
3/2, 1/2

)
, (4.10)

qb = 2b(s)
1 + b(s)

2
3 = 8π

3a
sin(ϑ/2)

(√
3/2, −1/2

)

vectors in the k-space, where the reciprocal lattice vectors of the moiré lattice (b(s)
i )

are defined in Eq.(2.16) and the shifting is q = q′ + qt, where q′ is measured from the
Dirac points of the top layer. The direction of qt,b is shown in Fig. 4.9a. These vectors
point to the KM and K ′

M points in the mBZ. In this notation, Eq.(4.8) can be rewritten
as

H(q) =


Ht(q − qt, ϑ) T0 T+ T−

T †
0 Hb(q − qb, ϑ) 0 0

T †
+ 0 Hb

(
q − (qb + b(s)

2 ), ϑ
)

0
T †

− 0 0 Hb
(
q − (qb − b(s)

1 ), ϑ
)

 .

(4.11)
Eq.(4.11) describes the matrix elements that couple to the top layer at q − qt.

However, the other points in the bottom layer couple other k-points of the top layer
resulting in an infinitely large Hamiltonian, as illustrated graphically in Fig. 4.9a with
red and blue points of the top and bottom layer, which are connected with the red,
blue and black lines.To visualize the construction of the full Hamiltonian, I introduce the basis of
|(h, k), t/b⟩ = |q + hb(s)

1 + kb(s)
2 , top/bottom⟩, which goes through all the k = q +

hb(s)
1 + kb(s)

2 -points which are coupled to q with integers of h and k. In this basis, the
BM model Hamiltonian in the second nearest neighbors approximation1 in the k-space
takes the form of

|(0, 0), t⟩ |(0, −1), t⟩ |(1, 0), t⟩ |(1, 1), t⟩ |(0, 1), t⟩ |(−1, 0), t⟩ |(−1, −1), t⟩ |(0, 0), b⟩ |(0, 1), b⟩ |(−1, 0), b⟩
Ht 0 0 0 0 0 0 T0 T+ T− ⟨(0, 0), t|
0 Ht 0 0 0 0 0 T+ 0 0 ⟨(0, −1), t|
0 0 Ht 0 0 0 0 T− 0 0 ⟨(1, 0), t|
0 0 0 Ht 0 0 0 0 T− 0 ⟨(1, 1), t|
0 0 0 0 Ht 0 0 0 T0 0 ⟨(0, 1), t|
0 0 0 0 0 Ht 0 0 0 T0 ⟨(−1, 0), t|
0 0 0 0 0 0 Ht 0 0 T+ ⟨(−1, −1), t|

T
†
0 T

†
+ T

†
− 0 0 0 0 Hb 0 0 ⟨(0, 0), b|

T
†
+ 0 0 T

†
− T

†
0 0 0 0 Hb 0 ⟨(0, 1), b|

T
†
− 0 0 0 0 T

†
0 T

†
+ 0 0 Hb ⟨(−1, 0), b|

where the argument of the diagonal terms is q − qb/t + hb(s)
1 + kb(s)

2 . The full Hamil-
tonian is constructed by considering more and more points that are connected via the
Kronecker deltas in Eq.(2.37) as visualized in Fig. 4.9a. As the full Hamiltonian is in-
finitely large, during the calculation a cut-off momenta is defined such that the change
of the low-energy levels is negligible by further increasing the size.

1In a sense, that |(0, 0), t⟩ is coupled to three |(h, k), b⟩, which are coupled to two more |(h, k), t⟩
beside |(0, 0), t⟩.
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(a) (b)

Figure 4.9: (a) Illustration of the BM model showing the moiré reciprocal basis vectors
and qt,b. The mBZ is shown with black dashed lines. The red and blue dots and the
colored lines are the same as in Fig. 2.7. (b) mBZ showing the high-symmetry points.
The blue dashed line shows the path in reciprocal space that is used in the figures
shown later.

I implemented this model using Eq.(4.11) to construct the Hamiltonian and used it
to calculate the band structure of TDBG. In the calculations I performed, the chosen
momentum cut-off was the radius of 4|b(s)

1 | to obtain converged results. This implied
Hamiltonian matrices with the size of 648 × 648.

During the calculation, the used parameter set for the interlayer matrix elements
was calculated in Ref. [73] with ab initio EXX+RPA calculations with equilibrium
distances, and the average of the sum over the three symmetric stacking configurations
was taken to obtain

ω = ωAB′ = ωBA′ ≃ HB,A′(K)
3 , (4.12)

ω′ = ωAA′ = ωBB′ ≃ HA,A′(K)
3 .

Using these values, the tunneling matrix elements can be written as

Tq0 =
 ω′ ω

ω ω′

 , Tq± = eib′
1τ

 ω′ ωe∓i2π/3

ωe±i2π/3 ω′

 . (4.13)

The γ1 hopping element is related to ω by γ1 = 3ω. They also calculated the pressure
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dependence of ω and ω′ as

ω(P ) = 0.0546 +
√

0.0044 + 0.0031 · P , (4.14)

ω′(P ) = 0.0561 +
√

0.0018 + 0.0018 · P ,

where ω is in eV and P is in GPa.
The calculated band structure along the blue line in Fig. 4.9b for the full model

is shown in Fig. 4.10 at different angles at p = 0 GPa with red dotted lines and a
minimal model without including the remote hopping terms (γ3 and γ4) are plotted
with black lines. Without the remote hopping terms the bandwidth of the bands is
smaller, electron-hole symmetric and the effect of trigonal warping is not present. At
small angles, the two layers are strongly coupled, similar to TBG, and the bands are
strongly hybridized. At the magic angle ϑm ≈ 1.05° (Fig. 4.10b) the bandwidth of the
bands near the Fermi level is the smallest as a function of ϑ and almost completely
flat in the minimal model. These bands are separated from the other dispersive bands
with a gap ∆±ns . At large angles (Fig. 4.10c), the layers are decoupled and the original
parabolic dispersion of BLG is recovered near the KM points, which is folded into the
mBZ.

(a) (b) (c)

Figure 4.10: Band structure of twisted double bilayer graphene at p = 0 GPa at (a)
ϑ = 0.8°, (b) ϑ = 1.05° and (c) ϑ = 3°. The band structure of not including the remote
hopping terms (γ3 and γ4) is in black, and the full model including the remote hopping
terms is plotted in red dotted lines.

In Ref.[277] we investigated a TDBG with a twist angle of ϑ = 1.067°. Applying
the model at this twist angle, the calculated band structure along with the DOS is
shown in Fig. 4.11. This ϑ is close to the magic angle and the bands near the Fermi
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level are very narrow with a large DOS as shown in Fig. 4.11a at p = 0 GPa. These
narrow bands are separated from the dispersive bands (colored black) with a gap of
∆±ns . In the transport measurements shown in Section 5.2, large resistance is expected
when the Fermi energy is in the gapped regions of the band structure. The application
of electric field is illustrated in Fig. 4.11b by setting the interlayer potential difference
u = 12 meV. The electric field opens a band gap ∆CNP at the CNP similarly as in
BLG but at the same time, it decreases and eventually closes the gaps ∆±ns . Overall,
the band structure calculations are in agreement with the measurements presented in
Fig. 5.3a.

p=0
u=0

u=0

p=0
(a)

(c) (d)

(b)

CNP

Figure 4.11: Band structure of twisted double bilayer graphene at ϑ = 1.067° at (a)
p = 0 GPa and u = 0, (b) p = 0 GPa and u = 12 meV, (c) p = 2 GPa and u = 0 and
(d) p = 2 GPa and u = 12 meV. The gaps separating the flat bands are indicated with
∆±ns and the electric field opened band gap is shown with ∆CNP.

The pressure tuning of the band structure is done by varying ω and ω′ according
to Eq.(4.14). These parameters increased by ≈ 30% at p = 2 GPa from their value
at p = 0 GPa while the interlayer distance decreased by ≈ 5%. The pressure has a
drastic effect on the band structure as shown in Fig. 4.11c. The moiré gaps ∆±ns are
completely closed at p = 2 GPa, and the narrow bands are no longer separated from
the other bands and slightly narrow down. The application of electric field is similar
to p = 0 GPa at p = 2 GPa as it opens a band gap at the CNP.

From the band structure calculations, I also calculated the pressure and electric
field dependence of the gaps in Ref.[277], which are shown in chapter 5 along with the
measured values.



5. Chapter

Tailoring the band structure of twisted
double bilayer graphene with pressure

Twisted two-dimensional structures open new possibilities in band structure engi-
neering. At magic twist angles, flat bands emerge, as discussed in Section 2.2. Twisted
double bilayer graphene (TDBG), which consists of two Bernal stacked bilayer graphene
(BLG) crystals with a rotation angle of ϑ between them (depicted in Fig. 5.1b.), offer
a versatile platform where an external electric field can be used to control the band
structure via tuning the interlayer potential. Recent experimental [278–286] and the-
oretical [73, 287–292] studies showed the presence of correlated insulator states and
topologically non-trivial phases in TDBG. The detailed band structure calculation of
TDBG with a continuum model is given in Section 4.2.

Since the reconstruction of the band structure and the appearance of the correlated
phases depend on the interactions between the layers, these are extremely sensitive
to the interlayer distance. Therefore, tuning the interlayer distance in these structures
is of central interest. This can be achieved by applying external pressure (p) as dis-
cussed in Section 3.3. In order to understand the influence of pressure on correlated
phases in TDBG, the first step is to study the pressure dependence of the main pa-
rameters of the band structure in the single-particle picture. In this chapter, tuning of
the band structure of TDBG is investigated experimentally close to the magic angle
(1.05°) by applying hydrostatic pressure. Using bias spectroscopy and thermal activa-
tion measurements a strong modulation of the single-particle band gaps of the system
is demonstrated. By applying p = 2 GPa, the moiré gaps can be fully closed. These
findings agree well with the band-structure calculations presented in Section 4.2. More-
over, the measurements presented in this chapter indicate that pressure can lead to a
topologically non-trivial gap at finite magnetic fields at the charge neutrality point and
weaken the correlations.

71
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u = 0 u ≠ 0
DOS

(b)

(a)

DOS

BW

E(c) (d) E
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d(p)

ϑ=1.067°

Δ   (p)ns Δ   (p)ns

Δ   (p)-ns
Δ   (p)-ns

Δ     (p)CNP

Figure 5.1: Properties of the twisted double bilayer graphene device. (a) Schematic of
the TDBG (black lattice) with a bottom graphite gate (orange) isolated by a hBN layer
(light blue) and a top metallic gate (gray) isolated by a hBN layer and an AlOx layer
(blue). The sample is contacted by edge contacts (yellow). The red arrows represent
the pressure p, which modifies the distance between the layers. (b) Illustration of the
twisted double bilayer structure. The purple arrow shows the direction of the transverse
displacement field (D), ϑ is the twist angle and d is the distance between the graphene
layers which is tuned with the pressure. (c) and (d) Schematic pictures of the DOS in
the vicinity of the flat band in magic-angle TDBG without and with an electric field,
respectively. The external electric field splits the degenerate flat bands and opens a
gap ∆CNP at the charge neutrality point. ∆ns and ∆−ns are the band gaps separating
the flat bands from the conduction and valence bands. These gaps are tunable with
external pressure p.

5.1 TDBG heterostructure

The rotation between the top and bottom BLG lattices, illustrated in Fig. 5.1b,
leads also to a rotation between their Brillouin zones (BZ). Near ϑm the bands are
very narrow near the CNP and these bands are separated from the dispersive bands as
illustrated with the DOS schematically in Fig. 5.1c. The flat bands (red and blue) have
a small bandwidth (BW) and are separated from the dispersive conduction bands by
a gap ∆ns and from the valence bands by ∆−ns . Here ns is the carrier density required
to fill a single moiré band, either red or blue, with 4-fold degeneracy corresponding to
four holes or electrons per superlattice unit cell in real space due to the spin and valley
degeneracy. The indices of the gaps ∆±ns signify that in order to fill either flat band
and move the Fermi level into either gap, the carrier density must be ±ns. In TDBG
the external perpendicular displacement field opens a band gap ∆CNP and splits the
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flat bands into two fourfold degenerate bands and also the gaps separating them from
the dispersive bands ∆ns and ∆−ns are decreased as illustrated in Fig. 5.1d.

5.1.1 Sample fabrication

The van der Waals heterostructure was fabricated using the dry-transfer
technique[293] in ETH Zürich by Peter Rickhaus and Fokko de Vries. Half of a single
BLG is picked up with the top hBN layer (∼ 32 nm), whereafter the remaining BLG
is rotated by 1° and subsequently picked up. Then the bottom hBN (∼ 54 nm) and
graphite layer, which serves as a global bottom gate, are added. The device is fabri-
cated in a cleanroom facility, using standard electron beam lithography techniques to
define the different components and shapes. Side contacts to the twisted double bi-
layer graphene (TDBG) are created by reactive ion etching and evaporation of 10 nm
of chromium (Cr) and 50 nm of gold (Au). After this the first top gate layer (blue in
Fig. 5.2b) is added, consisting of 10/70 nm of Cr/Au, and the device boundaries are
defined by reactive ion etching (red in Fig. 5.2b). Finally, atomic layer deposition is
used to create a 30 nm aluminum oxide dielectric layer, which isolates the second top
gate layer of 10/110 nm Cr/Au (grey transparent in Fig. 5.2b) from the device and
first top gate layer. The two top gate layers are used as one in the measurements by
adjusting their potential such that the density in the TDBG is constant throughout
the device.

V

TG

SV

V

A(b)(a)

Figure 5.2: (a) Optical microscope image of the measured device. The scale bar is 2 µm
(b) Schematic device geometry showing the four-terminal measurement setup.

5.1.2 The pressure-dependence of the lever arms

The characterization of the sample involves the determination of the lever arms,
which was done as described in Section 3.2.1 from the gate dependence of the resistance
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(Fig. 5.3) and from the quantum oscillations in magnetoconductance measurements
(Fig. 5.5). The magnetoresistance of TDBG has a richer texture compared to SLG as
shown in Fig. 5.5 as a function of n and B. Beside the LLs that starts from n = 0, LLs
emerge also from ns and ±2ns following a Diophantine equation[16, 17, 59] of

n = νeB

h
+ sns, (5.1)

where ν is the LL filling factor and s = 0, ±1, ±2 is an integer that corresponds to the
Bloch band filling index[294]. These features are similar at 1 GPa and 2 GPa, and the
secondary fans originate from the same density of ns.

The lever arms along with the residual charge density are shown in Table 5.1. The
pressure dependence of the lever arms originates from the compression of the dielectrics
and pressure-dependent dielectric constant of the hBN as already reported in Refs. [295,
296]. The extracted lever arms within the margin of error were the same at the same
pressures at different cooldowns.

P (GPa) 0 1 2
αTG ( 1015

Vm2 ) 3.38(5) 3.75(5) 3.84(5)
αBG ( 1015

Vm2 ) 4.54(6) 4.94(7) 4.91(8)
n0 (1015/m) 2.3(2) 2.5(2) 2.4(2)

D0/ϵ0 (V/nm) 0.016(5) 0.018(5) 0.017(5)

Table 5.1: The extracted lever arms and residual charge density and offset displacement
field at different pressures.

5.2 Gate and pressure dependence of the resistance

Transport measurements were carried out in a four-terminal and two-terminal ge-
ometry with typical AC voltage excitation of 0.1 mV using a standard lock-in technique
at 177.13 Hz. The measurement geometry is depicted in Fig. 5.2b. Four-probe resistance
(Rxx) measurement as a function of top and bottom gate voltages is plotted as a func-
tion of electron density n and displacement field D at temperature T = 1.5 K in Fig. 5.3.
Lighter-colored regions of higher resistance correspond to conditions when the Fermi
energy is in a gap. If the flat bands are completely filled with electrons or holes at
n = ±ns the device shows single-particle gaps which are the most prominent at D = 0
and start to fade away for larger displacement fields. Moreover, at the charge neutrality
point (CNP, n = 0), a gap opens by increasing |D| as demonstrated by the increase of
the resistance with the increase of |D| in Fig. 5.3a. This behavior is explained by the
band structure calculations in Section 4.2.
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(a) (b) (c)

Figure 5.3: Four-probe resistance of the TDBG as a function of the charge density (n)
and electric displacement field (D) measured in (a) at ambient pressure p, in (b) at
p = 1 GPa and in (b) at p = 2 GPa. Besides the charge neutrality point, there are two
other high-resistance regions at ±ns, when the flat bands are completely filled. These
regions fade away as the pressure is increased. The white arrows show the position of
the emerging correlated phases at half-filling in panel (a).

p=0
u=0

u=0

(a) (b)

Figure 5.4: Band structure of twisted double bilayer graphene at ϑ = 1.067° at u = 0
(a) p = 0 GPa and (b) p = 2 GPa . The gaps separating the flat bands are indicated
with ∆±ns . The flat bands are highlighted with red and blue curves. Near the band
structure, the calculated density of states is also shown.

After the measurements at ambient pressure, we applied hydrostatic pressure, which
is detailed in Section 3.3, and Rxx was remeasured as a function of the gate voltages. We
applied 1 GPa and 2 GPa pressure, and the results are is shown in Fig. 5.3b at p = 1 GPa
and in Fig. 5.3c at p = 2 GPa. The features are similar to p = 0 GPa, except that the
resistance values at n = ±ns are significantly smaller than in Fig. 5.3a. For example,
along n = −ns the resistance decreased by 70% at p = 2 GPa. To understand the origin
of this change, the evolution of the band structure using the pressure dependence of
the interlayer coupling parameters was calculated, which is detailed in Section 4.2. At
p = 0 GPa, the moiré band gaps ∆±ns are finite as shown in Fig. 5.4a. As the applied
pressure is increased in numerical calculations, the moiré gaps decrease and then fully
close with pressure, as shown at p = 2 GPa in Fig. 5.4b, in agreement with the observed
decrease of the resistance. Moreover, in Fig. 5.3a there’s a sign of local resistance peaks
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at half filling (marked with white arrows) which are attributed to emerging correlated
phases, which disappears at p = 2 GPa (see Fig. 5.3b and Section 5.5.2 for more details),
similarly to what was observed in magic-angle TBG[37, 72, 297].

(a)

(b)

(c)

p = 2 GPa

p = 1 GPa

p = 0 GPa

Figure 5.5: Magnetic oscillation measurements of the four-terminal conductance G. (a),
(b), (c) show dG/dn versus n and B at p = 0 GPa, 1 GPa and 2 GPa respectively. The
white dotted lines are guides to the eye and follow the filled LLs with the filling factor
of ν = ±4, ±8 . . . Beside the LLs that starts from n = 0, there are secondary fans,
that start from n = ±ns following Eq.(5.1).
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5.3 Acquiring the twist angle and its pressure de-
pendence

There is a density-independent oscillation in a magnetic field which also depends on
the superlattice size: at certain magnetic fields, the magnetic length is commensurable
with the lattice periodicity which results in the recovery of the translation symmetry
thus the electron feels effectively zero magnetic field. This results in an oscillation in
the resistance called Brown-Zak oscillation[298, 299]. A common and reliable method
to determine the twist angle (ϑ) in superlattice structures such as the TDBG via
transport measurements is to calculate it from the Brown-Zak oscillations. It can be
calculated using that the Brown-Zak oscillations have maxima in the conductance at
ϕ = BAm = ϕ0

q
, where ϕ0 = h/e is the flux quantum, q is an integer number and Am

is the area of the superlattice unit cell which is given by Eq.(2.17).

(a) (b)

Figure 5.6: Brown-Zak oscillations. (a) 2D color map of dG/dB versus n/ns and Φ0/Φ
at D = 0 and at ambient pressure. (b) 2D color map of dG/dB versus n/ns and
Φ0/Φ at D = 0 under 2 GPa pressure. On the figures, the oscillating pattern is well
observable and their periodicity is the same. The dashed lines are a guide to the eye
for the oscillations.

