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1

Introduction

Theoretical nuclear physics has witnessed substantial progress in under-
standing alpha decay. This process is fundamental to the study of nuclear
stability and structural properties, and may have profound implications across
various scientific and potentially technological domains. Theoretical models
aim to refine the prediction of alpha decay half-lives, in order to facilitate a more
nuanced comprehension of nuclear forces and the inter-nucleon interactions
[Delion, 2010 ; Poenaru et al., 2011 ; C. Qi et al., 2009 ; Lovas et al., 1998 ; Xu et al.,
2006 ].

Thus far, traditional Hermitian quantum mechanics has been the cornerstone
of nuclear decay models [Gamow, 1928 ; Kalbermann, 2008 ; Gurvitz et al.,
1987 ; Buck et al., 1992 ; Dumitrescu et al., 2023 ], explaining the decay
by quantum tunneling, using the Gamow factor for the characterization and
applying perturbative models to derive the decay width.

In their recent papers based on the monograph [N. Moiseyev, 2011 ] and
the studies [Myo et al., 2020a ; Peskin et al., 1993 ], the authors suggest an
alternative framework for the proper description of decaying states [Szilvasi
et al., 2022 ] that could also apply for the study of the Coulomb tunneling
of an already preformed alpha cluster (not covering nuclear structure effects)
[Szilvasi et al., 2024 ]. In this framework, considering a two-body problem
of the cluster-remaining nucleus set-up with mean-field nuclear potential, the
preformed alpha cluster of the nucleus is considered to occupy a special quasi-
stationary state (alpha cluster state) that is associated with the appropriate
complex eigenenergy of a non-hermitian Hamiltonian. The imaginary part of
the complex energy corresponds to the width and lifetime of the quasi-stationary
state, the real part is associated with the alpha-energy, hence the tunneling part
of the decay is characterized by a single quantity that is extracted directly and
non-perturbatively from the spectrum of the non-hermitian Hamilton operator.

This peculiar method to derive the width and lifetime of alpha tunneling is also

1



2 1. Introduction

proved to serve valuable ground for the description of laser-assisted alpha decay
[Szilvasi et al., 2024 ]. This process has been widely investigated lately due to the
Nuclear Physics division of the Extreme Light Infrastructure (ELI) project that is
a promising research facility for the experimental dimension of understanding
the elementary properties of nuclear processes via their interaction with some
sufficiently high-intensity laser field [Extreme Light Infrastructure (ELI) 2011 ].
In view of the possible experimental actuality, there is practical ground for the
theoretical investigation of laser-nuclei interactions.

Thus far, extensive literature covers the field of the theory of laser-influenced
molecular and atomic systems, and certain aspects of nuclear processes in intense
laser field are also studied such as, multi-photon ionization (MPI) [Wickenhauser
et al., 2006 ; Wiehle et al., 2003 ; Moshammer, 2003 ], strong laser-induced
tunneling [Wickenhauser et al., 2006 ; Faisal et al., 2005 ; Faisal et al., 2006 ],
electron bridge processes [Kalman, 1991 ], internal conversion (IC) [D. Kis et al.,
2010 ; Kalman et al., 1986 ] and nuclear alpha tunneling [Kalbermann, 2008 ;
Misicu et al., 2016 ; Delion et al., 2017 ; D. Kis et al., 2018 ].

In [Szilvasi et al., 2024 ] the authors explain that the key aspect of laser-
assisted alpha decay is expected to be the sole tunneling process: to leading
order, the most pronounced effect of the laser field is expected in the modification
of the Coulomb barrier, primarily influencing the tunneling process; the nuclear
forces are not modified by the typical photon energies and intensities of such
laser fields. Indeed, the issue of laser-assisted nuclear alpha decay is commonly
investigated using the tunneling picture [Gamow, 1928 ] in the frame of the
Wentzel-Kramers-Brillouin (WKB) approximation, by which a semi-classical
expression of the decay width can be derived for the alpha tunneling, relying on
standard (hermitian) quantum mechanics. In this case the effect of the external
laser field is calculated either by time-dependent perturbation theory [Misicu
et al., 2016 ], or is encoded in the deformations of the Coulomb potential
through the Henneberger frame [Delion et al., 2017 ; D. Kis et al., 2018 ].
Most of the examples predict rather significant alterations in the lifetime of
alpha tunneling, which gives a motivation to investigate the issue through
different theoretical approaches. One such approach is the non-hermitian
formalism of quantum mechanics which allows for wavefunction-centered,
analytical computation techniques such as the (t,t’)-perturbation calculation of
time-dependent potentials affecting decaying systems.