Brown-Zak oscillation measurements are shown in Fig. 5.6 at p = 0 GPa and at
p = 2 GPa, where the oscillation is periodic in Φ0/Φ. I determined the twist angle
(ϑ = 1.067°±0.003°) by fitting Am in the Brown-Zak oscillations as a function of Φ0/Φ.
At 2 GPa I found that the determined twist angle is identical to ϑ at p = 0 GPa within
the uncertainty of the measurements, which indicate that the pressure doesn’t change
the twist angle.

For consistency check, the twist angle is also determined from the position of the
secondary peaks of the resistance at ±ns. As ns is ns = 4/Am, ϑ can be extracted
directly from ns. Beside the value of ϑ, its inhomogeneity is also estimated from the
position and width of the resistance peaks at n = ±ns in Fig. 5.3 at different pressures.
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These varied in a similar range: at p = 0 GPa ϑ is between 1.06° and 1.09°, at p =
1 GPa ϑ is between 1.06° and 1.1° and at p = 2 GPa ϑ is between 1.05° and 1.08°.
These values coincide with the values obtained from the BZ oscillations. In regions
containing substantial twist angle inhomogeneity, this inhomogeneity could result in
smaller measured gap values, which are discussed in the next section, but it doesn’t
change the results qualitatively.

5.4 Band gap engineering of TDBG with pressure

To study quantitatively the effect of pressure on the band structure and to under-
stand the decrease of the resistance at ±ns in Section 5.2, I made thermal activation
measurements and bias spectroscopy. From these measurements, I determined the moiré
band gaps at different displacement fields and pressures. I also compared them to my
numerical calculations described in Section 4.2.

5.4.1 Thermal activation measurements

When the Fermi level is in the gap, the resistance temperature (T ) dependence is
given by the Arrhenius equation

Rxx ∝ e
∆

2kBT , (5.2)

where kB is the Boltzmann constant and ∆ is the gap energy[260, 262, 263]. To make
thermal activation measurements, we measured the four-terminal resistance at a fixed
D in a small range of n near the gapped regions as a function of the temperature (T ).

A typical activation measurement is shown in Fig. 5.8a, i.e. a resistance map as
a function of n and T . The resistance decreases with increasing temperature due to
thermal activation over the gap. To determine the gap size, I extract the resistance
maximum for each temperature value, Rxx(T ). Then the gap value was extracted from
the Arrhenius plot, where the logarithm of Rxx(T ) was plotted as a function of T −1 (see
Fig. 5.8b). The linear region at high temperature (low T−1) is used to extract the gap
energies by Eq.(5.2). The slope of the linear fit (black line) provided the gap values.

5.4.2 Bias spectroscopy

The gap energies at the CNP are also estimated with bias spectroscopy measure-
ments. For this, two-terminal resistance of the device with lock-in technique at low
frequency was measured while a DC voltage bias (VB) was applied to the sample. If
a voltage higher or equal to the gap is applied, the gap as a barrier to transport is
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(a) (b)

Figure 5.7: Bias measurements. (a) The resistance versus n and the bias voltage (VB)
at D = −0.3 V/nm. (b) Line-cut from (a) at n = 0 and n = −3 · 1011 cm−2.

cancelled and conduction increases drastically. I performed bias measurements over a
small range of n at fixed D (see Fig. 5.7a). First the maximum resistance (Rmax) was
determined (occurring in Fig. 5.7a at n = 0 and VB = 0). I defined the gap value
as the difference of the points VB± where the resistance drops to 15% of the maxi-
mum resistance value, also taking into account a background value. The background
Rgapless is determined at a different density value, where the resistance R is virtually
independent of VB. In other words, I approximated the gap energy with e|VB| where
VB = (VB+ + VB-)/2 with R(±VB±) = Rgapless + 0.15(Rmax − Rgapless) as it is shown in
Fig. 5.7b.

5.4.3 Comparison between theory and experiments

The gap energies were extracted with the methods described in the previous sec-
tions, at several D points along the three dashed lines shown in Fig. 5.8c, which are
denoted as ±ns and CNP. These data are shown in Fig. 5.8d at p = 0 GPa, p = 1 GPa
and p = 2 GPa with black, red and blue colors, respectively. The middle panel presents
the evolution of the gap with D at the CNP (∆CNP). The system is not gapped at
D = 0 and a gap opens at D/ϵ0 ≈ 0.2 V/nm where ϵ0 is the vacuum permittivity. The
top panel shows the D dependence of the moiré gap at the electron side. A non-zero
gap is present at D = 0, which decreases with |D| until it closes at |D|/ϵ0 ≈ 0.4 V/nm.
The bottom panel summarizes the behaviour of the gap at −ns (∆−ns). It behaves
similarly to ∆ns as it is finite at zero displacement field and decreases with |D|, but
it closes at a smaller displacement field (|D|/ϵ0 ≈ 0.3 V/nm). The results at ambient
pressure are in accordance with the previous findings[73, 278, 280, 284, 288]. The mea-
surement results obtained at a pressure of p = 1 GPa and p = 2 GPa are shown in the
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(a)

(b)

(c)

(d)

Figure 5.8: Thermal activation measurements of band gaps and comparison to the
theoretical results. (a) A typical resistance map measured at D/ϵ0 = 0.375 V/nm and
p = 0 GPa near n = 0 as a function of the temperature T and charge density n.
At every measured temperature the highest resistance value was taken. (b) R peaks
extracted from panel (a) as a function of 1/T . The black line is the fit from which the
gap values were obtained according to the Arrhenius equation. (c) The same n-D map
of the resistance as Fig. 5.3a showing the lines along which gap values were estimated
for several D values in panel (d) using similar thermal activation measurements as
presented in panel (b). (d) The measured gaps with respect to D. The different colors
show the gaps at different pressures. The gaps obtained from different methods are
shown with different markers: the squares and diamonds show gaps obtained from four-
probe and two-probe thermal activation measurements, respectively, and the circles are
gaps obtained from bias measurements.

same plots with red and blue color, respectively. At finite pressure, ∆CNP behaves sim-
ilarly to p = 0 GPa: the gap opens around the same displacement field (middle panel).
However, for ∆±ns the displacement field dependence strongly deviates from results at
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ambient pressure. At 1 GPa (red symbol) ∆ns is smaller than at p = 0 GPa by a factor
of 4. On the other hand, at 2 GPa (blue symbol) ∆ns is closed at D = 0 and opens at
finite D. The ∆−ns data at p = 1 GPa and p = 2 GPa are similar to each other: they
exhibit a peak at finite |D| before decaying but they are strongly reduced compared to
the p = 0 GPa values.

I note that the gap energies remained approximately the same at the same hy-
drostatic pressures during different cooldowns and pressurization cycles. Part of the
thermal activation measurements was confirmed at 2 GPa and 1 GPa using bias spec-
troscopy shown by circle symbols (for details see the previous subsection). These results
are generally consistent with the thermal activation data.
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Figure 5.9: Comparison of the band gap of TDBG between the measurement and the
model. The displacement field was calculated with ϵBLG = 5. The markers are the same
gap values plotted in Fig 5.8, extracted from the thermal activation measurements.
Whereas, the solid lines are theoretically calculated single-particle gaps.

A good qualitative understanding of the pressure dependence of the measured gaps
can be obtained by comparing them to the theoretical calculations shown in Fig. 5.9
with solid lines. In these calculations, as it was described in Section 4.2, the electron-
electron interactions and the quantum capacitance were neglected. The band gaps as a
function of the interlayer potential difference (u), which is proportional to the displace-
ment field, are plotted in Fig. 4.2e. The gaps in the measurements show qualitatively
the same dependence on the displacement field as our calculation and the measured
gap values are also comparable to the calculated ones. In the calculations, for ∆ns , the
gap values at ambient pressure and at p = 1 GPa decrease as a function of u, the latter
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being smaller than the former. Furthermore, the p = 1 GPa gap closes for smaller u. At
p = 2 GPa the gap opens with u and closes at a higher interlayer potential difference.
This tendency is similar to the experimental results. However, the theory suggests a
faster opening of the gap at 2 GPa compared to the experiment. For the hole sides, at
ambient pressure, a finite gap is present in the calculations, which closes by increasing
u. In contrast, the gap is absent both for p = 1 GPa and p = 2GPa for all interlayer
potential differences. These tendencies are qualitatively the same as observed in the
experiments where only small gaps are seen at large pressure. Altogether, the mea-
sured spectrum is in good agreement with the theoretical expectations considering the
simplicity of the model.

In order to compare the interlayer potential to the displacement fields applied in the
experiment, I used Eq.(2.11) with the relative dielectric constant of bilayer graphene
of ϵBLG = 6 ± 2[300, 301]. Using ϵBLG = 5 gives a relatively good agreement for the
gap at the CNP, and less good for the moiré gaps (see Fig. 5.9). I emphasize that as
a simplification I used equal potential drop between all four layers in the calculations.
However, the potential drop between the layers can be different originating from crys-
tal fields[302] and the different layer distances and dielectric constants. Moreover, I
neglected all quantum capacitance corrections, and most importantly all correlation
effects in the calculations (see section 4.2).

5.5 Effect of magnetic field

In a weak out-of-plane magnetic field, the band energy can be expressed as

ϵN,ξ,sz(k, B) = ϵN,ξ(k) + µBgsszB + mN,ξ(k)B, (5.3)

where the second term is the Zeeman energy and the third term is the orbital Zeeman
energy. Here, N is the band index, gs is the spin g-factor and mN,ξ(k) is the orbital
magnetization[285, 303, 304]. If an insulating state is spin or valley polarized, and the
magnetic field enhances the Zeeman splittings, the magnetic field increases the band
gap. The last two terms can be combined as gµBB, where g is the effective g-factor.
In the case of in-plane magnetic field B∥, the third term is absent and B∥ has an effect
only on the spin-polarized states (then g = gs/2).

The out-of-plane magnetic field dependence of moiré band gaps is shown in Fig 5.10.
∆−ns increases with B at D = 0 for both p = 0 GPa and p = 2 GPa (shown in panel
a), and from the increase, the effective g-factor is larger than 4. The same tendency is
visible for ∆ns at 2 GPa and at D = 0, but at p = 0 GPa ∆ns seems independent of B

in a limited magnetic field range as depicted in panel b. Both ∆±ns are valley polarized
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(a) (b) (c)

Figure 5.10: Out-of-plane magnetic field dependence of the band gaps. (a) ∆−ns versus
B at D = 0 at p = 0 GPa and at p = 2 GPa. From the fit of the blue dashed line,
g(p = 2 GPa) = 6±2. (b) ∆ns versus B at D = 0 at p = 0 GPa and at p = 2 GPa. From
the fit of the blue dashed line, g(p = 2 GPa) = 30 ± 2. (c) ∆CNP at D/ϵ0=0.3 V/nm
and −0.3 V/nm shown with squares and circles respectively.

and g is large at p = 0 GPa according to Ref.[285, 288]. At p = 2 GPa, I observe that,
the effective g-factor remains large, larger than 4 for both ∆±ns . ∆CNP at finite D is
independent of B at small magnetic fields as it is shown in Fig. 5.10c.

5.5.1 The closing of the band gap at the CNP
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Figure 5.11: The charge neutrality gap (n = 0) at D = 0 as a function of the magnetic
flux in the superlattice unit cell (Φ = BAm). The corresponding magnetic field B is
given on the top axis. The gap starts to close above ∼ 4 T and closes completely
approximately at Φ/Φ0 = 1/2 for 1 GPa and Φ/Φ0 = 1/3 for 2 GPa. The blue and red
lines are extrapolations for the gap at p = 2 GPa and p = 1 GPa, respectively. The
shaded areas are the 95% confidence interval of the extrapolation.
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At the CNP (D = 0) I observed signatures of interesting topological effects in
an out-of-plane magnetic field. By increasing the magnetic field B, a gap opens and
surprisingly above ∼ 4 T this gap starts to close. This is shown in Fig. 5.11 for 1
and 2 GPa respectively. This finding is similar to the results in Ref. [282], where the
authors argued that if the gap is non-trivial with a non-zero Chern-number (C) then
the gap should close at Φ/Φ0 = 1/|C|. Here Φ = BAm is the magnetic flux penetrating
the superlattice unit cell. The measurements of Ref. [282] were performed at ambient
pressure using a sample of ϑ = 1.01° twist angle. Their results suggested the presence of
a non-trivial gap with C = 2 at finite D, which agrees with the theory [288–290, 305],
and similar gap opening and closing was observed for D = 0. Our device shows a similar
behavior, however, for D = 0 and finite pressure as shown in Fig. 5.11. At 2 GPa the
gap closes near Φ/Φ0 = 1/3, which could suggest a band gap with a Chern-number
of C = 3. Surprisingly at 1 GPa (red symbols and red line), the gap starts to close at
the same magnetic field as for 2 GPa, but the extrapolation suggests that it would go
to zero at a much higher magnetic field than accessible in our setup (8 T), probably
near Φ/Φ0 = 1/2. This suggests that the Chern-number may depend on the pressure.
Another more likely possibility stems from the decrease of correlation effects which is
well visible in Fig. 5.13, by the disappearance of correlated features at half-filling at
finite pressures. According to the calculations of Ref[282], this leads to a smaller value
of Φ/Φ0 where the gap closes. For a better understanding, further studies are required
both theoretically and experimentally.

5.5.2 Signature of spin-polarized correlated states

(a) (b) (c)

Figure 5.12: Four-probe resistance of the TDBG as a function of the charge density (n)
and electric displacement field (D) measured at ambient pressure (a) at B = 0, (b) at
B = 1 T and (c) at B = 2 T.
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(a) (b) (c)

Figure 5.13: Four-probe resistance of the TDBG as a function of the charge density
(n) and electric displacement field (D) measured at B = 2 T (a) at p = 0 GPa, (b) at
p = 1 GPa and (c) at p = 2 GPa.

When the bandwidth of a narrow band is comparable with the characteristic
Coulomb energy scale of electron-electron interaction, correlated states can emerge.
For example, at half filling, TBG can exhibit correlated insulating states that are spin
unpolarized[18, 19, 37]. Similarly, in TDBG at half fillings, correlated phases can emerge
at finite D, but only at the electron side due to the larger bandwidth at the hole side
(see Fig. 4.11d)[278, 279, 283, 284]. The resistance of these states is enhanced with the
magnetic field, which is a sign of a spin-polarized correlated insulating state. On the
sample, I observed similar behavior near n = ns/2 and D/ϵ0 = ±0.3 V/nm as shown
in Fig. 5.12: by increasing the out-of-plane magnetic field, the resistance increases.

Similar magnetic field dependence were also measured at p = 1 GPa and at p =
2 GPa, which is shown in Fig. 5.13. Under pressure, the correlated gap disappears for
all applied magnetic fields which is an indicator of the decrease of correlations by
increasing the pressure.

The effect of the in-plane magnetic field on the sample was also investigated at
p = 2 GPa, as shown in Fig. 5.14. Comparing Bx = 0 (panel a) and Bx = 3 T (panel
b) it is visible that the effect of the in-plane magnetic field is negligible. At a finite
perpendicular magnetic field, the effect of applying an in-plane field is also negligible
(panels c,d). In thermal activation measurements, Bx also had a negligible effect on
the extracted gaps.

5.6 Conclusion

In conclusion, in this chapter, I presented our results of Ref.[277], where we in-
vestigated a TDBG with ϑ = 1.067° under pressure at different temperatures and
magnetic fields. I found that the band structure significantly changes with pressure:
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(a) (b)

(c) (d)

Figure 5.14: Four-probe resistance of the TDBG as a function of n and D measured
at 2 GPa in different in- and out-plane magnetic fields. (a) presents the data for zero
magnetic field, (b) for Bx = 3 T in-plane magnetic field, (c) for Bz = 2 T vertical
magnetic field whereas (d) shows the measurement in Bz = 2 T and Bx = 2 T.

the single-particle moiré gaps present at zero displacement fields can be fully closed. I
compared our findings with a single-particle continuum model and found a reasonable
agreement with the experimental data. The changes achievable with the pressure are
large and on the order of the bandwidth of the central flat band. The large tunability
and the theoretical predictability suggest that the band structure of twisted structures
can be precisely designed by taking into account the modified layer separation. The
pressure combined with the electric field tunability allows extensive control of the band
structure in situ. The exploration of the single-particle band structure is an important
milestone toward tuning and understanding the emerging topological and correlated
states of these systems. In addition, I showed in Section 5.5.1 that in an out-of-plane
magnetic field, the closing of the gap at the charge neutrality point strongly depends
on pressure, suggesting pressure dependence of the Chern-number.



6. Chapter

Tuning the proximity-induced SOC in
BLG/WSe2 heterostructures with pressure

Combining graphene with TMDs induces SOC in graphene as shown in Section
2.3. The induced SOC has a substantial effect on the low-energy part of the band
structure leading to or stabilizing novel phases such as topological phases[50, 306] or
superconductivity[272]. In this chapter, the pressure-dependence of the SOC strength
is investigated in BLG/WSe2 and WSe2/BLG/WSe2 heterostructures. Magnetocon-
ductance measurements are shown here, such as weak localization, quantum Hall, and
Shubnikov-de Haas oscillation measurements to extract the different SOC terms that
determine the low-energy band structure of BLG. The WSe2/BLG/WSe2 device has
been fabricated by the group of S. Goswami in Delft and has been measured by M.
Kedves, whereas I have fabricated and measured the BLG/WSe2 samples. I have per-
formed the modeling for both kinds of devices.

6.1 Varying the SOC in BLG/WSe2 heterostruc-
tures with pressure

Applying hydrostatic pressure is a reliable way to increase the proximity-induced
SOC in these heterostructures as it was shown in our pioneering work with single-layer
graphene[307]. In BLG/WSe2 heterostructures the presence of SOC in the conduc-
tion or valence band is expected to be controllable using gate electrodes[112, 118].
In the following, the presence of the SOC is shown by performing weak localization
measurements. From a detailed study of SdH oscillations and quantum Hall effect
the Rashba-type and Ising-type SOC strengths are extracted. By applying pressure
as discussed in Section 3.3, a sizable increase of the SOC strength is achieved[273].
Surprisingly, a significantly larger Rashba-type SOC is detected than expected from
theoretical predictions.

87
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Figure 6.1: Properties of the BLG/WSe2 heterostructure. (a) Schematic picture of the
heterostructure. The BLG and the WSe2 flakes are sandwiched between two hBN crys-
tals. The heterostructure is contacted with Cr/Au edge contacts and a 30 nm thick
ALD AlOx layer is deposited on the heterostructure to separate the gate from the de-
vice. A bottom graphite gate and a Cr/Au top gate are used to tune the charge density
n and displacement field D. (b) Optical microscope image of the measured BLG/WSe2
device A. The device is shaped into a Hall bar and it is covered with a global top
gate. The scale bar is 5 µm. (c) Schematic structure of the BLG/WSe2 heterostructure.
The direction of the applied electric displacement is also shown between the graphene
layers. (d) Low-energy band structure of the bilayer graphene including the spin – orbit
coupling (SOC) with λR = 15 meV and λI = 2.5 meV. (e) An u = 10 meV interlayer
potential difference opens a bandgap and helps spin-polarize the conduction bands.
The bands in panel (d) and (e) are colored by their spin polarization shown by the
color bar on panel (e).

6.1.1 BLG/WSe2 heterostructures

I fabricated the studied BLG/WSe2 heterostructures using the dry-transfer tech-
nique, which is detailed in Section 3.1. The schematic of our device is shown in Fig. 6.1a,
whereas an optical micrograph of device A can be found in Fig. 6.1b. It consists of a
bilayer graphene (BLG) flake placed on top of a WSe2 flake and encapsulated between
two hBN layers. The graphene is contacted with etched side contacts. The graphite
bottom gate and the metallic top gate allow to separately tune the charge carrier den-
sity, n, and the displacement field, D. During the fabrication, I used a WSe2 layer with
a thickness of 7 nm, the thickness of the top hBN is 22 nm, the bottom hBN is 58 nm
thick and the aluminum oxide dielectric layer is 30 nm. Details of the other devices are
given in Appendix C.

The schematic illustration of our BLG/WSe2 heterostructure is shown in Fig. 6.1c.
The low-energy band structure of pristine BLG near the K and K ′ points is described
by Eq.(2.10), which exhibits parabolic bands touching near the K points with small
modifications from the remote hopping terms (γ3 and γ4). The presence of the WSe2

flake leads to the modification of the band structure of BLG, which is reflected by
the appearance of additional SOC terms: a Rashba-type HR = λR

2 (ξσxsy − σysx) and
an Ising-type HI = ξ λI

2 σz SOC term, also referred to as valley-Zeeman (VZ) SOC
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as discussed in Section 2.3.2. The SOC terms are assumed to be present only in the
bottom carbon layer, which is in proximity with WSe2[45, 118]. The band structure is
calculated using Eq.(2.43) around the K point with λR = 15 meV and λI = 2.5 meV
(Fig. 6.1d). These parameters are plausible values based on the measurements shown
in this chapter. The effect of λR is depicted with black arrows, which splits the bands
at higher k values and the splitting becomes larger at higher energies. The effect of
λI on the low-energy spectrum is shown with red and blue arrows. At low energies, it
splits the spin degeneracy of the bands and makes them spin-polarized in the out-of-
plane directions, whereas for higher energies a more complicated, canted spin structure
arises as the combination of the two types of spin-orbit interactions[112]. The effect of
the electric field is illustrated in Fig. 6.1e with u = 10 meV. The electric field leads to
layer-polarization of electrons in the conduction and valence bands. For positive u, the
conduction electrons are localized on the bottom layer neighboring the WSe2 crystal.
Hence the spin splitting caused by the proximity-induced SOC appears in this band
(see panel e). For negative u, the layer-polarization is reversed and the spin splitting
appears in the valence band.

Lever arms and their pressure dependence

The characterization of the sample involves the determination of the lever arms,
which was done as described in Section 3.2.1 from the gate dependence of the resistance
(Fig. 3.6) and from the quantum oscillations in magnetoconductance measurements
(Fig. 6.2) using the full filling of the Landau levels (LL) being at n = νe|B|/h, where
ν = 0, ±4, ±8 . . . The lever arms along with the residual charge density are shown in
Table 6.1. The pressure dependence of the lever arms originates from the compression
of the dielectrics1 and pressure-dependent dielectric constant of the hBN as already
reported in Refs. [295, 296] and was observed also in Section 5.1.2. Measurements under
pressure are done using a pressure cell which is detailed in Section 3.3.

p (GPa) 0 2
αTG (1015V−1m−2) 4.09(4) 4.45(4)
αTG (1015V−1m−2) 2.47(3) 2.80(3)

n0 (1015m−2) 4.20(5) 4.79(5)
D0/ϵ0 (V/nm) 0.047(2) 0.069(2)

Table 6.1: The extracted parameters of device A for the calculation of n and D at p =
0 GPa and p = 2 GPa with the uncertainty of the last digit in the bracket originating
from the measurement resolution, the readout precision and from the fitting.

1Here the dielectrics are hBN and hBN/WSe2 on the other side.
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(a)

p=2 GPap=0 GPa

(b)

Figure 6.2: Magnetic oscillation measurements of ρxx of device A (a) at p = 0 GPa
and (b) at p = 2 GPa respectively. The white dashed lines show the Landau levels at
different fillings (ν = 0, ±4, ±8 . . . ).

6.1.2 Gate and pressure dependence of the resistance

(a) (b) (c)

p = 2 GPa n = 0p = 0 GPa

Figure 6.3: Longitudinal resistivity of the BLG/WSe2 device A as a function of the
charge density (n) and electric displacement field (D) measured at B = 0 T at (a)
ambient pressure, T = 35 mK and (b) at p = 2 GPa, T = 50 mK. Near the charge
neutrality line (n = 0), the resistance is high and increases with |D| as it opens a gap
in the BLG. (c) Longitudinal resistivity as a function of D for n = 0 at 0 and 2 GPa
pressures.

Fig. 6.3a shows longitudinal resistivity (ρxx) as a function of top and bottom gate
voltages, plotted as a function of n and D at temperature T = 35 mK at ambient
pressure. Lighter-colored regions of higher resistance correspond to the displacement-
field-opened gap along the charge neutrality line. This gap is increasing by increasing
|D| as expected in bilayer graphene. In Fig. 6.3b, ρxx is plotted at p = 2 GPa. The
features are similar compared to the p = 0 GPa case. However, the resistance is in-
creased with pressure. A line-cut along n = 0 is shown in Fig. 6.3c. At p = 0 GPa, ρxx

depend non-monotonously on D. There is a small local maximum at D = 0 and min-
ima at D/ϵ0 ∼ ±10 mV/nm. These features are already observed at low-temperatures
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in BLG/MoS2 heterostructures[268] and BLG/WSe2 heterostructures, and attributed
this as an emergence of a correlated insulating state due to the SOC[269]. This feature
is absent from the data at p = 2 GPa. The explanation may be that when the sample is
pressed, the mobility decreases significantly2, and the correlated insulating states are
not resolved due to the increased disorder.

6.1.3 Weak localization in BLG/WSe2 heterostructures

(a) (b)
p = 2 GPa D=0p = 0 GPa D=0

Figure 6.4: Magnetoconductivity of device A at D = 0 and n = ±1, ±0.5 ·1012cm−2 (a)
at p = 0 GPa and (b) at p = 2 GPa. Here, I averaged over 41 curves in a 0.2 · 1012 cm−2

range around each density value and a fixed D to average out the universal conductance
fluctuations. A clear antilocalization signal is visible in all density ranges.

Weak localization as discussed in Section 2.5.1 is a useful tool to determine the
SOC in graphene. Thereby, to confirm the presence of induced SOC in the heterostruc-
ture, I performed magnetoconductance measurements at a low magnetic field B. In
pristine BLG weak localization is expected[308]. However, the presence of SOC leads
to weak antilocalization (WAL)[27, 93, 94, 96–99, 309]. I performed magnetic-field-
dependent measurements at T = 1.5 K at zero, and at p = 2 GPa pressures. I averaged
over 41 curves in a 2 · 1011 cm−2 density range around each density value and a fixed
displacement fields to average out the universal conductance fluctuations. The mag-
netoconductivity δσ = σ(B) − σ(B = 0) is shown in Fig. 6.4. In the measurements,
weak antilocalization (WAL) is observed at both ambient pressure (Fig. 6.4a) and at
p = 2 GPa (Fig. 6.4b), which is clear evidence for the presence of SOC in BLG.

The magnetoconductivity at different displacement fields and pressures at n = ±1 ·
1012 cm−2 is shown in Fig. 6.5. Most curves show weak antilocalization (WAL) and the
signal depends on D. The dependence is similar to that in Ref.[98] at ambient pressure.

2At ambient pressure, the field effect mobility (µ = σxx/ne) in the electron regime is µ ∼
80 000 cm2/Vs and in the hole regime is µ ∼ 40 000 cm2/Vs. At p = 2 GPa, in the electron regime
is µ ∼ 10 000 cm2/Vs and in the hole regime is µ ∼ 5000 cm2/Vs.
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(a)

(c) (d)

(b)
p=0 GPa

p=2 GPap=2 GPa

p=0 GPa

Figure 6.5: Weak localization measurements of device A at n = ±1 · 1012 cm−2. (a-b)
measurements at p=0 GPa and (c-d) measurements at p=2 GPa. Measurements made
at different displacement fields at T = 1.5 K.

At p = 0 GPa, at the hole side (Fig. 6.5a), the WAL signal disappears by changing D

from positive to negative. However, at the electron side (Fig. 6.5b), the signal decreases
by increasing |D| in both directions. At p = 2 GPa, at the hole side (Fig. 6.5c), the signal
weakly decreases at large displacement fields both in positive and negative directions.
At the electron side under pressure (Fig. 6.5d), the WAL signal decreases by increasing
D from negative to positive. Though this resembles the layer-tunable SOC effect, the
tendency on a larger dataset is not that clear. At a large displacement field, the layer-
polarization decreases and the layer specificity of the SOC is expected to disappear.
Moreover, the WAL signal is a complex combination of different time scales. Therefore,
the amplitude of the WAL signal alone do not necessarily reflect the SOC strength[98].

6.1.4 Obtaining the Ising-type SOC strength

The LL crossings can be reliably used to extract the Ising-type SOC strength as
shown in Section 4.1.1. I extract the position of the ν = ±3 crossing points in D by
two methods. On the one hand, I measure ρxx maps as a function of n and D at a fixed
out-of-plane magnetic field. In Fig. 6.6a,b, ρxx as a function of n and D at B = 8 T
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(a) (b)

p = 0 GPa p = 2 GPaB = 8 T B = 8 T

(c) (d)

Figure 6.6: Four-probe resistance of device A at B = 8 T as a function of n and D
at (a) p = 0 GPa and (b) at p = 2 GPa. On the top, the corresponding Landau level
(LL) filling factors (ν = nh/eB) are shown. LLs correspond to extended areas of large
resistance and crossings correspond to sharp features of large resistance. We use the
ν = ±3 crossing points to extract λI. These are shown with red and blue arrows. (c)
and (d) Line-cuts from the 2D maps along D at ν = ±3 (a) at B = 6.5 T and (b) at
B = 8 T.

is shown. On the top, the corresponding Landau level (LL) filling factors ν = nh
eB

are
also shown. The dark (bright) regions correspond to situations where the Fermi level is
situated between (on) LLs, with (half-) integer ν. Landau level crossings as a function
of D appear as bright spots along certain νs at particular D values. The ν = ±3
crossing points are highlighted with red and blue arrows in panel (a) and these are
also highlighted in the LL spectrum in Fig. 4.2. Here, I take a line-cut at n = νe|B|/h

and from the resistance peak, the position of the crossing point is obtained. Line-cuts
are shown in Fig. 6.6c,d at ν = ±3 at p = 0 GPa and p = 2 GPa pressures. As the
measurement of these resistance maps takes a long time, instead of taking a map at
a different magnetic field, I measure the ν = ±3 crossing points as a function of the
magnetic field by measuring a D trace at a fixed filling factor at different magnetic
fields (therefore also changing the density as n = νe|B|/h at every magnetic field to
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keep the filling factor constant). These measurements are shown in Fig. 6.7 for zero
and 2 GPa pressures.

(a)

(c) (d)

(b)
p=0 GPa p=0 GPa

p=2 GPap=2 GPa

Figure 6.7: Measurements of the ν = ±3 crossing points of device A. ρxx as a function
of B and D while setting n = νe|B|/h as ν fixed at p = 0 GPa (a-b) and at p = 2 GPa
(c-d). The evolution of ν = −3 is shown in (a) and (c) and the evolution of ν = 3 is
shown in (b) and (d). The white arrows are guides to the eye to show the peak of the
crossings.

The extracted position of the crossings as a function of B is shown with red and
blue symbols for ν = ±3 in Fig. 6.8. The main contribution of the error comes from the
read-off error of the peaks and from the uncertainty of the lever arms, it is less than
∆D/ϵ0 = 0.0015 V/nm (∆u = 0.12 meV). To determine the Ising-type SOC strength,
the LL spectrum is calculated as described in Section 4.1.1 for different magnetic fields
and λI values. Then the magnetic field dependence of crossings is fitted having only
λb

I as the only fitting parameter. The best fit is shown with dashed lines in the figure.
From the fits we obtain λb

I (p = 0) = 1.6 ± 0.2 meV, which is in agreement with the
experiments [50, 97, 106, 271] and the theoretical values in the literature [109–111].

To investigate the changes in the SOC coupling strength as the layer distance is
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Figure 6.8: The position of the ν = ±3 crossing points extracted from the measurements
of device A. The dashed lines represent the fits of the model on the measurement data
using λb

I (p = 0) = 1.6 meV and λb
I (p = 2 GPa) = 2.5 meV.

decreased, the same procedure is performed also at p = 2 GPa. The extracted crossing
point values are shown in Fig. 6.8 with dark red and dark blue markers for ν = ±3,
respectively. Fitting similarly, the obtained λb

I (p = 2 GPa) = 2.5 ± 0.2 meV, which is a
significant enhancement. We expect that, the extracted λI and its enhancement with
pressure leads to such a large spin splitting, that could potentially modify and tune
the correlated states in twisted graphene/TMD heterostructures[116, 310].

6.1.5 Obtaining the Rashba-type SOC strength

In the previous section, the Ising-type SOC is determined from LL related mag-
netoresistance measurements. Similarly, the Rashba-type SOC can also be determined
from magneto-oscillations. For this, SdH oscillation measurements are used in this sec-
tion. As visible in Fig. 6.1d, the Fermi surface is split due to the SOC coupling, and the
splitting is dominated at high doping by the Rashba term (black arrows). As a result,
there are two Fermi surfaces for the split bands with slightly different area S1

F and S2
F

in momentum space. Therefore, the SdH oscillations give us the opportunity to extract
the splitting of the Fermi surface as discussed in Section 2.5.2.

Shubnikov-de Haas oscillations are performed at 1.5 K at different charge densities.
A quadratic background from the longitudinal resistance signal is subtracted and the
result at a selected density is depicted in Fig. 6.9a. A fast Fourier transformation (FFT)
on the signal is performed (Fig. 6.9c) and the obtained frequency fB is converted into
the area of the Fermi surface using Eq.(2.73) as SF = 2πe

ℏ fB. The same procedure is
performed over several densities and a few of them are shown in Fig. C.2. The peaks
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(a)

(c)

(b)

Figure 6.9: Shubnikov-de Haas oscillations. (a) ρxx after subtracting a quadratic back-
ground at n = −5 · 1012 cm−2 at p = 0 GPa of device A. (b) Fermi surface areas
extracted from the Shubnikov-de Haas oscillations as a function of n. The black mark-
ers are measurements made at zero pressure and the red ones are made at p = 2 GPa.
Their uncertainty comes from read-off error of the frequencies. The yellow line would be
the Fermi surface SF = π2n if the spectrum was spin degenerate. (c) Fourier-transform
of (a) as a function of the Fermi surface (SF) converted from the frequency fB as
SF = 2πe

ℏ fB. The arrows show the peaks (S1,2
F ) and their difference (dSF) which is used

to get λb
R.

shown in Fig. 6.9c with arrows are extracted at different charge densities at D = 0 which
is shown in Fig. 6.9b. The two peaks are the result of the slightly different Fermi surfaces
produced by the Rashba-type SOC. At higher densities as the splitting is larger from
the SOC, the peaks are more visible and separated. For better visibility, the difference
of the obtained Fermi surfaces dSF = |S1

F − S2
F| is shown in Fig. 6.10 by blue symbols

for a large range of charge density. To extract the Rashba SOC strength, the Fermi
surfaces are calculated using Eq.(4.4) at a fixed n using the previously obtained λb

I .
dSF from the model is fitted to the measurement data using λb

R as the only fitting
parameter3. From the fitting, λb

R(p = 0) = 11 ± 2 meV, which is shown in Fig. 6.10,
where the dashed line and the shaded area shows the calculated Fermi surface splitting

3λb
I is mostly relevant in the low-density regime. An uncertainty of ∆λb

I = 1.5 meV would bring an
uncertainty of ∆λb

R = 0.5 meV, which is much less than the uncertainty of the fitting.
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Figure 6.10: The difference of the Fermi surfaces as a function of n of device A. FFT
is performed on the SdH data, where two peaks are observed. From the Fourier anal-
ysis, the frequency difference of the two peaks is extracted. The frequencies (fB) are
converted to Fermi surfaces (SF = 2πefB/ℏ). The blue error bars are measured at
p = 0 GPa, and the red error bars are measured at p = 2 GPa. Their uncertainty comes
from read-off error of the frequencies. The dashed lines are the fitting of the model
with the corresponding λb

R values. The colored ranges show the uncertainty interval of
the fits.

and the error, respectively. This is similar to the experimentally found values in the
literature with similar techniques [94, 106, 271], but the theoretically predicted values
are an order of magnitude smaller [107, 109, 110, 311]. The reason for this discrepancy
is not clear.

The same analysis is performed at 2 GPa. The extracted dSF are shown with red
markers in Fig. 6.10. The model is fitted similarly, and from it, λb

R(p = 2 GPa) =
18 ± 3 meV, which is shown with a red dashed line and the shaded area shows the error
in the Figure. The relative increase is similar to the increase of λb

I .

As it was already stated in Section 2.3.1, the strength of SOC strongly depends
on the rotation angle between WSe2 and graphene. Though during the fabrication
the rotation angle between the flakes is not controlled, the large VZ splitting suggests
rotation angles close to ϑ ∼ 11° or ϑ ∼ 22° according to Ref. [110] and according
to Ref. [111] it is close to 0°. From the optical image of the flakes shown in Fig C.1,
the twist angle is likely around ϑ ∼ 16°. In Appendix C, measurements of the other
devices are shown. Similar enhancement of the SOC strengths is found with pressure
on these devices as well. On one of the samples, I find negative SOC at a similar value
(λI = −1.7±1 meV) from Quantum Hall studies, which implies that ϑ is negative[111].
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6.1.6 Conclusion

In conclusion, the presence of proximity SOC in graphene is observed from WAL
measurements. To determine the strength of the Ising-type SOC term in my BLG/WSe2

heterostructures, I performed quantum Hall measurements as a function of the displace-
ment field. From studying the LL crossings at ν = ±3, I estimated λb

I . I performed a
magnetoconductance study and from the FFT analysis of Shubnikov-de Haas oscilla-
tion, I extracted λb

R. I found that both are enhanced by more than 50 % by applying
hydrostatic pressure of 2 GPa on the device. These results can be important in realizing
novel phases in graphene/TMD heterostructures for which large SOC is required.

6.2 Stabilizing the inverted phase in a
WSe2/BLG/WSe2 heterostructure via hy-
drostatic pressure

In this section, our results of a BLG flake encapsulated between two layers of WSe2

are shown, where the application of pressure led to the stabilization of a peculiar, band-
inverted phase[306]. The measurements were performed by Máté Kedves and these are
detailed in his PhD thesis. The samples have been fabricated by the group of Srijit
Goswami in Delft. I supported the work with theoretical modeling. Details of the work
can be found in Ref.[306]. Here I summarize the main results.

The schematic of the device is similar to the BLG/WSe2 devices as shown in
Fig. 6.1c, but it has a second WSe2 layer on the top of the BLG under the top hBN.
The gate-dependence of the sample is characterized similarly to the BLG/WSe2 de-
vices, and the increase of the lever arms with pressure is also comparable as described
in the Supporting Information of Ref.[306].