In this thesis a specific mean-field-based, cluster-plus-remaining-nucleus
model is presented, which focuses on the Coulomb-barrier-generated quasi-
stationary state occupied by a singular, preformed alpha cluster with complex
energy, the imaginary part of which expresses the lifetime of the state. The quasi-
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stationary state is identified as an eigenstate of a non-hermitian Hamiltonian
operator which possesses a complex spectrum, and the complex eigenenergy
is determined through diagonalization. For the purpose of validating the
computational scheme, specific isotonic chains are under investigation mainly
due to the observed systematic trends and variances in their alpha decay
properties that regard them as interesting material for studying the Coulomb
tunneling phase of the alpha decay process.

In this study I present a theoretical model to demonstrate, through a specific
calculation, how a laser pulse with extreme high peak-intensity might alter the
decay width of the alpha cluster in a mean-field nuclear potential. I implement
the (t,t’)-perturbation theory and the non-hermitian complex spectral calculation
technique to compute the laser-induced, first-order complex energy correction to
the lifetime of the preformed alpha cluster in specific heavy, even-even isotonic
nuclei, and analyze the sensitivity of the complex energy-shift to the parameters
of the laser pulse, additionally exploring the special electrodynamic properties
arising in the description of the interaction between the super-intense laser and
the alpha-decaying nucleus, which become pronounced in the non-hermitian
quantum mechanical model and within the non-relativistic approximation.



2

Description of decaying states by
non-hermitian quantum theory

In this chapter, I present my results and conclusions about the calculation of
the complex-energy shift of decaying states upon interacting with some external,
time-dependent but perturbative potential. I approach this problem within
the non-hermitian quantum mechanical framework and show that the change
of the lifetime of various decaying states can be calculated directly from the
non-Hermitian spectrum of the Hamiltonian operator describing the system.

In order to establish the context, first, I briefly review the basic ideas and
principles of non-hermitian quantum mechanics regarding quasi-stationary
states in the subsequent sections (Section 2.1 and Section 2.2). Section 2.3 concerns
the question of time-dependent perturbations driving decaying systems. In
Subsection, 2.3.1 I discuss the main aspects of the (t,t’)-formalism, the method
I apply in my calculations with time-dependent potentials. Subsection 2.3.2
and Section 2.4 contains the author’s own results and corollaries regarding
an alternative description of quasi-stationary states interacting with external,
time-dependent potentials via deriving a complex-energy correction formula
and exploring the properties by executing calculations on a model system.

2.1 The lifetime of quasi-stationary states

What is a quasi-stationary state? In relation to open quantum systems and
specifically decay (that is purely quantum-mechanical) in which situation a
system falls apart to its counterparts, one ultimately faces a non-stationary
behaviour and must find a suitable quantum-mechanical method to solve
the dynamical problem. A straightforward way to describe such systems is
by considering the wave-pocket solutions of the time-dependent Schrödinger

4



2.2. The principals and aspects of non-hermitian quantum-mechanics 5

equation, that is numerically quite involved most of the time. However, quantum-
mechanical decay generally and naturally concerns complex energy eigenvalues.

In the next sections, in order to describe quantum-mechanical decay, I would
like to discuss the peculiarities of special states that arise from solving the
stationary Schrödinger equation, despite their non-stationary nature. These
quasi-stationary states can be found as possible states of systems described by
individual potentials (to be detailed later) which in some cases regard them as
decaying systems. The potentials that are of our interest support a continuous
spectrum and possess a sector of their domain that is outside the Hermitian sector.
This domain is most easily reached upon assigning the appropriate boundary
conditions to obtain the solutions of the stationary Srchödinger equation. It can
be shown that these solutions of the non-hermitian sector are associated with
complex eigenvalues. As a result one is faced with complex-energy states which
requires the extension of the conventional quantum mechanical formalism to
the non-hermitian approach.