A summary on the effect of SOC is shown in Fig. 6.11. In panel (a) and panel (b)
the resistance of the device is shown as a function of n and D at p = 0 GPa and at
p = 1.65 GPa, respectively. Both at p = 0 GPa and at p = 1.65 GPa, there is a high
resistance region at n = 0, which starts to decrease with |D|, then has a local minimum
and starts to increase. It is qualitatively different compared to Fig. 6.3c. However, the
resistance at D = 0 is similar in Fig. 6.11c and Fig. 6.3c. This behavior can be explained
by the oppositely induced SOC in the two graphene layers from the WSe2, which is
expected due to the inversion symmetry if they are aligned. However, the relative signs
of the induced SOC is determined by the twist angle between the two WSe2 crystals.
As it is described in Section 4.1, if the sign of λb

I is different from the sign of λt
I, a gap is

opened. This gap closes at u = ±|λb
I − λt

I|/2. By further increasing the electric field, a
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(a) (b)

(c)

(e) (f)

(d)

Figure 6.11: Measurements on the WSe2/BLG/WSe2 device. (a-b) Resistance of the
WSe2/BLG/WSe2 device as a function of n and D at T = 1.4 K, B = 0 T at (a)
ambient pressure, and (b) at p = 1.65 GPa. Near the charge neutrality line (n = 0),
the resistance is high, it first decreases then after a local minimum it increases with
|D| as it first closes and then opens a gap in the device. (c) Resistance as a function
of D at n = 0 at 0 and 1.65 GPa pressures. (d) Band gap from thermal activation
measurements at n = 0 as a function of D. (e) ν = 0 LL crossings as function of B. (f)
ν = 1 LL crossings as function of B.

new gap opens. Here, the behavior of the gap was also verified with thermal activation
measurements shown in Fig. 6.3d, where the trend of the gap ∆ is similar to the trend of
the resistance in Fig. 6.3c. The local minimum with D is used to extract the Ising-type
SOC and the extracted SOC is λb

I (p = 0) = −λt
I(p = 0) = 2.2±0.4 meV. After pressing

the heterostructure, the same measurements were performed and at p = 1.65 GPa, we
obtained λb

I (p = 1.65 GPa) = −λt
I(p = 1.65 GPa) = 5.6 ± 0.6 meV.
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The presence of the SOC is also verified with quantum Hall measurements, where
the ν = 0, 1 crossings along D were measured as a function of B similarly to Fig. 6.7,
which is shown in Fig. 6.11e,f. The crossings when B goes to zero remain finite as
opposed to the case when there is no SOC induced in the BLG as shown in Fig. 4.5c
and Fig. 4.6c. The increase in the position of the crossings with pressure can also be
explained by the increase of the SOC. Comparing the measured LL crossings with the
calculated crossings in a single-particle picture in Section 4.1.1, the increase of the LL
crossings by increasing the Ising-type SOC is consistent. However, to quantitatively
compare the experiment with the model, the electron-electron interaction4 has to be
considered which is beyond our model.

To conclude, in a WSe2/BLG/WSe2 device if the WSe2 crystals are oriented such
that the induced SOC is the opposite in the two layers of the BLG, a band-inverted
phase appears which can be closed with electric field and the closing point can be used
to extract the induced SOC in the graphene. By applying hydrostatic pressure, the gap
increases, and the closing point of the gap as a function of D is also enhanced which
is a signature of the increased SOC.

4As the width of LLs are defined by the disorder, in clean systems the electronic interactions
become effectively strong[51].



7. Chapter

Effect of pressure on the transport
properties of SLG

A high-quality device with high mobility is essential to observe novel phenomena in
graphene. When graphene was discovered, only rather low-quality devices, with mobil-
ity in the order of 103 cm2/Vs were available[4, 47] due to the charge traps in the SiO2

substrate[178] and contamination originating mostly from the fabrication[161, 312].
To get rid of these obstacles, a separation of the graphene from the SiO2 is required,
which was first achieved with current-annealed suspended graphene[123, 143] by realiz-
ing free-standing graphene and removing the fabrication residues with an applied large
current. Later, a more reliable and versatile method was realized, by using hBN as
a substrate[13] and fully encapsulating the graphene between hBN crystals[121, 313].
Both methods resulted in devices with mobilities over 105 cm2/Vs. These technical de-
velopments of realizing high-quality devices made it possible to observe new physics
in graphene such as electron optics[314], Moiré physics[53], fractional quantum Hall
effect[315] or highly viscous electron fluids[316, 317]. Also for the industrial applica-
tion of graphene, reliably high-quality sample fabrication is essential. To achieve this,
it is essential to know the main source of disorder and the limiting factors of the
mobility to be able to eliminate them during fabrication. In the first devices, when
the graphene was placed on a SiO2 substrate uncovered, the contamination on its
surface and the substrate lead to short-ranged scatterings and also long-ranged scat-
tering from the charge traps in SiO2, which resulted their poor quality as discussed
in Section 2.4.2. Since then, the encapsulation of graphene between hBN layers lead
to atomically smooth interfaces with the substrate[318] and reduced scattering from
short-ranged scatterers. There have been many experimental studies on the resistivity
of graphene, which showed the importance of long-ranged scatterers[123, 143, 165, 166]
and the proper choice of substrate to reduce the effect of the substrate-induced RIP
scattering[178, 191–193]. If the scattering comes from interfacial effects like in the case
of RIP scattering, the change of layer distance could help to understand better these
scattering mechanisms, which could be achieved with pressure.

In this chapter, the basic transport properties of graphene are investigated as a

101
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function of pressure, to reveal the scattering mechanisms, that limit the charge carrier
mobility in the samples. The main limiting factors of resistance are described in Section
2.4. The devices investigated here were made in the clean room facility of RWTH
Aachen University by T. Ouaj in the group of Prof. C. Stampfer using the fabrication
method described in Section 3.1.

7.1 Low-temperature transport properties

The device geometry is the following: a SLG is encapsulated in hBN flakes and
placed on a Si/SiO2 wafer, where the Si is used as a gate to tune n in graphene. We
studied four devices, named A-D, for which optical images are shown in Fig. 7.1a-d,
respectively. The devices are shaped into a Hall bar geometry. Here, mostly the results
of device A are presented and the measurements on the other devices are given in
Appendix E.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: SLG devices. (a-d) Optical micrographs of SLG samples A, B, C and D,
respectively. The devices are hBN encapsulated SLG etched into a Hall bar and they
are on a Si/SiO2 wafer, where the Si is used as a back gate. The scale bar is 5 µm.
(e-h) Four-terminal conductivity of devices A-D, respectively as a function of n. The
conductivity at p = 0 GPa is shown by black lines, whereas conductivity at 1 and 2 GPa
is shown by teal and red lines, respectively.

The four-terminal conductivity of the investigated devices is shown in Fig. 7.1e-h
at T = 1.5 K at ambient pressure and under hydrostatic pressure as a function of
n. The measurements at 0 GPa are shown by black lines, whereas measurements at 1
and 2 GPa are shown by teal and red lines, respectively. The conductivity increases
sublinearly with n, following Eq.(2.62). The measurements show that the increase of
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the conductivity with n is always the largest at p = 0 GPa in every device. During
pressurization of device B, a small region of the top hBN tore away from the graphene
(based on optical microscopy performed later), and there the graphene got in touch
with kerosene leading to spatially inhomogeneous doping, which resulted a second Dirac
point as visible in Fig. 7.1f around n = 1.5 · 1011 cm−2 at 2 GPa.

The charge density for SLG is calculated as[319]

n =
√

n2
∗ + (αBG|Vg − VD|)2 · sgn(Vg − VD), (7.1)

where αBG is the lever arm of the bottom Si gate, VD is the gate voltage at the Dirac
point, where σxx(n) has a minimum and n∗ is the residual charge density at the Dirac
point due to electron-hole puddles arising from inhomogeneity of the impurity-induced
potential[145, 320]. n∗ is extracted from the log-log σxx(n) plots, which is detailed in
Appendix E.1 and the extracted values are shown in Table 7.1 at different pressures.
The lever arm αBG is extracted from quantum oscillations in magnetoconductance
measurements as shown in Fig. 7.2. For device A, αBG and VD is shown in Table E.1 at
different pressures.
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Figure 7.2: Magnetic oscillation measurements of ρxx of device A at p = 0 GPa. White
dashed lines show the Landau levels at different fillings (ν = 2, ±6, ±10 . . . ).

To quantify the increase of σxx with n, Eq.(2.62) is fitted separately for electron
and hole regions as

σxx =
(

1
enµe/h

+ ρ
e/h
0

)−1

, (7.2)

where e and h indexes the electron and hole regions, respectively. Here, I supposed that
the mobility is constant, which is expected for long-ranged scatterers such as charged
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impurities or strain fluctuations[138, 163]. The fit for device A is shown in Fig. 7.3a
with blue dashed curves, and the fitting parameters are given in Table 7.1. From the
fitting, the charge carriers’ mobility in the device is larger than µe/h = 200 000cm2/Vs
indicating high sample quality. As the pressure is increased, the mobility decreases
significantly. The origin of its decrease will be investigated in this chapter.

The other fitting parameter ρ
e/h
0 , which describes the density-independent resistivity

from short-ranged scatterers, is negligible at ambient pressure in device A. At higher
pressures, ρ

e/h
0 becomes relevant, resulting in the saturation of σxx at larger pressures

in Fig. 7.3a. For the other devices, the fitting parameters are given in Appendix E.2.
Their pressure dependence is similar to the obtained values of device A in this section.

p (GPa) 0 1 2
n∗ (1010 cm−2) 1.6(5) 3.2(7) 2(7)

µh (m2

Vs ) 22.12(6) 17.13(4) 16.27(5)
ρh

0 (Ω) < 0.1 3.9(1) 4.8(1)
µe (m2

Vs ) 26.47(6) 16.47(5) 15.05(4)
ρe

0 (Ω) < 0.1 14.8(1) 26.6(2)

Table 7.1: Extracted parameters of device A of the fit of Eq.(7.2) on the conductivity
and n∗ at p = 0 GPa, p = 1 and p = 2 GPa with the uncertainty of the last digit in the
bracket originating from the fitting.

From Eq.(2.45) combined with Eq.(2.48) and Eq.(2.9), the elastic mean free path
can be calculated from σxx as

lm = ℏ
e2

√
π

n
σxx. (7.3)

In Fig. 7.3b, lm is calculated as a function of n. At every density, lm is smaller than
the width of the sample and the length between the voltage probes, which are shown
with dashed lines in the figure, thus the transport is diffusive. At high densities, lm

is comparable with the distance of the contacts, which allows to perform magnetic
focusing experiments, which are shown later in this chapter. By increasing the pressure,
lm decreases, which is related to the decrease in mobility.

The scatterings that contribute to the reduced lm can be divided into short- and
long-ranged scatterers. The transport scattering time from short-ranged scattering
τ short

m can be calculated from ρ
e/h
0 using Eq.(2.45) combined with Eq.(2.48) and Eq.(2.9)

as
τ short

m = ℏ
e2vFρ

e/h
0

√
π

n
. (7.4)

At ambient pressure, as ρ
e/h
0 is negligible, thus the calculated τ short

m is very large com-
pared to τ long

m . At finite pressures, τ short
m gets smaller as shown in Fig. 7.3c, where at
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(a) (b)

(c) (d)

Figure 7.3: Zero field transport properties of device A at T = 1.5 K. The measurements
at 0 GPa are shown by black lines, whereas measurements at 1 and 2 GPa are shown
by teal and red lines, respectively. (a) Conductivity of device A at different pressures
as a function of n. The blue dashed lines are fits of Eq.(7.2). (b) The elastic mean free
path (lm) calculated from σxx with Eq.(7.3). For comparison, the width of the sample
and the length between the two inner contacts in the four-terminal measurement set-
up are also shown with dashed lines. (c) Transport scattering time from short-ranged
scattering as a function of n at different pressures calculated from ρ0. (d) Transport
scattering time from long-ranged scattering as a function of n at different pressures
calculated with Eq.(7.5).

higher densities, τ short
m starts to dominate the momentum relaxation rate, based on the

saturation of σxx.
The measured transport scattering time from long-ranged scattering can be calcu-

lated from τm = lm/vF using the Matthiessen’s rule as

τ long
m =

(
1

τm
− 1

τ short
m

)−1

. (7.5)

For device A, τ long
m is plotted in Fig. 7.3d as a function of n. It increases with n and

is proportional to
√

n at every measured pressure, as expected from Eq.(2.56) for
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both strain fluctuations and charged impurities[138, 163], where the mobility is doping
independent. By increasing the pressure, τ long

m decreases, i.e. the long-range scattering
rate increases, which result in a decrease in mobility.

To sum up, at ambient pressures, the main contribution to the conductivity comes
from long-ranged scatterers as expected for a high-mobility device. The pressure de-
creases the mobility of SLG by increasing the scattering rates of both short- and long-
ranged scatterers. For small charge densities, scattering from long-ranged scatterers
remains the main source of scattering, and at high densities short-ranged scatterers
start to dominate the transport.

7.2 Magnetotransport studies

To get a more in-depth view of the scattering mechanisms and how the pressure
modifies the transport properties of SLG, magnetotransport measurements are also
performed. Whereas field effect measurements can be used to extract transport lifetime,
the so-called quantum lifetime, which is defined in Eq.(2.50), can be obtained from
SdH oscillations. Secondly, WL measurements can be used to study the phase-coherent
transport in the device and give information on dephasing due to inelastic scatterings.
Finally, TMF measurements can be used to to probe modification of the band structure
and the Fermi surface and can give information on scattering mechanisms that lead to
the loss of ballistic behaviour of charge carriers.

7.2.1 Shubnikov-de Haas oscillations

The longitudinal resistivity is shown in Fig. 7.4a as a function of B−1 after removing
a quadratic background at a fixed charge density of n = 0.7·1012 cm−2, at ambient pres-
sure and different temperatures. An oscillation pattern is clearly visible, which vanishes
by increasing B−1 or by increasing the temperature. These oscillations correspond to
SdH oscillations and ρxx obeys to Eq.(2.74), which can be used to obtain the density,
the effective mass, and the quantum lifetime. To fit ρxx, I used Eq.(2.74) with a small
modification of limiting the harmonic order at 5 as

ρxx = ρ0

[
1 + c

5∑
s=1

D(sx) exp
(

−sm∗π

eBτq

)
cos

(
ℏπ2ns

eB
− sπ + sϕ0

)]
, (7.6)

where D(sx) = X
sinh(X) with X = s2π2kBTm∗/eBℏ. During the fitting procedure, a

global fit is performed such that, at fixed charge densities ρxx(B, T ) is fitted as a
function of B at different temperatures simultaneously, where τq and m∗ are assumed
to be independent of T . The free parameters of the fitting are ρ0, c, m∗, n, ϕ0 and τq



Magnetotransport studies 107

(a) (b) (c)

Figure 7.4: SdH oscillations measurements on device A. (a) ρxx after subtracting a
quadratic background at n = 0.7 · 1012 cm−2 at p = 0 GPa at different temperatures.
The fit of Eq(7.6) on the data is shown with dashed lines and the most important fitting
parameters are also shown in the figure, where the uncertainty of the last digit is in the
bracket, which originates from the fitting. (b) Extracted quantum scattering time as a
function of pressure at ±10 V gate voltages. (c) τm/τq ratio as a function of pressure.
10 V correspond to n(p = 0 GPa) = 7.2 · 1011 cm−2, n(p = 1 GPa) = 7.3 · 1011 cm−2 and
n(p = 0 GPa) = 6.5 · 1011 cm−2. -10 V correspond to n(p = 0 GPa) = −6.6 · 1011 cm−2,
n(p = 1 GPa) = −7.3 · 1011 cm−2 and n(p = 0 GPa) = −8.2 · 1011 cm−2.

from which the most important parameters (m∗, n, τq) are shown in the figure along
with the fitted curve with dashed lines. n is related to the oscillation period, and the fit
results the same as extracted from quantum Hall measurements. The cyclotron mass
m∗, which is related to the damping of the oscillations by the temperature, is close
to the expected m∗ = ℏ

√
πn/vF = 0.017me value, where me is the electron mass.

Moreover, ϕ0 = 3.2 ± 0.1 is close to π, as expected for SLG. Lastly, τq is also obtained,
which is responsible for the decay of ρxx with B−1.

This analysis is performed at two fixed gate voltages V = ±10 V at different pres-
sures. The results from the global fits on the data for τq are shown in Fig. 7.4b as
a function of pressure. As the pressure is increased, τq is decreased similarly to τm,
which suggest that they have the same microscopic origin. Their ratio τm/τq describes
how anisotropic the scattering is. As it is discussed in Section 2.4.2, for short-ranged
scattering τm/τq is more or less isotropic and the ratio is τm/τq < 2. For long-ranged
scattering such as scattering on charged impurities, the ratio is τm/τq > 2. The calcu-
lated ratio of τm/τq, which is shown in Fig. 7.4c is always larger than 2, indicating that
the long-ranged scattering is the dominant scattering mechanism at every pressure.
One possible explanation of large τm/τq is the presence of charged impurities1, which

1For example charge traps in SiO2 under the hBN.
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leads to a very strong enhancement in τm/τq similarly as in 2DEGs[139, 140]. For strain
fluctuations, this has not yet been investigated. No clear pressure dependence can be
observed for the τm/τq in device A. This analysis is performed for another device, device
D, shown in the appendix E.5. In device D, an increasing tendency can be observed
with the pressure. Nevertheless, further measurements are needed to make statements
on the pressure dependency of τm/τq.

From SdH measurements, I found that the dominant scattering mechanism is the
long-ranged scattering, which is consistent with the zero magnetic field transport stud-
ies in the previous section. One possible explanation can be charged impurities far from
the graphene plane. However, corrugations cannot be ruled out as the origin of scatter-
ing in the device. By applying hydrostatic pressure, τq is found to decrease similarly to
τm. By increasing the pressure, if remote charge impurities are present, their distance to
graphene is slightly reduced, which leads to a decrease of τm/τq. However, the dielectric
constant of hBN increases with pressure, which can lead to larger effective distances
for the remote charge carriers[296]. Their combined effect determines the pressure de-
pendence of τm/τq, which is beyond the scope of this thesis thus the presence of remote
charged impurities cannot be ruled out.

7.2.2 Magnetic focusing experiments

To address the scattering mechanisms, I turned to transverse magnetic focusing
(TMF), where the amount of ballistic electrons carries information on the scattering
processes within the sample. For that, I used the measurement arrangement shown in
Fig. 7.5. Contact b is the injector and contact c is the collector contact. The non-local
voltage Vnl is measured between contact c and e. The reference contact e is much further
than lm so no TMF signal is expected, which would distort the measurements. Contact
a is grounded and a fixed voltage is applied between contacts a and b and the current
I is measured as well.

The non-local resistance Rnl = Vnl/I is shown in Fig. 7.6a at T = 1.5 K and ambient
pressure as a function of n and B. Above |B| ≥ 0.3 T, SdH oscillations are observed,
which is expected from longitudinal resistance measurements. For |B| ≤ 0.2 T, various
peaks can be observed, which do not resemble SdH oscillations. In a magnetic field the
electrons follow circular trajectories, and the magnetic field required for an injected
electron to reach the collector contact2 as described in Section 2.5.4, is given by

Bj = 2ℏ
√

πnj

eL
, (7.7)

2When the distance between the contacts matches twice the cyclotron radius or its multiples.
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Vc

a

b c d

e

Figure 7.5: Schematic measurement arrangement for TMF on device D. The current
flows between contacts a and b. The current is injected at contact b and contact a is
grounded. Contact c is used as a detector contact. The voltage is measured between
contacts c and e, where the contact e serves as a reference. The black scale bar is 5 µm.

where j = 1, 2, . . . and L is the distance between the injector and collector contacts.
Eq.(7.7) is plotted with black curves in the figure. The location of the peaks in the
range of |B| ≤ 0.2 T follow these lines, indicating that they correspond to TMF. The
first peak comes from the charge carriers which propagate directly from the injector to
the collector, whereas the other peaks correspond to charge carriers which are reflected
from the edge before they reach the collector. For n > 0, positive B focuses the electrons
to the collector, while negative B directs them away from the collector, which leads to
the absence of TMF peaks. For holes, the effect of the magnetic field is reversed, i.e.
negative B results TMF peaks.