The following section (Section 2.2) sets the theoretical background for the
quasi-stationary description of decaying systems, discussing the related aspects
of non-hermitian quantum mechanics.

2.2 The principals and aspects of non-hermitian
quantum-mechanics

Quantum mechanics has quite a few postulates that were established at the
dawn of the revolutionizing theory. Without listing all of them, I would like
to discuss one fundamental postulate that is in the core of the non-hermitian
extension of quantum mechanics.

Any measurable dynamical quantities that are observed are the eigenvalues
of operators representing the measurable quantities. Since the measurable
quantities are real quantities, the representing operators should be Hermitian
operators.

According to this postulate, the hermiticity requirement is imposed only
in relation to real eigenvalues representing the measurables. For example, in
accordance with classical mechanics, also in quantum physics the energy of
a closed system is conserved thus it exhibits real eigenenergies (this energy
conservation, following from Noether’s theorem, refers to the time-translation
invariance of such systems); in the original formalism of quantum mechanics the
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energy eigenvalues of the stationary Hamiltonian of such a system are real, hence
the Hamiltonian is regarded Hermitian. The original formulation of quantum
mechanics - on the basis of the time-independent Schrödinger equation - is not
extended to cover the problem of open quantum systems and decaying systems.

A noteworthy detail could be that the requirement for real energy eigenvalues
can be fulfilled in special cases without the hermiticity of the Hamiltonian. Such
a non-hermitian system possesses PT-symmetry, implying that it is robust under
the parity and time-reversal transformation of the Hamiltonian[El-Ganainy et al.,
2018 ]. The existence of this type of quantum systems underlies the hermiticity
postulate of quantum-mechanics.

Furthermore, one must remember that the hermitian property of an operator
is heavily dependent on the functions they operate on. If functions 𝑢𝑖 , 𝑢𝑗 ∈ ℒ2(R),
as in they are square-integrable functions, or asymptotically periodic functions,
the operator 𝐻̂ is hermitian if the equality

⟨𝑢𝑖 |𝐻̂ |𝑢𝑗⟩ = ⟨𝑢𝑗 |𝐻̂ |𝑢𝑖⟩
∗ (2.1)

is fulfilled (or in an equivalent form: ⟨𝑢𝑖 |𝐻̂ |𝑢𝑗⟩ = ⟨𝐻̂𝑢𝑖 |𝑢𝑗⟩). Hence, square-
integrability is another crucial condition.

There are several possible circumstances that could render a Hamiltonian
non-hermitian. One obvious case is when the Hamiltonian contains a complex
local potential. The inclusion of complex potentials might arise in optical
problems or in quantum field theory even when a purely imaginary external
field is considered. From the viewpoint of this thesis, however, different sort of
special potentials are interesting, that generate non-hermiticity in a distinct way
and indirectly. These are the non-hermitian potentials that support a continuous
spectrum. These type of potentials are crucial signatures of meta-stable, or in other
words, decaying systems, as in systems that are able to break up into subsystems
and hence exist for a finite amount of time. These systems are, in a sense,
open systems. Several physical phenomena are characterized by meta-stable
states, such as resonances, ionized states, atomic-molecular-solid state systems
subjected to external fields, or radioactive alpha-decay, spontaneous fission and
generally the compound nuclear reactions. Of all such phenomena those which
happen via quantum-mechanical tunneling are purely quantum-mechanical.
Tunneling is characteristic of subsystems that are trapped in special potentials
(potential barriers) but do not have enough energy to break free. The typical
trapping potential energy well is higher than the (real) energy of the subsystem
but decay happens despite of that, hence are they considered in a meta-stable
state. The theoretical study and description of such systems is the core subject
of this thesis, particularly focusing on the description of radioactive alpha decay;
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however, most considerations are also valid for resonance phenomena.
By solving the eigenvalue problem with such (non-hermitian) potentials that

support a continuous spectrum, one is able to find complex-energy meta-stable
states. These meta-stable states can be associated with the complex poles of the
S-matrix (scattering matrix) where it is well-defined, hence they can be treated
by conventional hermitian quantum mechanics, although such calculations are
quite complicated, furthermore in this case the eigenfunctions associated with
the complex resonance poles are embedded within the continuum solutions.

In the next subsection, however, I discuss how to associate these metastable
states with special stationary solutions of the time-independent Schrödinger equa-
tion. These are obtained by imposing purely outgoing boundary conditions on
the eigenfunctions of Hamiltonians with an appropriate non-hermitian potential
supporting a continuous spectrum. These special solutions are meant to repre-
sent the quasi-stationary states. From now on, I will correspond decaying states
with quasi-stationary states. The presence of quasi-stationary solutions naturally
requires the extension of the hermitian quantum-mechanical formalism to a
non-hermitian one, since these solutions are divergent functions of the spatial
coordinate indicating they are not square-integrable functions, thus they reside
beyond the hermitian sector of the domain of the Hamiltonian operator. In
addition these solutions are associated with complex eigenvalues. Furthermore,
it is not only conceptually required to extend quantum mechanics to a non-
hermitian formulation when describing quasi-stationary states, but it is also
practical especially when one attempts to perform calculations involving the
wave-function of the system.

Generally, in non-hermitian quantum mechanics expectation values, such as
the energy of the system, might be complex scalars. One example, apart from
the energy, is the complex probability density. It is shown in the next subsection
that for a quasi-stationary (decaying) state the square of the absolute value of
the wave-function is a decaying function of the imaginary part of the complex
energy of the state (the dynamical phase factor is complex). The imaginary part
of the complex energy is associated with the decay width of the state, hence
itself is a measurable quantity.

One can conclude that by imposing special boundary conditions on the solutions
of the time-independent Schrödinger equation with a non-explicitly non-hermitian
Hamiltonian, one obtains extra information about the system which is not available
when conventional boundary conditions are applied. However, in Subsection 2.2.1
it is detailed that upon a special unitary transformation (Complex Scaling)
the Hamiltonian of such systems can be transformed to display explicit non-
hermiticity possessing a complex spectrum that can always be obtained by
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diagonalization.
Two aspects are important and must be distinguished: by assigning outgoing

boundary conditions the latent non-hermiticity of the Hamiltonian is uncovered;
while, the non-hermiticity is an inherent property of systems with distinct
potential energy terms (those supporting a continuous spectrum) that can also
be invoked by transforming the problem to a different "coordinate system" by
applying a Complex Scaling unitary transformation.

Nevertheless, the proper treatment of the divergence of quasi-stationary
solutions is indispensable upon building models residing on expressing the
wave-function of systems.

2.2.1 Wavefunction-centered description of quasi-stationary
states

In this subsection I aim to particularize the nature of the wave-functions of
systems in quasi-stationary states, states that are obtained by solving the time-
independent Schrödinger equation by imposing outgoing boundary conditions
(OBC). It is important for the purpose of performing analytical calculations cov-
ering the interaction of decaying sates with external time-dependent, perturbing
potentials.

Generally, the wave-function of a quantum-mechanical system depends on
some general coordinates (representing any variables belonging to physical
quantities) contingent upon the degrees of freedom of the system, and it could
also depend on the time parameter. The wave-function of a non-hermitian
quasi-stationary system shall be investigated from the viewpoint of its behaviour
in coordinate space and in time mainly due to the system’s energy being complex.