The temperature dependence of Rnl is shown in Fig. 7.6b as a function of B at
p = 0 GPa and at a fixed density of n = 1012 cm−2. Two clear peaks are visible,
which correspond to TMF. Higher order peaks are not observed either because the
elastic mean free path is not long enough or the edge roughness, due to the etching
of the shape of the sample, is too large, which leads to random scattering[321]. The
amplitude of these peaks decays by increasing the temperature and completely vanishes
at large temperatures. To quantify this, the area under the first focusing peak A1(T ) is
calculated after removing a linear background, which is fitted on Rnl in the −B range.
Using Eq.(2.94), τeff is calculated, where for A1(Tbase) = A1(T = 1.5 K) is used. τeff is
extracted at n = ±1012 cm−2, which is shown in Fig. 7.6c and in Fig. 7.6d on a log-log
scale as a function of T . By increasing the temperature, τeff decreases linearly in the
log-log scale, as expected. The slope of the linear T dependence of τeff on a log-log
scale gives information about the dephasing of the TMF. If only the electron-phonon
scattering is responsible for the decay of τeff with T , a linear dependency (τ−1

eff ∝ T ) is
expected[180, 232]. However, if the main source of decay is originated from electron-
electron scattering, a quadratic dependence (τ−1

eff ∝ T 2) is expected[233, 234]. Within
the Thomas-Fermi approximation, from the electron-electron interaction, for T ≲ T∗



110 Effect of pressure on the transport properties of SLG

(a) (b)

(c) (d)

Figure 7.6: Magnetic focusing on device A. (a) Rnl as a function of n and B at T = 1.5 K
and p = 0 GPa. The solid lines are the TMF peaks from Eq.(2.92) with L = 3.5 µm. (b)
Rnl after subtracting a linear background at n = 1 · 1012 cm−2 at p = 0 GPa at different
temperatures. (c-d) Extracted effective scattering time as a function of temperature
near n = ±1 · 1012 cm−2 at p = 0 GPa, p = 1 GPa and at p = 2 GPa with black, teal
and red dots, respectively. The solid lines are linear fits. On panel (c) the slope of the
fitted lines are −2.3 ± 0.3, −1.9 ± 0.1 and −1.8 ± 0.1 for p = 0, 1, 2 GPa, respectively.
On panel (d) the slope of the fitted lines are −1.6 ± 0.2, −1.6 ± 0.1 and −1.7 ± 0.1 for
p = 0, 1, 2 GPa, respectively. The blue dashed line in panels (c) and (d) is the calculated
scattering time from e − e interaction using Eq.(7.8).

with kBT∗ = 2vF

√
kF /Lπ, the scattering time can be described by

τ−1
e−e ≈ (kBT )2

2ℏvFkF

log
(3.6L

w

)
, (7.8)

where w is the width of the emitting and collecting contacts3[233]. In the figures, the
solid lines are linear fits, their slope α gives the temperature dependence of τeff ∝ T α.

3For device A, w = 1.3 µm.
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For n = −1012 cm−2, α = −2.3 ± 0.3, which is close to −2, which is expected if the
scattering mechanism is electron-electron scattering. For n = 1012 cm−2, α = −1.6 ±
0.1, which is between −1 and −2 suggesting that both electron-electron and electron-
phonon scatterings contribute to the reduction of the TMF signal. In the figures, the
decay from the electron-electron interaction is also shown with a blue dashed line,
which is calculated with Eq.(7.8). The extracted τeff is close to τe−e and the deviation
is presumably caused by that Eq.(7.8) is an approximation which overestimates the
the scattering rate[233].

The same measurements and extraction of τeff is also performed at p = 1 GPa
and p = 2 GPa, which are shown in Fig. 7.6c and in Fig. 7.6d with teal and red dots,
respectively. The slopes of the curves are very similar, and from the log-log fits, the
extracted αs coincide with the αs at ambient pressure, which means that the pressure
doesn’t change the scattering mechanism.

7.2.3 Weak localization measurements on device A

In disordered samples with sufficiently long phase coherence length lϕ, time-reversed
trajectories can interfere leading to weak localization (WL) as discussed in Section
2.5.1. WL can be used to detect the presence of SOC by observing WAL as discussed in
Section 6.1.3 for BLG/WSe2 devices. Here, as the studied devices are SLG encapsulated
in hBN, the SOC is negligible and WL signal is expected.

On device A, two terminal magnetoconductance measurements are performed at
low out-of-plane magnetic fields between the two farthest contacts (contacts a and e
in Fig. 7.5), which are L2pt =18.7 µm away from each other, much longer than lϕ at
every n. The phase coherence time, due to electron-phonon scattering[180, 186] and
electron-electron scattering in the diffusive regime[322], depends on T −1. In the ballistic
regime, due to electron-electron scattering[200, 323], τϕ depends on T −2. In both cases,
as τϕ decays with T , the WL correction is suppressed. At T = 20 K and above, no WL
signal is observed in this device. Measurements shown here are performed at T = 1.5 K
and a high-temperature background is also measured at T = 20 K, which is subtracted
from the magnetoconductivity. The low-temperature data, before background subtrac-
tion and the high-temperature background is shown separately in Appendix E.3. The
magnetoconductivity δσ(T ) = σ(B, T ) − σ(B = 0, T ), after subtracting the high-
temperature background δσ = δσ(T = 1.5 K) − δσ(T = 20 K) and averaging 37 curves
over a density window of n = 5 · 1011 cm−2, is shown in Fig. 7.7a at ambient pres-
sure near the CNP displaying a typical WL signal. To quantify the scattering times,
Eq.(2.70) is used to fit the data. In the fitting procedure, the diffusion coefficient is
calculated from lm, which is obtained from the conductance measurements, as D is
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Figure 7.7: Weak localization measurements on device A at T = 1.5 K. (a) and (c) Mag-
netoconductance δσ(B) − δσ(B = 0) after removing a high temperature background,
measured at T = 20 K, near the CNP at p = 0 GPa in panel (a) and at p = 2 GPa in
panel (c). The dashed lines are the result of the fit on the data with different bound-
aries for τ∗ using D = 1.27 m2/s. (b) The extracted scattering times as a function of n
at p = 0 GPa and at p = 2 GPa. (d) Scattering lengths as a function of n, calculated
from the scattering times with Li =

√
τiD.

defined as D = vFlm/2[138] and D is averaged over the density window, which is used
to obtain δσ. During the fitting, only the scattering times were the free parameters and
a lower boundary is set to τ∗: 1 fs, 100 fs or 10 ps. The fitting results are also shown in
the figure with dashed curves, labeled with the fitted scattering times. Limiting τ∗ at
both 1 fs and 100 fs gives a good fit, where τ∗ always converges to the lower boundary.
However, setting τ∗ larger than 1 ps results in a bad fit, which suggests that τ∗ is in the
1 − 100 fs range. From the fits, the intervalley scattering time is τiv = 11 ± 3 ps. The
phase coherence time is τϕ = 3.7 ± 0.6 ps, which is smaller than τiv in device A, which
is common for SLG samples[201, 202].

Similar measurements and fitting to n = 0 is performed at different charge densities
and the result is shown in Fig. 7.7b. The fitting parameters that correspond to the lowest
bound of τ∗ = 1 fs are shown here. τiv is shown with red error bars and the lines between
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them are guides to the eye. A small dependence of the intervalley scattering time on the
density can be observed, which is similar to the n dependence of τm. I also calculated
the intervalley scattering length Liv =

√
Dτiv, which is shown in Fig. 7.7d. Liv is found

to be in the same order as the width of the sample. The intervalley scattering time
is related to short-ranged scatterers such as atomically sharp impurities or the edge
of the sample and for high-quality devices usually the edges are the dominant source
of intervalley scattering[138, 324]. From the extracted Liv values in device A, which
width is 3.9 µm, the intervalley scattering is caused mainly by the sample edges. The
phase coherence time, which is plotted with black error bars, is related to inelastic
electron-electron scattering and electron-phonon scattering. By increasing n, τϕ is also
increasing which is consistent with Refs.[200, 322, 323, 325].

Similar measurements and analysis are performed at p = 2 GPa, but no high tem-
perature background is subtracted. At n = 0, δσ is shown in Fig. 7.7c as a function
of B. Similarly to p = 0 GPa, WL is observed. It is fitted in similar τ∗ ranges: for τ∗

in the range of 1 − 100 fs, Eq.(2.70) fits the data very well and the large τ∗ gives a
bad result. I found that both τϕ and τiv decreased under pressure. δσ is measured also
at different densities at p = 2 GPa, which are processed similarly to p = 0 GPa. The
results are plotted in Fig. 7.7b. The intervalley scattering time is shown with blue error
bars with a guiding dashed curve. Altogether, the charge density dependence of τiv at
2 GPa is similar at p = 0 GPa, but a small decrease of τiv can be observed. In Fig. 7.7d,
Liv is shown with blue error bars at p = 2 GPa. It is still comparable to the sample
width, but it gets smaller by applying hydrostatic pressure, which is a signature of the
increased effect of atomically sharp defects. The coherence time, which is shown with
magenta error bars in Fig. 7.7b, is also reduced by increasing the pressure. However, a
similar n dependency is observed at p = 0 GPa, as excepted.

All in all, from the WL measurements, I found that the intervalley scattering time
is long and remains long under pressure, and that its origin is most likely the edge of
the sample. I also found that all scattering time decreased under pressure following the
momentum scattering time.

7.2.4 Suppression of WL in an in-plane magnetic field on de-
vice C

At the end of section 2.5.1, the effect of in-plane magnetic field on the phase coher-
ence time is discussed. Due to corrugations and ripples, an applied in-plane magnetic
field has also out-of-plane magnetic field components, which can be interpreted as ran-
dom vector potentials that lead to dephasing[201, 202]. As B∥ increases the dephasing,
measurement of τϕ as a function of B∥ gives details about out-of-plane corrugations of
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the system.

(a)

(c)

(b)

Figure 7.8: WL in-plane magnetic field dependence of device C. (a-b) δσ = σ(B) −
σ(B = 0) magnetoconductivity as a function of B at various in-plane magnetic fields
(B∥) at T = 1.5 K, n = 1.25 · 1012 cm−2, (a) at p = 0 GPa and (b) at p = 2 GPa.
The black dashed lines correspond to global fits on the data, which results τ∗ = 1 fs
and τiv(p = 0) = 6.7 ± 0.4 ps with D(p = 0) = 1.27 m2/s for p = 0 GPa in panel (a)
and τ∗ = 1 fs and τiv(p = 2 GPa) = 3.6 ± 0.8 ps with D(p = 2 GPa) = 0.76 m2/s for
p = 2 GPa in panel (b). (c) Extracted τ−1

ϕ as a function of B2
∥ at 0 and 2 GPa pressures.

The dephasing rate depends linearly on B2
∥ according to Eq.(2.72). The solid lines are

line fits which gives Z2R = 25 ± 3 nm3 for p = 0 GPa and Z2R = 47 ± 15 nm3 for
p = 2 GPa.

Magnetotransport measurements are performed on device C. From the device, an
optical micrograph is shown in Fig. 7.1c. It is a similar hBN/SLG/hBN device etched
into a Hall bar like device A. The magnetoconductivity δσ = σ(B)−σ(B = 0) is shown
in Fig. 7.8a at n = 1.25 · 1012 cm−2, at T = 1.5 K and at ambient pressure as a function
of B at different in-plane magnetic fields (B∥). The curves show WL behavior. By
increasing B∥ from 0 to 1 T, shown by yellow to purple curves, the magnetoconductivity
drops at larger Bs. To quantify the decrease, a global fit is performed on the data using
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Eq.(2.70) to extract τϕ(B∥) such that, at a fixed charge density, δσ is fitted as a function
of B at different in-plane fields simultaneously, where τ∗ and τiv are assumed to be
independent of B∥ and only τϕ is assumed to depend on B∥. The diffusion coefficient
for the fitting is calculated from lm. The results of the fitting are shown with black
dashed lines in the figure. Similarly to the WL measurements on device A, the best fits
on the data is acquired with τ∗ = 1 fs. The fitted τiv(p = 0) = 6.7 ± 0.4 ps is similar to
the fitted τiv on device A. From τiv, Liv(p = 0) = 2.9 ± 0.3 µm, which is comparable to
the sample width (W =3.4 µm) like in device A, thus the intervalley scattering is most
likely caused mainly by the sample edges.

Real systems exhibit corrugations such as ripples and wrinkles. These corrugations
are usually Gaussian correlated and can be parametrized with the RMS height fluctua-
tion (Z) and the in-plane correlation length (R). Due to these corrugations, an applied
in-plane magnetic field has an out-of-plane component, which leads to dephasing as
discussed at the end of section 2.5.1. From Eq.(2.72), the total dephasing rate τ−1

∥ is
proportional to B2

∥ . The dephasing rate τ−1
ϕ from the fitting is shown in Fig. 7.8c as a

function of B2 with black error bars. A linear tendency is observed, as expected from
Eq.(2.72). A linear fit of τ−1

ϕ on B2
∥ is shown with a black line in the figure. From the

slope, the corrugation volume Z2R is extracted using Eq.(2.72). The extracted vol-
ume Z2R = 25 ± 3 nm3 fits in range of previously reported values between 1.6 nm and
156 nm[201, 202].

Similar magnetotransport measurements are performed under 2 GPa hydrostatic
pressure. The magnetoconductivity δσ is shown in Fig. 7.8b at n = 1.25 · 1012 cm−2, at
T = 1.5 K and at p = 2 GPa as a function of B at different in-plane magnetic fields
(B∥). A similar tendency is observed at ambient pressure: δσ is decreasing by increasing
B∥. A similar analysis is performed, and the best result is also obtained with τ∗ = 1 fs.
From the fit, the extracted τiv(p = 2 GPa) = 3.6 ± 0.8 ps decreases with pressure, and
Liv(p = 0) = 1.7±0.2 µm is considerably smaller than the sample width, which implies
that the effect of atomically sharp impurities is enhanced with pressure.

The dephasing rate is shown in Fig. 7.8c as a function of B2 with red error bars
for p = 2 GPa. Overall, the dephasing rate is increased with pressure similar to device
A. A linear fit is shown with a red line in the figure, which gives Z2R = 47 ± 15 nm3

for p = 2 GPa. The increase of the corrugation volume with pressure implies that
the ripples or wrinkles in the device are increased. This is a counter-intuitive finding,
as the hydrostatic pressure compresses the volume of a solid and if it is isotropic,
the shape remains unchanged. A possible explanation is that, as the the sample is
pressed and the hBN layer is pushed closer to the graphene, the corrugations are
wrinkled, leading to an increased number of wrinkles and crumples, which increases
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the average corrugation volume. As the wrinkle size is increased, the scattering region
is increased, which results in more scatterers that reduce the phase coherence time and
the mobility of the device consistently with the zero magnetic field measurements, which
are discussed in Appendix E.2 for this device. Similar measurements are performed on
device D, which are discussed in Appendix E.4. From those measurements, an increase
in the corrugation volume is also observed consistently with the findings in device C.

7.3 Temperature-dependent transport and the role
of RIP scattering

At large temperatures (typically above T ⪆ 20 K), as it is discussed in Section
2.4.3, the electron-phonon scattering mechanisms start to dominate the resistance[177,
178, 180]. In graphene devices, the main phonon scattering mechanisms are the
acoustic[180, 184] and optical[190] phonon scattering and also the remote interfacial
phonon (RIP) scattering[326–329], which originates from the polar optical modes of
the substrate. Below the Bloch-Grüneisen temperature (TBG), the contribution to the
resistivity of acoustic phonon-electron interaction is linear in temperature (ρA = γT )
and independent of charge density. The scattering due to optical phonons of graphene
becomes important above T ≳ 270 K[190], which is around the top of the measurement
range presented here, thus it is neglected in the following. The third phonon scattering
mechanism, the RIP scattering originates from the hBN layers, which encapsulate the
graphene in the devices studied here. The scattering due to RIP of hBN can be well
described with Eq.(2.66). The combined effect of the scattering mechanisms on the
resistivity in our measurement range can be described with

ρ(T, n) = ρ0(n) + γT + B

nα

( 1
eℏω1/kBT − 1 + S

eℏω2/kBT − 1

)
, (7.9)

where the first term, the residual resistance of ρ0, describes the low-temperature resis-
tance of the device, the second term describes the charge carrier scattering on acoustic
phonons and the third term is the resistance contribution from RIP scattering, where
ω1,2 are the strongest surface optical phonon modes, and S is the ratio of their coupling
strength. In Eq.(7.9), the T dependence of ρ0 is neglected, which is valid only away
from the CNP. For example, if n ≥ 1011 cm−2, the Fermi temperate is TF ≥ 1 000 K,
and in our temperature range this results a negligible T dependency of the short-range
and long-range scattering as discussed in Section 2.4.3.

The resistivity as a function of the temperature at a series of charge densities at
ambient pressure of device A is shown with dots in Fig 7.9a. ρxx follows a superlinear



Temperature-dependent transport and the role of RIP scattering 117

(a) (b)

Figure 7.9: Temperature dependence of the resistivity of device A. (a) The resistivity at
some densities as a function of the temperature at ambient pressure plotted with dots.
The red and blue dashed lines are the result of the global fit with fixed polar optical
surface frequencies for the electron and hole regimes, respectively. (b) ∆ρxx = ρxx − ρ0
as a function of temperature at n = −0.8 · 1012 cm−2 and at p = 0 GPa, p = 1 GPa
and p = 2 GPa plotted with black, teal and red dots, respectively. The dashed lines are
global fits at different pressures.

tendency: below T ≲ 140 K, ρxx has a linear T dependence, which is attributed to
acoustic phonon scattering. At higher temperatures, the resistance becomes non-linear
due to the RIP scattering. To quantitatively analyse the data, ρ0 is subtracted from
the resistivity, and their difference ∆ρxx = ρxx − ρ0, which is shown with black dots as
a function of the temperature at n = −0.8 · 1012 cm−2 in Fig 7.9b, is fitted. During the
fitting, Eq.(7.9) is used to fit ∆ρxx on the charge density and temperature dependence
simultaneously. The fitting involved the following steps:

1. ρ0 is determined by fitting a line on the linear regime (20−115 K) and the constant
part is taken as ρ0.

2. ∆ρxx is fitted with Eq.(7.9) on the charge density and temperature dependence
simultaneously in the temperature range of 20 − 285 K and in the charge density
range of [−11, −7] · 1011 cm−2 and [7, 11] · 1011 cm−2. The fitting parameters are
B and γ. α is chosen arbitrarily (α = 1). S, ω1 and ω2 is fixed, and their value is
calculated below.

3. From the previous step γ is used to calculate ρRIP = ρxx − ρ0 − γT . At a fixed
temperature, a linear curve is fitted on ln(ρRIP) as a function of ln(|n|) in the
density range used in the previous step. The slope of the fitted line determines
α.

4. ∆ρxx is fitted with Eq.(7.9) on the charge density range of [−11, −7] · 1011 cm−2
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and [7, 11] · 1011 cm−2 and the temperature range of 20 − 285 K. The fitting pa-
rameters are B and γ. α used here is obtained in the previous step.

ρRIP is recalculated from the parameters of step 4, and its logarithm is shown as a
function of ln(|n|) in Fig. 7.10 at T = 240 K. A linear tendency is expected with the
slope of α in the range where Eq.(2.66) is valid. The tendency is linear at larger densi-
ties, where the fitting is performed. However, at lower densities, the resistivity deviates.
This deviation from linear tendency at small densities is also present in theory[326, 330].
For consistency check, a linear fit is performed, which result in the same value for α as
obtained in step 3. By performing the same analysis at different temperatures, I observe
that, α varies within a small range, which determines the uncertainty of α. At the hole
regime (Fig. 7.10a), α(p = 0) = 1 ± 0.1, which is in range of the experimentally ob-
served values[178, 191, 192] and in the theoretically expected range of [0.5, 1][326, 330].
At the electron regime, which is shown Fig. 7.10b, ln(ρRIP) is slightly non-linear in
our measurement range4, and the fitting gives an unreliable result. For the sake of
completeness, near the largest measured densities, I obtain α(p = 0) = 0.9 ± 0.2.