The probability density function

The time-dependence of complex-energy systems, or as in decaying systems
is an intriguing topic. One interesting aspect is the action of the time-reversal
operator. The time-reversal operator is a special anti-linear operator. Since the
time-reversal operation means complex conjugation and the negations of time 𝑡,
the Schrödinger-equation for a state and for its time-reversed partner is the same
if the Hamiltonian 𝐻̂ commutes with the time-reversal operator 𝑇̂. Although,
due to the fact that 𝑇̂ is anti-linear, despite commuting with 𝐻̂ they do not
necessarily share common eigenstates. Only if the energy eigenvalue (𝐸) is real
do the two operators share the corresponding eigenstate (|Φ⟩), as is seen by the
stationary Schrödinger eigenvalue equation:
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𝐻̂ |Φ⟩ = 𝐸 |Φ⟩ , (2.2)

𝑇̂𝐻̂ |Φ⟩ = 𝐻̂(𝑇̂ |Φ⟩) = 𝐸∗(𝑇̂ |Φ⟩). (2.3)

From the second equation it is clearly seen that when 𝐸 is complex, the eigen-
state |Φ⟩ is not time-reversal symmetric, because the time-reversed partner has a
different eigenvalue. But this eigenvalue only differs by complex conjugation,
which suggests that for an eigenstate of the Hamiltonian having a complex eigen-
value there exists a time-reversed partner with complex conjugate eigenvalue.
Altogether we might conclude that the eigenstate with complex energy breaks
the time-reversal symmetry. For non-hermitian, non-PT-symmetric systems
there are complex eigenvalues, and even though the Schrödinger equation
has time-reversal symmetry, the complex-energy eigenstates do not respect
this symmetry. There are cases when the TRS-breaking eigenstates appear
together with their time-reversed (complex-conjugate energy) partner, hence
restoring the time-reversal symmetry of the problem. In the literature they
are conventionally called resonance and anti-resonance states with complex en-
ergy 𝐸res = ℜ(𝐸res) + iℑ(𝐸res) = 𝐸r − i

2Γ, and its complex conjugate energy
𝐸anti = ℜ(𝐸anti) + iℑ(𝐸anti) = 𝐸ar + i

2Γ. By this expression it is clear that the
pair possesses complex conjugate energies, however Γ denotes the width of
resonance-type states (or the width of quasi-stationary states) that is going to be
explored later.

Writing the probability density of the system (assuming the separability of
the spatial and time-dependent parts), one finds the followings for the resonant
solutions:

∥Φ(q, 𝑡)∥2 = ∥𝜙(q)∥2e(−i𝐸res+i𝐸∗
res)𝑡 = ∥𝜙(q)∥2e−Γ𝑡 , (2.4)

while for the anti-resonant solutions

∥Φ(q, 𝑡)∥2 = 𝜙(q)∥2e(−i𝐸anti+i𝐸∗
anti)𝑡 = ∥𝜙(q)∥2e+Γ𝑡 . (2.5)

The form of the probability density function indicates the non-stationary
nature of both states. In equation (2.4) the factor e−Γ𝑡 grants that the probability
of finding the state at time 𝑡 in q exponentially decreases, referring to decay.
These type of solutions are interesting in the context of the kind of hermiticity
discussed in this thesis, namely when the non-hermitian domain is approached
by assigning the special boundary conditions to our problems. The two different
situations of complex-energy states (resonance-type and anti-resonance-type)
can be obtained by imposing two different boundary conditions on the solutions
of the time-independent Schrödinger-equation. Anti-resonances are present
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when incoming boundary conditions are imposed, resonance-type or decaying
states are obtained upon assigning outgoing boundary conditions. I consider
the latter case, and refer to these states as quasi-stationary states (or decaying
states interchangeably), as mentioned previously.

Outgoing boundary conditions

The assignment of the boundary conditions strongly relates to the properties
of the spatial part of the eigenfunction of a non-hermitian system having complex
eigenenergy. From the perspective of the spatial coordinate-dependence, due to
the complex nature of the energy eigenvalues corresponding to decaying states,
these states, in coordinate representation, are asymptotically divergent functions
of the spatial coordinate.