(a) (b)

Figure 7.10: Logarithm of the longitudinal resistivity after subtracting the residual
resistivity and the resistivity contribution of the acoustic phonons as a function of the
logarithm of the charge density at T = 240 K of device A is shown with black, teal and
red lines at 0, 1 GPa and 2 GPa, respectively. The blue dashed lines are linear fits on
the linear regime of the curves. (a) ln(ρRIP) at n < 0. From the slope of the fitted lines
α(p = 0) = 1±0.1, α(p = 1 GPa) = 1.1±0.1 and α(p = 2 GPa) = 1.1±0.1. (b) ln(ρRIP)
at n > 0. From the slope of the fitted lines α(p = 0) = 0.9±0.2, α(p = 1 GPa) = 0.8±0.2
and α(p = 2 GPa) = 1 ± 0.2.

The lower limit in step 2 and step 4 is chosen at n = ±7 · 1011 cm−2, as at smaller
densities, the RIP contribution to the resistivity starts to deviate from Eq.(7.9)[193],
which can also be seen in Fig. 7.10.

4At different temperatures it is more non-linear, which is not shown.
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During the fitting (in step 2 and step 4), ω1,2 and S is calculated using Eq.(D.4)
where the dielectric response function of the top and bottom dielectric is the same (both
are hBN) and equal to the dielectric function of the hBN ϵtop(ω) = ϵbottom(ω) = ϵhBN(ω),
which results the equation of

2ϵhBN(ω) = 0. (7.10)

Substituting Eq.(D.1) in Eq.(7.10) with the parameters of hBN, which are ϵ0
hBN = 5.09,

ϵ∞
hBN = 4.1, ϵi

hBN = 4.58, ℏωT O1 = 97.08 meV and ℏωT O2 = 187.22 meV[328, 331] leads
to

0 = ϵ∞
hBN +

(
ϵ0

hBN − ϵi
hBN

) ω2
T O1

ω2
T O1 − ω2 +

(
ϵi

hBN − ϵ∞
hBN

) ω2
T O2

ω2
T O2 − ω2 , (7.11)

which has two solution for ω that gives the surface optical phonon modes. The solutions
are ℏω1 = 102.13 meV and ℏω2 = 198.29 meV. The ratio of the coupling strengths of
the surface optical modes is calculated from Eq.(D.5) as

S = ω2

ω1

(
1

ϵ∞
hBN + ϵi

hBN
− 1

2ϵi
hBN

)
/

(
1

2ϵi
hBN

− 1
ϵ0

hBN + ϵi
hBN

)
, (7.12)

which gives S = 2.04.

(a) (b)

Figure 7.11: The extracted fitting coefficients of the global fitting of ∆ρxx(T, n) with
Eq.(7.9) as a function of pressure on device A in the hole regime. Coefficients of γ and
B are shown in panel (a) and (b), respectively.

The result of the global fitting with α = 1, which is obtained from the third step
of the fitting, is shown in Fig. 7.9a with red and blue dashed lines for the electron
and hole regime, respectively and is also shown in Fig. 7.9b with a black dashed line
at n = −0.8 · 1012 cm−2. The fitted curves follow the measured data except below
T ≲ 10 K, which outside of the fitting regime. In that region, T < TBG, and the linear
T dependency of the acoustic phonon-electron coupling is no longer valid (see Section



120 Effect of pressure on the transport properties of SLG

2.4.3). A small deviation is also expected from other temperature dependent scattering
mechanisms such as short and long-ranged scattering, which is discussed in Section
2.4.3. The fitted parameters for the hole side are shown in Fig. 7.11 with blue markers.
The uncertainty of the fitting parameters comes from the uncertainty of the fitting and
their deviation by varying the fitting range in n and T . From γ, which is shown in
panel (a), the acoustic deformation potential DA can be extracted using Eq.(2.64). By
substituting ρm = 7.6 · 10−7 kg/m−2 and vph = 2 · 104 m/s[185], DA = 15.7 ± 0.1eV. The
obtained acoustic deformation potential is in range of the previously obtained values
in the literature[143, 177, 178, 180–183]. The parameter B is shown in Fig. 7.11b. In
case of α = 1, according to Eq.(S12) in Ref.[193], B can be estimated with

B = g1

4ℏv2
Fd(

√
2 + a2)2

, (7.13)

where d is the interlayer distance of hBN and graphene, a = e2/ϵavgπℏvF is a dimension-
less constant with ϵavg = ϵ0

hBN and g1, which is the electron-phonon coupling strength,
which is twice of Eq.(D.5), because of the two hBN layers, given as

g1 = ℏω1

ϵ0

(
1

2ϵi
hBN

− 1
ϵ0

hBN + ϵi
hBN

)
. (7.14)

As the only unknown parameter in Eq.(7.13) is the interlayer distance, d can be esti-
mated from B. From the fitting, d = 3.1±0.2Å, which is in the range of the theoretically
expected value of 3.24Å[332, 333] between the hBN and the graphene.

To study the pressure dependence of the electron-phonon interaction, similar mea-
surements are made at p = 1 GPa and at p = 2 GPa. ∆ρxx is shown in Fig 7.9b as a
function of the temperature at n = −0.8 · 1012 cm−2 at p = 1 GPa and at p = 2 GPa
with teal and red dots, respectively. At intermediate temperatures, where the acoustic
phonons dominate the transport, the curves coincide, from which I expect only a very
small pressure dependence of the acoustic phonon-electron coupling. An increase of the
resistance with pressure can be observed at larger temperatures, where the RIP scat-
tering starts to dominate the transport, from which it is expected that, the pressure
increases the effect of the RIP scattering.

To perform similar fitting as at ambient pressure, with the only free parameters
of B and γ, the pressure dependence of the polar surface phonon frequencies and
the ratio between them is calculated from the pressure dependence of the dielectric
function and the TO modes of the hBN. The pressure dependence of the dielectric
constant is ϵhBN(p) ≈ ϵhBN(p = 0) + 0.047p, where p is in GPa[334]. The pressure
dependence of the TO phonon modes is calculated with ωTOi(p) = ωTOi(p = 0) + cip,
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p (GPa) 0 1 2
ℏω1 (meV) 102.13 101 99.98
ℏω2 (meV) 198.29 198.68 199.07

S 2.04 2.06 2.09

Table 7.2: Calculated surface optical phonon frequencies of a hBN/SLG/hBN het-
erostructure with Eq.(7.11) and ratio of their coupling strengths using Eq.(7.12) at
different pressures. The pressure dependency of the parameters of the hBN is taken
from Ref.[334].

where c1 = −1.03 meV/GPa5 and c2 = 0.5 meV/GPa6, which are determined from pres-
sure dependent Raman measurements in Ref.[334]. From these, the calculated surface
polar modes and the ratio between them are collected in Table 7.2. With the calculated
parameters, the fitting procedure is performed at each pressure, where I fixed α = 1 as
within the range of uncertainty, step 3 gives α = 1 also at finite pressures. The result
of the fitting is shown with dashed lines in Fig 7.9b.

The fitted parameters at p = 1 GPa and p = 2 GPa are shown in Fig. 7.11 for the
hole regime. γ, which is shown in panel (a), shows a decreasing tendency, however,
within the uncertainty of the fits it is insensitive to pressure. As γ is inversely propor-
tional to the mass density of graphene, a small decrease of γ is expected during com-
pression. However, since the acoustic deformation potential is inversely proportional to
the lattice constant of graphene[180, 187], a small increase of γ is also expected.

An increasing tendency of B can be observed with pressure as shown in Fig. 7.11b.
The increase of B is expected from Eq.(7.13). The estimated interlayer distance from
B in the hole regime results d(p = 1 GPa) = 2.7±0.2Å and d(p = 2 GPa) = 2.5±0.2Å.
The decreasing tendency of the interlayer distance with pressure is consistent with the
theory[335]. However, in the measurements, the decrease is larger than an averaged
interlayer distance decrease with pressure in DFT calculations in Ref.[335].

Similar measurements are also performed in device D, which is discussed in Ap-
pendix E.7. The results are similar to in device A in this section: the main finding is
that the pressure enhances the RIP coupling (B), and the acoustic phonon-electron cou-
pling (γ) is independent of the pressure within the uncertainty of our measurements.
I note that, in other devices and in the electron regime, no clear linear behavior is
observed thus the fitting procedure presented in this section could not be done reliably.

5The phonon mode of A2u(TO).
6The phonon mode of E1u(TO).
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7.4 Conclusion

In conclusion, in high-mobility hBN/SLG/hBN devices, the long-range scattering
is the main contribution to the resistivity at small temperatures, which can come from
charge impurities far from the graphene or from corrugations. At finite pressures, I
found that by increasing the pressure, the mobility decreases due to the increase of
the scattering rates of both short- and long-ranged scatterers. From in-plane mag-
netic field-dependent WL measurement I found that the volume of ripples increased
with pressure, which is an indication of the enhanced scattering of electrons on rip-
ples with pressure. At finite temperatures, from TMF experiments, I found that the
electron-electron scattering and the acoustic phonon-electron scattering are insensitive
to pressure. The latter is also verified with zero-magnetic field transport measurements.
Finally, it is found that the RIP scattering is enhanced with pressure, which further
decreases the mobility at large temperatures. These results can be important in un-
derstanding the main source of the pressure-dependent conductivity for novel devices
such as graphene-based pressure sensors.



8. Chapter

Summary

Pressure offers a versatile tool to investigate and tune the properties of van der
Waals (vdW) heterostructures as in these structures the interlayer vdW forces are much
weaker than the covalent bonds, which allows an efficient modulation of the interlayer
spacing[38]. As the properties of the vdW heterostructures are highly affected by the
interlayer interactions, with pressure their properties can be tuned. This thesis mainly
focuses on the effect of hydrostatic pressure applied on graphene-based van der Waals
materials. The vdW materials are investigated with electrical transport measurements.
I focus on the electronic and transport properties such as the evolution of the band
gaps, the change of the spin-orbit coupling strength and the change of the scattering
mechanisms by applying hydrostatic pressure.

In the first part of the thesis, I give a brief introduction to graphene and the
band structure of twisted bilayer graphene along with a short description of the most
relevant transport properties of graphene and the phenomena behind the transport
measurement methods used in this thesis. In Chapter 3, I give a brief summary of
experimental methods, such as sample fabrication and low-temperature measurements.

The electronic properties of twisted double bilayer graphene around the magic an-
gle are investigated under pressure in Chapter 5. From both thermal activation and
bias voltage-dependent measurements, I extracted the single-particle moiré gaps, which
were found to decrease and fully close by increasing the pressure. To verify this theoret-
ically, I calculated the pressure dependence of the moiré band gaps with the Bistritzer-
MacDonald model in Chapter 4, which qualitatively agreed with the experiments. From
magnetotransport measurements, I verified the insensitivity of the twist angle to pres-
sure by analyzing the Brown-Zak oscillations. Moreover, I also observed the signature
of the decrease of the correlations, as at the half filling the gaps due to correlations
close with pressure and I also observed an unusual magnetic field dependence of the
gap at the charge neutrality.

The proximity-induced spin-orbit coupling in WSe2 and BLG-based heterostruc-
tures is investigated under hydrostatic pressure in Chapter 6. The heterostructures
are studied with low-temperature magnetotransport measurements. From Shubnikov-
de Haas oscillations, I observed two Fermi surfaces of the spin split bands due to the
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SOC. I calculated the low-energy band structure of the heterostructure in Chapter 4,
which I used to calculate the Fermi surfaces at finite SOC. I found that at large charge
densities, the difference of the bands is mostly determined by the Rashba-type SOC.
To obtain the Rashba-type SOC strength, I fitted the model on the experiments where
I found a large increase of the coupling strength with increasing pressure. I also ob-
tained the Ising-type coupling strength from quantum Hall measurements. For this, I
measured the positions of the Landau level crossings at different magnetic fields. I cal-
culated the Landau level energies numerically and fitted the measured crossing points
at ν = ±3 filling factor to obtain the Ising-type SOC, which increased a large amount
with applying pressure.

The transport properties of high-mobility devices, made of single-layer graphene,
which is encapsulated within hBN crystals, are investigated under pressure in Chapter
7. From field effect measurements, I observed that the main scattering mechanism that
is responsible for the resistance of graphene at low temperatures is the long-ranged scat-
tering and it remains dominant under pressure. I also verified this with Shubnikov-de
Haas oscillation measurements. I observed an increase in both the short- and long-range
scattering by increasing the pressure, which led to a decrease in the mobility of the
charge carriers. I observed with weak localization measurements the increase of the vol-
ume of ripples by increasing the pressure, which is consistent with the increased scatter-
ing rates with pressure. I also observed in the weak localization measurements that the
short-range scattering is mainly due to the sample edges and their pressure dependence
is negligible. I observed in magnetic focusing experiments, that the pressure doesn’t
change the scattering mechanism and has a negligible effect on the combined contri-
bution of the electron-electron interactions and the acoustic phonon-electron coupling
to the dephasing of the magnetic focusing signal. With temperature-dependent field
effect measurements, I observed that the acoustic phonon-electron coupling has neg-
ligible pressure dependence and I showed that the remote interfacial phonon-electron
coupling increases with pressure.

The experimental findings in this thesis give an insight into how important the
interlayer interactions are in vdW heterostructures and their tunability with pressure.
In the near future, I believe a vast amount of similar studies on various heterostructures
will be executed especially focusing on twisted structures, where most of their properties
are the result of the interlayer coupling. I believe that these results will be beneficial
in the field of graphene, especially in graphene spintronics and twistronics.



Thesis points

1. I showed for the first time the extensive tunability of the moiré gaps of
twisted double bilayer graphene with pressure in agreement with the
theory. I performed temperature and bias voltage-dependent transport experi-
ments. From the thermal activation and bias voltage-dependent measurements, I
measured the moiré gaps of a TDBG near the magic angle and showed that the
moiré gaps in a TDBG can be decreased and fully closed by applying hydrostatic
pressure. Furthermore, I showed by measuring Brown-Zak oscillations that, the
twist angle doesn’t change with pressure. Finally, I also observed a decrease in
the correlation effects by increasing the pressure. [T1]

2. I showed for the first time in WSe2/BLG heterostructures the en-
hancement of the proximity-induced Rashba-type and Ising-type SOC
with hydrostatic pressure in agreement with the theory. I made low-
temperature magnetic field-dependent experiments. In the experiments, I used
the Shubnikov-de Haas oscillations to obtain the Rashba-type SOC strength,
and I used the quantum Hall effect to obtain the Ising-type SOC strength by
measuring the positions of the Landau level crossings. I showed that with pres-
sure, the positions of the crossing points change and also I showed that the
pressure increases the splitting of the Fermi surface, which is due to the lifted
spin-degeneracy of the SOC. From these, I found that the spin-orbit coupling
strength increased by more than 50% under pressure. [T2]

3. I showed the decrease and closing of the moiré gaps in twisted dou-
ble bilayer graphene with pressure with simulations, which showed a
good agreement with the experiments. I simulated the change of the
Fermi surfaces of WSe2/BLG heterostructures by varying the Rashba-
type SOC and I calculated the change of the Landau level crossings by
varying the Ising-type SOC, which I used to obtain the SOC strengths
by fitting the experimental data with my simulations. I successfully ap-
plied the Bistritzer-MacDonald model on twisted double bilayer graphene, where
I used the pressure dependence of the interlayer tunneling from the literature to
calculate the band structure at different pressures. I found that, by increasing
the pressure, the moiré gaps decrease and fully close, which is in good agreement
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with my experiments. In the case of WSe2/BLG heterostructures, I calculated
band structure from a low-energy model. From the band structure, I calculated
the Fermi surfaces at different Rashba-type coupling strengths. Then I fitted
the experimentally obtained Fermi surfaces with the model and obtained the
Rashba-type SOC strength. From the low-energy model of the heterostructure,
I calculated numerically the Landau level energies as a function of an applied
external electric field. I calculated the change of the positions of the Landau
level crossing by varying the Ising-type SOC strength. I fitted the model on the
experimentally determined Landau level positions and obtained the Ising-type
SOC strength. Furthermore, I also modeled a WSe2/BLG/WSe2 heterostructure,
where the Ising-type SOC is the opposite of the two graphene layers. I found
that, by increasing the electric field, the SOC-induced gap closes and reopens,
and the closing point could be used to obtain the Ising-type SOC strength. [T1,
T2, T3]

4. I showed that the mobility of charge carriers in high-mobility single-
layer graphene decreases with pressure due to the increased short-
range and long-range scattering and also the increased effect of re-
mote interfacial phonon coupling with hydrostatic pressure. From field
effect and Shubnikov-de Haas oscillations measurements, I showed that in high-
mobility devices, the long-range scattering is the main source of the resistance
and it remains dominant under pressure. From weak localization measurements,
I found that in high-mobility devices, the short-range scattering is mainly caused
by the edges of the sample which is insensitive to the pressure. I showed with
in-plane magnetic field-dependent weak localization measurements, that the vol-
ume of the corrugations increased by increasing the pressure. From field effect
measurements, I showed the increase of short-range and long-range scattering
with pressure. From temperature-dependent magnetic focusing experiments, I
found that the pressure has a negligible effect on the combined effect of the
electron-electron interactions and the acoustic phonon-electron coupling. From
temperature-dependent field-effect transport measurements, I showed that the
remote interfacial phonon-electron coupling increases with pressure. [T4]
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A. Appendix

Fabrication processes

A.1 Assembly of van der Waals heterostructures

1. A PC film is prepared on a glass slide: a drop of PC solution is dripped on the
glass slide then with a second glass slide the solution is dispersed homogeneously
on both slides by pressing them together. The PC is dissolved in chloroform, and
the solid content is ∼ 3 %.

2. The thin PC layer is transferred on a PDMS cube mounted on a glass slide with
scotch tape. The PDMS is made from two parts: Sylgard 184 base and EPS cure
with a rate of 10:1.

3. Exfoliate the crystals on a Si/SiO2 substrate

4. Pick up the layers with the PC stamp at 60 − 100 °C

5. Stamp the completed stack on a Si/SiO2 substrate by heating it to 180 °C

6. Anneal the stack at 180 °C for 5 min

7. Remove the PC with chloroform ∼ 10 min

A.2 EBL and development

Most commonly polymers are used as resist like poly(methyl-methacrylate)
(PMMA). The PMMA is dissolved in ethyl-lactate. Here I gave a recipe for a 300 nm
thick PMMA coating. PMMA 600K is used with a solid content of 4.7%. The receipt
for EBL is:

1. Clean the wafer and preheat it for about 1 min at 180 °C. Let it cool down.

2. Spin-coat PMMA (for 300 nm 4000 rpm for 40 sec.) Bake at 180 °C for 3 min.

3. Expose the sample with electron beam (U=20 keV, Dose≈560 µC cm−2 for cold
development and Dose≈360 µC cm−2 for MIBK:IPA

4. Cold-development in IPA:H2O (7:3 ratio) at 0 °C for 60 sec then blow-dry
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The regular developer is MIBK:IPA (1:3) for 60 sec, and then the stopper is IPA for
30 sec. However, the PMMA can be cracked on the heterostructures. To avoid it, a
low-stress developer like the IPA:H2O is advised[336].

A.3 Evaporation of contacts and top gates

To contact the graphene, Cr is used. For the top gate, Ti is used as an adhesive
layer.

1. EBL and development

2. Evaporate 5+10 nm Cr (rate: 1 Å/s). The first 5 nm with a closed sample shutter
to clean the surface of the metal.

3. Evaporate 80-110 nm Au (rate: 4-5 Å/s)
For the Ti adhesive layer, the receipt is the same as the receipt for Cr (5+10 nm with
1 Å/s).

A.4 Reactive ion etching

A.4.1 CHF3/O2 plasma

Parameters are CHF3/O2 (40/4 sccm), P = 60 W, pwork = 60 mTorr, pbase = 5 ·
10−5 mbar and T = 20 °C. This is used to define the edge contacts. The etching rates
are

SiO2: ∼ 10 nm/min

PMMA: ∼ 50 nm/min

graphite: ∼ 7 nm/min

hBN: ∼ 25 nm/min

WSe2: ∼ 24 nm/min

A.4.2 SF6/Ar/O2 plasma

Parameters are SF6/Ar/O2 (50/5/5 sccm), P = 60 W, pwork = 25 mTorr, pbase =
5 · 10−5 mbar, T = 20 °C and t = 30 sec. This is used to shape the device. The etching
rates are

SiO2: ∼ 14 nm/min

PMMA: ∼ 170 nm/min

graphite: ∼ 12 nm/min
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hBN: > 200 nm/min

WSe2: > 200 nm/min

A.4.3 Ar/O2 plasma

Parameters are Ar/O2 (22/8 sccm), P = 30 W, pwork = 25 mTorr, pbase = 5 ·
10−5 mbar and T = 20 °C. The etching rates are

SiO2: < 2 nm/min

PMMA: ∼ 70 nm/min

graphite: ∼ 10 nm/min

hBN: < 2 nm/min

WSe2: < 2 nm/min

A.4.4 SF6 plasma

Parameters are SF6 (40 sccm), P = 30 W, pwork = 30 mTorr, pbase = 5 · 10−5 mbar
and T = 20 °C. The etching rates are

PMMA: ∼ 80 nm/min

graphite: < 1 nm/min

hBN: > 200 nm/min

WSe2: > 200 nm/min

A.4.5 AlOx deposition

The AlOx layer is deposited with atomic layer deposition (ALD). The recipe for a
30 nm thick layer is 300 cycles, T = 225 °C, two components: water and TMA. Before
the deposition, a 2 min O2 plasma cleaning at P = 60 W is done.



B. Appendix

Derivation of LL energies in BLG

The ladder operators act on the Landau level wavefunctions as â |n⟩ =
√

n |n − 1⟩
and â† |n + 1⟩ =

√
n + 1 |n + 1⟩. To solve Eq.(4.3), the same ansatz can be used as in

Ref. [270]:

|+, n, sz⟩ = (|A1, ↑⟩ |n⟩ , |A1, ↓⟩ |n − 1⟩ , |B1, ↑⟩ |n − 1⟩ , |B1, ↓⟩ |n − 2⟩ , (B.1)

|A2, ↑⟩ |n − 1⟩ , |A2, ↓⟩ |n − 2⟩ , |B2, ↑⟩ |n − 2⟩ , |B2, ↓⟩ |n − 3⟩) ,

|−, n, sz⟩ = (|A1, ↑⟩ |n − 2⟩ , |A1, ↓⟩ |n − 3⟩ , |B1, ↑⟩ |n − 1⟩ , |B1, ↓⟩ |n − 2⟩ ,(B.2)

|A2, ↑⟩ |n − 1⟩ , |A2, ↓⟩ |n − 2⟩ , |B2, ↑⟩ |n⟩ , |B2, ↓⟩ |n − 1⟩) .

Using these, the LL energies for n ≥ 3 are given by the eigenvalues of Hξ
n≥3 + HZ with

the matrices of
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where ℏωi = vi

√
2eBℏ is introduced for simplicity and HZ = EZsz.

Using the ansatz also allows to obtain the zeroth LLs from the following Hamil-
tonians. For n = 0, the solution is given by HK

0 = (u + λb
I)/2 + EZ and HK′

0 =
−(u + λt

I)/2 + EZ . For n = 1, the solution is given by

H
K
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For n = 2, the matrices can be written as

H
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H
K′
2 =


1
2 (u − λb

I ) −ℏω0 iλb
R ℏω4 0 0 0

−ℏω0 1
2 (u − λb

I ) + ∆′ 0 γ1 0 ℏω4
√

2 0
−iλb

R 0 1
2 (u + λb

I ) + ∆′ 0 γ1 0 ℏω4
ℏω4 γ1 0 1

2 (−u − λt
I ) + ∆′ 0 −ℏω0

√
2 iλt

R
0 0 γ1 0 1

2 (−u + λt
I ) + ∆′ 0 −ℏω0

0 ℏω4
√

2 0 −ℏω0
√

2 0 1
2 (−u − λt

I ) 0
0 0 ℏω4 −iλt

R −ℏω0 0 1
2 (−u + λt

I )

+H
K′
2Z ,

(B.6)

where

H
K
2Z =


EZ 0 0 0 0 0 0

0 −EZ 0 0 0 0 0
0 0 EZ 0 0 0 0
0 0 0 −EZ 0 0 0
0 0 0 0 EZ 0 0
0 0 0 0 0 −EZ 0
0 0 0 0 0 0 EZ

 and H
K
2Z =


EZ 0 0 0 0 0 0

0 EZ 0 0 0 0 0
0 0 −EZ 0 0 0 0
0 0 0 EZ 0 0 0
0 0 0 0 −EZ 0 0
0 0 0 0 0 EZ 0
0 0 0 0 0 0 −EZ

 .

(B.7)



C. Appendix

Further details about BLG/WSe2

heterostructures

Further details and measurements on BLG/WSe2 heterostructures are presented in
this appendix.

C.1 Further details of device A

The optical image of the flakes is shown in Fig C.1. From the angle of the triangles
which is used to estimate the orientation of the crystals, the twist angle is likely around
ϑ ∼ 16°.

(a) (c)(b)

Figure C.1: (a) Optical microscope image of the measured stack. The scale bar is
20 µm. The black and magenta lines show the perimeter of the graphene and the WSe2,
respectively. The red triangle is an estimate of the crystal orientation of the graphene
from its edges. The yellow triangle is an estimate of the crystal orientation of the WSe2.
(b) Optical microscope image of the used WSe2 showing the same yellow triangle as
in (a). The scale bar is 10 µm. (b) Optical microscope image of the used BLG showing
the same red triangle as in (a). The scale bar is 20 µm.

C.1.1 More FFT curves

Some FFT curves that were used to extract SF in Fig. 6.9b are shown in Fig. C.2.
The two main peaks are more visible at large densities. Their splitting is decreasing at
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lower densities. The quality of the data measured at p = 2 GPa is worse likely due to
the increased disorder with pressure.

p=0 GPa

p=2 GPa

(a)

(b)

Figure C.2: FFT of the measured SdH oscillations at different densities at D = 0 (a)
at ambient pressure and (b) at p = 2 GPa.

C.2 Device B

An optical image of device B is shown in the inset of Fig. C.3c. Its structure is
similar to device A: a graphite bottom gate, a bottom hBN with the thickness of
17 nm, a WSe2 with the thickness of 4 nm, a BLG, a top hBN with the thickness of
6 nm, a 30 nm thick AlOx layer and a metallic top gate. From the optical micrograph,
the twist angle of device B is ϑ ∼ 0°.

Fig. C.3 shows longitudinal resistivity (ρxx) of device B as a function of top and
bottom gate voltages, plotted as a function of n and D at temperature T = 4.2 K
at ambient pressure. Similarly to device A, lighter-colored regions of higher resistance
correspond to the displacement-field-opened gap along the charge neutrality line. This
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(a) (b) (c)

Figure C.3: ρxx of device B as a function of n and D at T = 4.2 K (a) at p = 0 GPa
and (b) at p = 1.95 GPa. (c) Longitudinal resistivity as a function of D at n = 0 at 0
and 1.95 GPa pressures. Inset is an optical microscope image of device B with a scale
bar of 5 µm.

p (GPa) 0 1.95
αTG ( 1015

Vm2 ) 6.50(6) 8.09(12)
αBG ( 1015

Vm2 ) 7.23(1) 9.71(6)
n0 (1015/m2) 5.23(5) 6.32(5)

D0/ϵ0 (V/nm) 0.080(2) 0.063(3)

Table C.1: The extracted parameters of device B for the calculation of n and D at
p = 0 GPa and p = 1.95 GPa with the uncertainty of the last digit in the bracket
originating from the measurement resolution, the readout precision and from the fitting.

gap is increasing by increasing |D|. At p = 1.95 GPa the resistance is increased with
pressure as shown in Fig. C.3b. A line-cut along n = 0 is shown in Fig. C.3c, where ρxx

depend non-monotonously on D. There is a local maximum at D = 0 and minima at
D/ϵ0 ∼ 11 mV/nm which shift to D/ϵ0 ∼ 18 mV/nm at p = 1.95 GPa. Here as opposed
to device A, this feature is observable at p = 1.95 GPa. The lever arms were determined
similarly as in device A and the increase of the lever arms with pressure is also similar
as shown in Table C.1.

In this device, only the Ising-type SOC is determined from ν = ±3 LL crossings.
In Fig. C.4a ρxx as a function of n and D is shown at B = 14 T at p = 0 GPa.
The LL crossings are observed similarly as in device A. Remeasuring the same map
at p = 1.95 GPa (Fig. C.4b), the LL crossings are more blurred than at p = 0 GPa
similarly as before. The extracted position of the crossings is shown in Fig. C.4c. Here,
the Ising-type SOC is fitted, where a sublattice asymmetry term Hasy = uasyσz is
also included, which shifts all the LLs with uasy without any mixing. This term takes
into account the on-site potential difference of the BLG. From the fitting on device
B (see Fig. C.4c), λb

I (p = 0) = 1.25(10) meV with uasy(p = 0) = −0.22 meV and
λb

I (p = 1.95 GPa) = 1.7(1) meV with uasy(p = 1.95 GPa) = −0.42 meV.
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(a) (b) (c)

Figure C.4: (a-b) ρxx of device B as a function of n and D at T = 4.2 K at B = 14 T (a)
at p = 0 GPa and (b) at p = 1.95 GPa. (c) Extracted crossing points from the quantum
Hall measurements at zero and at 1.95 GPa. The dashed lines show the corresponding
fits with λI(p = 0) = 1.25 meV and λI(p = 1.95 GPa) = 1.7 meV respectively.

C.3 Device C

An optical image of device C is shown in the inset of Fig. C.5c. Its structure is
similar to device A: a graphite bottom gate, a bottom hBN with the thickness of
33 nm, a WSe2 with the thickness of 4 nm, a BLG, a top hBN with the thickness of
30 nm, a 30 nm thick AlOx layer, and a metallic top gate. From the optical micrograph,
the twist angle of device C is ϑ ∼ 6°.

(a) (b) (c)

Figure C.5: ρxx of device C as a function of n and D at T = 4.2 K (a) at p = 0 GPa and
(b) at p = 1.95 GPa. (c) Longitudinal resistivity as a function of D at n = 0 at 0 and
1.8 GPa pressures. The red curve is measured at 1.8 K Inset is an optical microscope
image of device C with a scale bar of 5 µm.

Fig. C.5a shows longitudinal resistivity of device C as a function of n and D at
temperature T = 4.2 K at ambient pressure. Similarly to devices A and B, lighter-
colored regions of higher resistance correspond to the displacement-field-opened gap
along the charge neutrality line. This gap is increasing by increasing |D|. At p = 1.8 GPa
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p (GPa) 0 1.8
αTG ( 1015

Vm2 ) 3.34(4) 3.54 (4)
αBG ( 1015

Vm2 ) 3.70(4) 4.09(5)
n0 (1015/m2) 2.79(4) 2.75(4)

D0/ϵ0 (V/nm) 0.034(2) 0.058(2)

Table C.2: The extracted parameters of device C for the calculation of n and D at
p = 0 GPa and p = 1.8 GPa with the uncertainty of the last digit in the bracket
originating from the measurement resolution, the readout precision and from the fitting.

the resistance is increased with pressure as shown in Fig. C.5b. A line-cut along n = 0
is shown in Fig. C.5c, where ρxx depend non-monotonously on D. There is a local
maximum at D = 0 and minima at D/ϵ0 ∼ 12 mV/nm. Under p = 1.8 GPa, these
features are not observable similarly to device A. The lever arms were determined
similarly as in devices A and B and the increase of the lever arms with pressure is also
similar as shown in Table C.2.

(a) (b) (c)

Figure C.6: (a-b) ρxx of device C as a function of n and D at T = 4.2 K at B = 14 T (a)
at p = 0 GPa and (b) at p = 1.95 GPa. (c) Extracted crossing points from the quantum
Hall measurements at zero and at 1.95 GPa. The dashed lines show the corresponding
fits with λI(p = 0) = 1.25 meV and λI(p = 1.8 GPa) = 1.7 meV respectively.

In Fig. C.6a ρxx as a function of n and D is shown at B = 14 T at p = 0 GPa.
The LL crossings are observed similarly as in devices A and B. Remeasuring the same
map at p = 1.8 GPa (Fig. C.6b), the LL crossings are more blurred than at p = 0 GPa
similarly as before. The extracted position of the crossings is shown in Fig. C.6c. Here,
the Ising-type SOC is fitted, where a sublattice asymmetry term Hasy = uasyσz is
also included, which shifts all the LLs with uasy without any mixing. This term takes
into account the on-site potential difference of the BLG. From the fitting on device B
(see Fig. C.4c), λb

I (p = 0) = −1.7(1) meV with uasy(p = 0) = −0.03 meV and λb
I (p =

1.8 GPa) = −2.35(10) meV with uasy(p = 1.8 GPa) = −0.31 meV. The increase of the
SOC is similar and consistent with the obtained values of devices A and B. The opposite
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sign is possible as it depends on the twist angle ϑ as λI(ϑ) = −λI(−ϑ)[111] and it was
seen in previous measurements[271].

6 4 2 0 2 4 6
n (1012 cm 2)

0
1
2
3
4
5
6
7

dS
F 

(m
2 )

1e16

R=12±4 meV
R=20±4 meV

0 GPa
1.8 GPa

Figure C.7: The difference of the Fermi surfaces as a function of n based on Shubnikov-
de Haas oscillations on device C. The blue points are at p = 0 GPa and the red points
are at p = 1.8 GPa. The dashed lines are the fitting of the model with the corresponding
λRs. The colored ranges show the confidence interval of the fits.

On device C, Shubnikov-de Haas oscillation measurements are also performed and
λR is extracted the same way as on device A: I subtracted a quadratic background
from the magnetoresistance. I Fourier-transformed it as a function of B−1. I converted
the frequency peaks to Fermi surface using SF = 2πefB/ℏ. I extracted the peaks that
correspond to split Fermi surfaces of the sample at a given n. I took their difference,
which is plotted in Fig. C.7. I calculated the Fermi surfaces with respect to n and used
λR as the only fitting parameter to fit the data. For this device λR(p = 0) = 12±4 meV,
which increased with pressure to λR(p = 1.8 GPa) = 20 ± 4 meV, though the data
quality is lower than for device A presented in the main text.



D. Appendix

Calculation of the surface optical phonon
modes

In an ionic dielectric, by considering only two modes exhibiting the strongest oscil-
lator strength, the dielectric response function can be written as

ϵox(ω) = ϵ∞
ox +

(
ϵ0

ox − ϵi
ox

) ω2
T O1

ω2
T O1 − ω2 +

(
ϵi

ox − ϵ∞
ox

) ω2
T O2

ω2
T O2 − ω2 , (D.1)

where ωT O1 ≤ ωT O2, ϵ0
ox = ϵox(ω = 0) is the static permittivity of the insulator,

ϵ∞
ox = ϵox(ω → ∞) is the optical permittivity of the ionic crystal, ϵi

ox is an intermediate
permittivity of the insulator and ωTO1 and ωTO2 are transverse optical phonon modes
in the long-wavelength limit[337]. The value of ϵi

ox = ϵox(ωint) is related to an inter-
mediate frequency ωint between the two TO modes and can be calculated using the
Lyddane–Sachs–Teller relation, which determines the relation between the longitudinal
and transverse optical phonon modes, which can be written for 2 longitudinal and 2
transverse optical phonon modes as [338]

ϵox(ω) = ϵ∞
ox

(ω2
LO2 − ω2)(ω2

LO1 − ω2)
(ω2

TO2 − ω2)(ω2
TO1 − ω2) , (D.2)

where ωLO1 and ωLO2 are the longitudinal optical phonon modes in the long-wavelength
limit.

By writing up the electrostatic boundary conditions (e.g. the continuity of the
electric displacement field) at the interface of the dielectric medium and graphene, the
surface optical phonon frequencies can be obtained[192, 193, 326, 327, 337, 339]. The
surface optical phonon modes interact with the graphene plasmons, which modifies
the surface optical phonon frequencies and leads to interfacial plasmon-phonon modes
besides the surface optical phonon modes[329, 340]. However, the phonon-plasmon
coupling is usually neglected in the literature[326–328]. By neglecting the plasmonic
excitations of the graphene[329, 339, 340], if there is only one oxide, a secular equation
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from the boundary conditions for the dielectric response function can be written as

ϵox(ω) + ϵ0 = 0, (D.3)

where ϵ0 is the vacuum permittivity. If there is also a second oxide layer on the top of
the graphene, the secular equation is given by

ϵbot(ω) + ϵtop(ω) = 0, (D.4)

where ϵtop(ω) and ϵbot(ω) is the dielectric response function of the dielectric medium
above and below the graphene defined with Eq.(D.1)[192, 339]. The solution of Eq.(D.3)
or Eq.(D.4) gives the surface optical phonon modes of ω1 and ω2.

The electron-phonon coupling strength (gi) is proportional to

gl
i = ℏωi

2ϵ0

(
1

ϵhi
l + ϵi

l′
− 1

ϵlo
l + ϵi

l′

)
(D.5)

on each dielectric medium, where l = top/bottom indexes the dielectric, l′ the dielectric
on the other side of the graphene1. For i = 1, ϵhi

l = ϵi
l and ϵlo

l = ϵ0
l , whereas for i = 2,

ϵhi
l = ϵ∞

l and ϵlo
l = ϵi

l[329, 339]. If the dielectrics are different, the equations above result
in 4 different surface modes with Sl = gl

2/gl
1. If the dielectrics are made of the same

material, there are only two surface optical modes with twice the coupling strength
and S = g2/g1. For example, using hBN as the bottom dielectric without dielectric
above the graphene, from Eq.(D.3) the surface phonon frequencies are calculated as
ℏω1 = 101 meV and ℏω1 = 196 meV and the ratio of their coupling strength from
Eq.(D.5) results S = 2.17[328, 331].

1If there is only one dielectric layer ϵi
l′ = ϵ0.



E. Appendix

Further measurements on high-mobility
SLG devices

In this section, more measurement data is shown, which are performed on high-
mobility SLG devices. Optical micrographs of the devices are shown in Fig. 7.1a-d, and
the details of them are given in Section 7.

E.1 Calculating the charge density in SLG

The charge density is calculated with Eq.(7.1) in SLG devices. For n, n∗ is calculated
by plotting ln(σxx)(n) on a logarithmic scale and fitting a line on the linearly increasing
part of the conductivity and an another line at the constant part of σxx at low densities.
The intersection of the two lines defines n∗ as shown in Fig. E.1a.

The lever arms are obtained from quantum oscillations in magnetoconductance as
described in Section 3.2.1. For device A, the longitudinal resistance is shown in Fig. E.1b
as a function of n at ambient pressure at 1.5 K. For SLG, from Eq.(2.86), the full filling
of the LLs are at ν = ±2, ±6, ±10 . . . . The position of the LLs as a function of n and B

is shown with white lines in the figure, which is used to obtain αBG. The obtained lever
arms are shown in Table E.1 for device A. For device B-D, the lever arms are shown
in Table E.2, Table E.3 and Table E.4, respectively. As the dielectric here is SiO2/hBN,
the change of lever arm is expected to be small with pressure[341] as opposed to having
only hBN as a dielectric like in Chapter 5 and chapter 6.

p (GPa) 0 1 2
αBG ( 1014

Vm2 ) 6.92(7) 7.31(7) 7.74(8)
VD (V) -0.538(2) -0.384(4) 0.474(5)

Table E.1: Extracted lever arms and VD of device A for the calculation of n at p =
0 GPa, p = 1 GPa and p = 2 GPa with the uncertainty of the last digit in the bracket
originating from the measurement resolution, the readout precision and from the fitting.
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(a) (b)

Figure E.1: Extraction of n∗ and αBG of device A at T = 1.5 K and at ambient pressure.
(a) Extracting n∗ from σxx. The natural logarithm of conductivity as a function of the
natural logarithm of the charge density is shown, where the blue (red) dots correspond
to the electron (hole) doped region. The black dashed lines are linear fits on the data,
which are used to obtain n∗ from their intersection. (b) Magnetic oscillation measure-
ments of ρxx of device A as a function of n and B. The white dashed lines show the
Landau levels at different fillings (ν = ±2, ±6, ±10 . . . ).

E.2 Zero field transport properties

The main findings of the pressure dependence of low-temperature electronic trans-
port of SLG graphene are presented in Section 7.1, which are made on device A. Here,
measurements on devices B, C and D are discussed. The conductivity is fitted using
Eq.(7.2) for every device, which are shown in Fig. E.2a, Fig. E.3a and Fig. E.4a with
blue dashed lines for device B, C and D, respectively. The fitted values are summarized
in Table E.2, Table E.3 and Table E.4. The fitted parameters show universal pressure
dependence: on every device by applying hydrostatic pressure, the mobility decreases
and ρe

0 increases.
In Fig. E.2b, Fig. E.3b and Fig. E.4b, lm is shown for the devices as a function of

n at T = 1.5 K. In every device, lm is shorter than the sample width and length, so
every sample is considered diffusive. The decrease of lm with pressure is universal and
consistent with the decrease of mobility.

Similarly to device A, the scattering time is divided into short- and long-ranged
scattering times, which are shown in Fig. E.2c-d, Fig. E.3c-d and Fig. E.4c-d as a func-
tion of n at T = 1.5 K for device B, C, and D, respectively. τ short

m decreases with
pressure and starts to dominate τm at larger densities, similarly to device A. τ long

m is
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(a) (b)

(c) (d)

Figure E.2: Zero field transport properties of device B at T = 1.5 K. (a) Conductivity
of device B at different pressures as a function of n. The black dashed lines are fits
of Eq.(7.2). (b) The elastic mean free path (lm) calculated from σ with Eq.(7.3). For
comparison, the width of the sample and the length between the two inner contacts in
the four-terminal measurement set-up are also shown with dashed lines. (c) Transport
scattering time from short-ranged scattering as a function of n at different pressures
calculated from ρ0. (d) Transport scattering time from long-ranged scattering as a
function of n at different pressures calculated with Eq.(7.5).

also decreasing with pressure, and at low densities, it dominates τm, as expected.
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p (GPa) 0 2
n∗ (1010 cm−2) 3.1(7) 2.1(1.5)

µh (m2

Vs ) 29.27(5) 21.47(5)
ρh

0 (Ω) 9.64(3) 16.4(1)
µe (m2

Vs ) 34.51(5) 9.62(7)
ρe

0 (Ω) 14.0(1) 43.1(5)
αBG ( 1014

Vm2 ) 6.81(7) 7.25(7)
VD (V) -0.800(2) -0.298(1)

Table E.2: Extracted parameters of device B for the fit of Eq.(7.2) on the conductivity,
n∗, VD and αBG at p = 0 GPa and p = 2 GPa with the uncertainty of the last digit in
the bracket originating from the fitting.

p (GPa) 0 2
n∗ (1010 cm−2) 5(2) 5(1)

µh (m2

Vs ) 23.62(3) 20.47(3)
ρh

0 (Ω) 8.16(2) 11.25(3)
µe (m2

Vs ) 32.08(8) 18.47(2)
ρe

0 (Ω) 10.01(1) 15.30(3)
αBG ( 1014

Vm2 ) 7.38(7) 7.04(7)
VD (V) -4.08(2) 4.004(2)

Table E.3: Extracted parameters of device C for the fit of Eq.(7.2) on the conductivity,
n∗, VD and αBG at p = 0 GPa and p = 2 GPa with the uncertainty of the last digit in
the bracket originating from the fitting.

p (GPa) 0 1.5
n∗ (1010 cm−2) 3.1(5) 4(1)

µh (m2

Vs ) 14.33(7) 15.16(5)
ρh

0 (Ω) < 0.1 4.6(1)
µe (m2

Vs ) 21.5(1) 9.80(3)
ρe

0 (Ω) 2.45(7) 6.1(2)
αBG ( 1014

Vm2 ) 7.00(7) 7.40(7)
VD (V) 0.877(2) 2.155(2)

Table E.4: Extracted parameters of device D for the fit of Eq.(7.2) on the conductivity,
n∗, VD and αBG at p = 0 GPa and p = 1.5 GPa with the uncertainty of the last digit in
the bracket originating from the fitting.

E.3 Raw data of WL measurements of device A

δσ = σ(B) − σ(B = 0) magnetoconductivity is shown in Fig. E.5a as a function of
B at different charge densities at T = 1.5 K. A WL signal is clearly visible in the raw
data. The high temperature background at T = 20 K, which is subtracted from δσ at
T = 1.5 K, is shown in Fig. E.5b. The background is nearly constant.



146 Further measurements on high-mobility SLG devices

(a) (b)

(c) (d)

Figure E.3: Zero field transport properties of device C at T = 1.5 K. (a) Conductivity
of device B at different pressures as a function of n. The black dashed lines are fits
of Eq.(7.2). (b) The elastic mean free path (lm) calculated from σ with Eq.(7.3). For
comparison, the width of the sample and the length between the two inner contacts in
the four-terminal measurement set-up are also shown with dashed lines. (c) Transport
scattering time from short-ranged scattering as a function of n at different pressures
calculated from ρ0. (d) Transport scattering time from long-ranged scattering as a
function of n at different pressures calculated with Eq.(7.5).
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(a) (b)

(c) (d)

Figure E.4: Zero field transport properties of device D at T = 1.5 K. (a) Conductivity
of device B at different pressures as a function of n. The black dashed lines are fits
of Eq.(7.2). (b) The elastic mean free path (lm) calculated from σ with Eq.(7.3). For
comparison, the width of the sample and the length between the two inner contacts in
the four-terminal measurement set-up are also shown with dashed lines. (c) Transport
scattering time from short-ranged scattering as a function of n at different pressures
calculated from ρ0. (d) Transport scattering time from long-ranged scattering as a
function of n at different pressures calculated with Eq.(7.5).
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(a) (b)

Figure E.5: Raw data of WL measurements on device A at p = 0 GPa. (a) δσ =
σ(B) − σ(B = 0) magnetoconductivity as a function of B at different charge densities
at T = 1.5 K. (b) δσ = σ(B) − σ(B = 0) magnetoconductivity as a function of B at
different charge densities at T = 20 K. This is used as a background, which is subtracted
from δσ at T = 1.5 K in Fig. 7.7.
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E.4 Additional data on the in-plane magnetic field
dependence of WL

(a)

(c)

(b)

Figure E.6: WL in-plane magnetic field dependence of device C. (a-b) δσ = σ(B) −
σ(B = 0) magnetoconductivity as a function of B at various in-plane magnetic fields
(B∥) at T = 1.5 K, n = −1012 cm−2, (a) at p = 0 GPa and (b) at p = 2 GPa. The
black dashed lines correspond to global fits on the data, which results τ∗ = 1 fs and
τiv(p = 0) = 7.5 ± 1 ps with D(p = 0) = 1.11 m2/s for p = 0 GPa in panel (a)
and τ∗ = 1 fs and τiv(p = 2 GPa) = 1.5 ± 0.4 ps with D(p = 2 GPa) = 0.93 m2/s for
p = 2 GPa in panel (b). (c) Extracted τ−1

ϕ as a function of B2
∥ at 0 and 2 GPa pressures.

The dephasing rate depends linearly on B2
∥ according to Eq.(2.72). The solid lines are

line fits which gives Z2R = 49 ± 13 nm3 for p = 0 GPa and Z2R = 69 ± 22 nm3 for
p = 2 GPa.

In addition to magnetotransport measurement on device C at n = 1.25 · 1012 cm−2,
which is discussed in Section 7.2.4, measurements at n = −1012 cm−2 is also performed
on device C and D at T = 1.5 K. δσ is shown in Fig. E.6a at ambient pressure for
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device C as a function of B at different in-plane magnetic fields. A global fit is also
performed on δσ as a function of B, which resulted τ∗ = 1 fs and τiv(p = 0) = 7.5±1 ps,
which is, within the range of the fitting error, the same as at n = −1012 cm−2. From
the fits, the dephasing rate is plotted in Fig. E.6c as a function of B2

∥ with black error
bars. A linear fit on τ−1

ϕ is shown with a black line in the figure, which slope gives
Z2R = 49±13 nm3. The deviation from the corrugation volume at n = 1.25 ·1012 cm−2

is unexpected, as ripple size is expected to be independent of n. Further measurement
of the n dependence of Z2R is needed to explain this discrepancy, however, it is beyond
the scope of this thesis.

After applying 2 GPa hydrostatic pressure on the sample the same analysis is per-
formed, which is shown in Fig. E.6d. From the fit, τiv(p = 2 GPa) = 1.5 ± 0.4 ps de-
creases with the applied pressure similarly as at n = 1.25 · 1012 cm−2. From the in-
plane magnetic field dependence of τ−1

ϕ , which is shown with red markers in Fig. E.6c,
Z2R = 69 ± 22 nm3, which increases with pressure similarly as at n = 1.25 · 1012 cm−2.

Similar measurements are performed at n = −1012 cm−2 on device D, which are
shown in Fig. E.7a at p = 0 GPa and in Fig. E.7b at p = 1.5 GPa, respectively. From
the fittings, τ−1

ϕ is shown in Fig. E.7c as a function of B2
∥ at 0 and 2 GPa with black

and red markers, respectively. The slope of linear fits on the dephasing rates, which
is shown with solid lines in the figure, results Z2R = 32 ± 3 nm3 for p = 0 GPa and
Z2R = 78±23 nm3 for p = 1.5 GPa, which is similar to the volumes obtained on device
C. From the measurements of the suppression of WL with in-plane magnetic fields,
I conclude that the increase of the corrugation volume is universal by increasing the
applied hydrostatic pressure in hBN-encapsulated graphene devices.

E.5 SdH oscillations measurements on device D

Similar magnetotransport measurements are also carried out on device D. ρxx is
plotted as a function of B−1 at n = 2.4 · 1012 cm−2 at ambient pressure at different
temperatures in Fig. E.8a. A global fit is also performed on the data similarly as it is
discussed in Section 7.2.1 for device A. The result of the fit is also shown in the figure
with dashed curves along with the fitting parameters. m∗ is similar to its expected
value from the theory. τq is extracted at different charge densities, which is shown in
Fig. E.8b with black markers. τq is increasing with n, which is expected from Eq.(2.56)
if the dominant scattering mechanism is long-ranged scattering. The ratio of τm/τq is
also calculated as a function of n, which is shown in Fig E.8c with black markers. An
increase of τm/τq with n is observed, which is expected if the charged impurities are
away from the graphene plane[140].
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(a)

(c)

(b)

Figure E.7: WL in-plane magnetic field dependence of device D. (a-b) δσ = σ(B) −
σ(B = 0) magnetoconductivity as a function of B at various in-plane magnetic fields
(B∥) at T = 1.5 K, n = −1012 cm−2, (a) at p = 0 GPa and (b) at p = 1.5 GPa. The
black dashed lines correspond to global fits on the data, which results τ∗ = 1 fs and
τiv(p = 0) = 8 ± 1.5 ps with D(p = 0) = 0.58 m2/s for p = 0 GPa in panel (a) and
τ∗ = 1 fs and τiv(p = 2 GPa) = 8±2 ps with D(p = 2 GPa) = 0.66 m2/s for p = 1.5 GPa
in panel (b). (c) Extracted τ−1

ϕ as a function of B2
∥ at 0 and 2 GPa pressures. The

dephasing rate depends linearly on B2
∥ according to Eq.(2.72). The solid lines are line

fits which gives Z2R = 32±3 nm3 for p = 0 GPa and Z2R = 78±23 nm3 for p = 1.5 GPa.

From similar SdH oscillations measurements under p = 1.5 GPa hydrostatic pres-
sure, τq is extracted, which is shown in Fig. E.8b with blue markers as a function of n.
A similar decrease of τq is observed as in device A. The ratio of τm/τq at p = 1.5 GPa
is shown with blue markers in Fig. E.8c. The ratio is increasing with pressure in this
device. An increasing trend with n can be observed similarly as at p = 0 GPa. However,
the lack of measurement data prevents us to make quantitative statements.
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(a) (b) (c)

Figure E.8: SdH oscillations measurements on device D. (a) ρxx after subtracting a
quadratic background at n = 2.4 ·1012 cm−2 at p = 0 GPa at different temperatures. (b)
Extracted quantum scattering time as a function of n at p = 0 GPa and at p = 1.5 GPa
pressures. (c) τm/τq ratio as a function of n at p = 0 GPa and at p = 1.5 GPa pressures.

E.6 Magnetic focusing measurements on device D

Magnetic focusing experiments are also performed on device D under zero and
2 GPa hydrostatic pressures. The measurement configuration, which is used in the
measurements, is illustrated in Fig. E.9. Contact d is the injector and contact p is
grounded. Contact e is the collector and contact i, which is a lot farther (16.3 µm) from
the collector than lm, is used as a reference in the non-local measurements.

Vc

a

b c d e f g h

i

jklmnop

Figure E.9: Schematic measurement arrangement for TMF on device D. The current
flows between contacts d and p. The current is injected at contact d and contact p is
grounded. Contact e is used as a detector contact. The voltage is measured between
contacts e and i, where contact i serves as a reference. The black scale bar is 5 µm.

Rnl as a function of n and B is shown in Fig. E.10a at T = 1.5 K at p = 0 GPa.
Unlike sample A, here no SdH oscillations are observed in the range of |B| ≤ 0.4 T. For
|B| ≤ 0.2 T, TMF peaks are observed, which follow the black curves, that correspond
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to Eq.(2.92).

(a) (b)

(c) (d)

Figure E.10: Magnetic focusing on device D. (a) Rnl as a function of n and B. The solid
lines are the TMF peaks from Eq.(2.92) with L = 3.5 µm. (b) Rnl after subtracting a
linear background at n = 1.7 · 1012 cm−2 at p = 0 GPa at different temperatures. (c-d)
Extracted effective scattering time as a function of temperature near p = 0 GPa and
p = 1.5 GPa. The solid lines are linear fits. On the panel (c) the slope of the fitted lines
are −1.6 ± 0.3 and −1.6 ± 0.1 for p = 0, 2 GPa, respectively. On the panel (d) the slope
of the fitted lines are −1.7 ± 0.1 and −1.8 ± 0.2 for p = 0, 2 GPa, respectively.

Along n = 1.7 · 1012 cm−2, the temperature dependence of Rnl is shown in Fig. E.9b
as a function of B at p = 0 GPa. A peak around B ∼ 0.1 T is clearly visible, which
corresponds to the first peak of TMF. The amplitude of the peak decays by increasing
the temperature and completely vanishes at large temperatures. Similarly to device A,
the area under the peak is numerically integrated after removing a linear background,
which is fitted in the regions (−B) where no TMF peaks are expected. τeff is calculated
with Eq.(2.94), where A1(Tbase) = A1(T = 1.5 K) is used. The results are shown in
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Fig. E.9d with black markers in a logarithmic scale as a function of T . τeff decreases
with T as expected. The exponent α = −1.7 ± 0.1 of τeff ∝ T α is extracted by a
linear fit in the log-log plot, which is shown with a black line in the figure. Similarly
from the TMF experiment on device A, α is between −1 and −2 meaning that both
electron-electron and electron-phonon scatterings contribute to the reduction of the
TMF signal.

Similar experiments are performed at n = −1.96 · 1012 cm−2. The extracted τeff is
shown in Fig. E.9c with black markers. From a similar line fit, α = −1.6 ± 0.3 gives the
same results as at n = 1.7 · 1012 cm−2.

Under p = 2 GPa hydrostatic pressure, similar TMF experiments are also per-
formed, which results are shown with red markers in Fig. E.9d at n = 1.3 · 1012 cm−2

and Fig. E.9c at n = −1.8 · 1012 cm−2. From similar line fits, the extracted exponents
(α(n = −1.8 · 1012 cm−2) = −1.6 ± 0.1 and α(n = 1.3 · 1012 cm−2) = −1.8 ± 0.2) are
the same as the ones obtained at ambient pressure within the uncertainty of the fit-
tings, similarly to the results on device A. These measurements further enforce that,
the pressure doesn’t qualitatively change the transport properties of hBN-encapsulated
SLG.

E.7 Temperature-dependent measurements on de-
vice D

(a) (b)

Figure E.11: Fitting the temperature dependence of device D with Eq.(7.9). (a) The
resistivity at some densities as a function of the temperature at ambient pressure is
plotted with dots. (b) ∆ρxx as a function of temperature at n = −0.8 ·1012 cm−2 and at
p = 0 GPa and p = 1.5 GPa plotted with black and red dots, respectively. The dashed
lines are global fits at different pressures. The extracted fitting coefficients of γ and B
are shown in Table E.5.
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The main findings of the role of electron-phonon coupling and its pressure depen-
dence in device A are presented in Section 7.3. Here, measurements of device D are
presented. At fixed temperatures, the longitudinal resistance is measured as a function
of charge density, and a similar fitting procedure with Eq.(7.9) on the resistivity as a
function of n and T is performed. Here ∆ρxx is fitted in the charge density range of
[−16, −8] · 1011 cm−2 and in the temperature range of 20 − 285 K.

ρxx of device D at some densities as a function of T is shown in Fig. E.11a. Similarly
to device A, an increasing tendency is observed. Similar measurements are performed
at 1.5 GPa, which is shown with red markers in Fig. E.11b. At large temperatures,
similarly to the observation in device A, the resistance increases with pressure due
to the increased effect of the RIP, whereas at intermediate temperatures, where the
acoustic electron-phonon scattering dominates, the change of resistance is negligible
with pressure.

(a) (b)

Figure E.12: Logarithm of the longitudinal resistivity after subtracting the residual
resistivity and the resistivity contribution of the acoustic phonons as a function the
logarithm of the charge density at T = 230 K of device D is shown with black and
red lines at 0 and 2 GPa, respectively. The blue dashed lines are linear fits on the
linear regime of the curves. (a) ln(ρRIP) at n < 0. From the slope of the fitted lines
α(p = 0) = 1 ± 0.1 and α(p = 2 GPa) = 1 ± 0.1. (b) ln(ρRIP) at n > 0. From the slope
of the fitted lines α(p = 0) = 1 ± 0.2 and α(p = 2 GPa) = 0.8 ± 0.2.

ln(ρRIP) is shown in Fig. E.12. In the hole regime in panel (a), at large densities, a
linear regime is observed, where the blue dashed line is fitted both at zero and 1.5 GPa.
From the fit α = 1, similarly from the fits in device A. In the hole regime in panel (b),
a non-linear behavior is observed, i.e. Eq.(7.9) gives an unreliable result if fitted in this
regime.

The fitted curves are shown in Fig. E.11a and Fig. E.11b with dashed lines. At
the hole regime, the fits follow the data badly due to the non-linear behavior at large
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p (GPa) 0 1.5
γ (ω/K) 0.095 ± 0.004 0.087 ± 0.004

B (1019Ωm2α) 1.92 ± 0.08 2.17 ± 0.08

Table E.5: Results of the global fit of Eq.(7.9) on ∆ρxx of device D at zero and 1.5 GPa.

densities, thus only the fitting results at the hole regime is discussed here. The results of
the fitting is summarized in Table E.5. The fitted parameters show a similar tendency as
the obtained values in device A: γ has a decreasing tendency. However, it is independent
of p within the margin of its uncertainty in the hole regime. The parameter B increases
with p, as expected.
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