To perform calculations with the quasi-stationary states, one has to cure
the divergence that occur in the coordinates. The occurrence of the asymptotic
divergence of resonance states is a general trait of a quantum system that is
subject to outgoing boundary conditions. Since the bounded state will in finite
time leave the physical space where the bounding potential dominates, and it can
always be represented at large distances from the center of the bounded system
by outgoing plane waves. This is clearly seen on a one dimensional example
of a particle temporarily trapped in a finite potential barrier and subjected
to outgoing boundary conditions. It decays with a lifetime encoded in the
corresponding complex energy:

𝐸1 = 𝐸1r + iℑ(𝐸1) = 𝐸1r −
i
2Γ, (2.6)

Γ is the width of the resonance state, which is related to the life-time of the
particle. This 𝐸1 complex energy shall be expressed with the corresponding
complex argument (arctan

(
−ℑ(𝐸1)
ℜ(𝐸1)

)
), that shall be called the resonance angle 𝜃𝑟𝑒𝑠

for resonances and decaying states, that is:

𝜃res = arctan
(
−Γ

2𝐸1r

)
. (2.7)

One can see that this is a negative quantity. The corresponding asymptotic
wavefunction is expressed with the energy through the wavenumber (𝑘), which
also becomes complex:

𝑘 ∈ ℜ −→ 𝑘res = |𝑘 |ei𝜃𝑘res ∈ C, (2.8)

where the 𝜃𝑘res is the complex argument of the resonance wavenumber, that is
𝜃𝑘res =

𝜃res
2 .
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If one takes a look at the asymptotic solution with a boundary constant (𝐶),
one finds that it is no longer a plane wave but becomes a divergent function, the
so called Gamow-Siegert function [Siegert, 1939 ]:

𝜑res = 𝐶𝑒 i𝑘res𝑥 = 𝐶ei|𝑘 |ei𝜃𝑘res𝑥 . (2.9)

Taking into account the argument about the expression of the resonance angle,
the divergent nature of the asymptotic wavefunction is clearly seen:

𝐶ei𝑘res𝑥 = 𝐶ei|𝑘 |ei𝜃𝑘res𝑥 = 𝐶ei𝑘cos(𝜃𝑘res)𝑥ei𝑘isin(𝜃𝑘res)𝑥 = 𝐶ei𝑘𝜁𝑥e𝑘𝜂𝑥 , (2.10)

where 𝜁 ≡ cos(𝜃𝑘res) > 0 and 𝜂 ≡ −sin(𝜃𝑘res) > 0. Clearly, the first term stands
for the plane wave part and the second term, in fact, diverges.

Complex scaling and the c-product

There can be found a thorough study with regard to the possible treatments of
the asymptotically divergent Gamow-Siegert functions (for instance by complex
absorbing potentials [Jolicard et al., 1985 ; Muga, 2004 ]), that arise in atomic
and molecular physics, in the monograph by [N. Moiseyev, 2011 ].

In this study, however, the Complex Scaling (CS) transformation is applied
to handle the divergence of the quasi-stationary solutions. This is a global
coordinate (𝑞) transformation of the form :

q → q𝑒 𝑖𝜃 , (2.11)

that for real 𝜃 (𝜃 is considered a rotational angle), esentially rotates the complex
plane of wavenumbers by a global phase 𝜃 (although this interpretation is
not entirely accurate, see [Csótó et al., 1990 ]). This transformation is a
type of special similarity transformations serving to regularize the divergent
wavefunctions (𝑆̂). The new coordinates obtained by the CS-transformation
could be considered as the natural coordinate system of non-Hermitian problems.
This technique is extensively elaborated in several articles related to molecular
physical calculations [Chu et al., 2004b ; Elander et al., 1998 ; Morales et al., 2006 ;
McCurdy et al., 1997 ; Rescigno et al., 1997 ; Bengtsson et al., 2008a ; Horner et al.,
2007 ]. The nuanced mathematical background of complex scaling is discussed
in [N. Moiseyev, 2011 ] and is over-viewed in Appendix A. The complex-scaling
operator is generally defined as

𝑆̂ = ei𝜃𝑞 𝜕
𝜕𝑞 , (2.12)

and has the simple effect on any function 𝑓 of the coordinate 𝑞:

𝑆̂ 𝑓 (𝑞) = 𝑓 (𝑞ei𝜃). (2.13)
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According to this, it is easy to see that the divergent Gamow-Siegert functions
become bounded (and square integrable) due to the effect of the complex scaling
transformation. The action of the complex scaling transformation on the 𝜑res

Gamow-Siegert function is the following:

𝑆̂𝜑res = 𝐶ei𝑘ei𝜃𝑘res 𝑞ei𝜃
= 𝐶ei𝑘𝑞ei(𝜃𝑘res+𝜃)

= 𝐶ei𝑘𝑞ei(𝜃−|𝜃𝑘res |)
= 𝐶ei𝑘𝑞i𝜁̃ ·ei𝑘𝑞𝜂̃ = 𝐶e−𝑘 𝜁̃𝑞 ·ei𝑘𝜂̃𝑞 ,

(2.14)
where the variables 𝜁̃ and 𝜂̃ are defined as:

sin(𝜃 − |𝜃𝑘res |) ≡ 𝜁̃, (2.15)

cos(𝜃 − |𝜃𝑘res |) ≡ 𝜂̃. (2.16)

In the expression above 𝑘 is a real quantity (the absolute value of the wavenum-
ber), therefore the second term in the last line of (2.14) represents a plane wave,
while the first term is of decaying nature (for 𝑥 → ∞) if and only if 𝜁̃ > 0. The
last condition is crucial, since it defines a lower bound for the complex-scaling
angle (remember that 𝜃𝑘res =

𝜃res
2 ):

2𝜃 > |𝜃res |. (2.17)

By the CS transformation of the Gamow-Siegert function with the appropriate
scaling angle 𝜃, it becomes a bounded and square-integrable function. By wrods,
only those complex-energy states that belong to resonance angles smaller than 2𝜃
in the complex-energy plane get regularized and, simultaneously, get uncovered
in the complex discrete spectrum. Illustratively, by rotating the 2𝜃-line one
essentially "dust-off" the complex-energy plane to reveal the discrete resonance
energies and erase the divergence of the solutions.

In addition to cure the divergence of the asymptotic wave-function, the
essence of the CS-transformation carried out on the original time-independent
Schrödinger equation is that the non-Hermiticity of the decaying problem is
captured in such a way, that the spectrum of the complex scaled non-Hermitian
Hamiltonian is complemented by discrete resonances with complex eigenener-
gies. As it was meticulously proven in the work of Moiseyev [N. Moiseyev, 2011 ]
in regards of molecular physics, in the non-Hermitian quantum framework these
resonances are allowed to be treated in a mathematically equivalent way as the
bound states are - for example using the complex variational principle or spectral
calculations - , one only needs to solve the complex-scaled Schrödinger-equation
(for the three different types of eigenvalues: the complex resonances (𝐸𝑟), the
bound state energies (𝐸𝑏) or the continuous scattering energies (𝐸𝑐)):

𝐻̂𝜃Φ𝜃(r) = 𝐸r,b,cΦ
𝜃(r), (2.18)
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where 𝐻̂𝜃 = 𝑆̂𝐻̂𝑆̂−1 is the complex scaled Hamiltonian and Φ𝜃(r) = 𝑆̂Φ(r) =
Φ(rei𝜃) is the complex scaled wavefunction in coordinate representation.

According to the Aguilar–Balslev–Combes (ABC) theorem [Balslev et al.,
1971 ; Aguilar et al., 1971 ], the complete spectrum of the complex scaled
non-Hermitian Hamiltonian contains the bound state energies of the original
unscaled Hamiltonian, that are - in an ideal case - independent of the choice of
𝜃 (they are robust against the transformation, this set retains unchanged in the
spectrum). The continuum state energies, although, gets rotated by 2𝜃 in the
complex energy plane. The theorem says that the continuum energies define
a 2𝜃 line, they have a complex argument of 2𝜃, but the physical resonances
might appear in the spectrum above the 2𝜃 line. By an appropriate choice of 𝜃
the resonances get uncovered, hence the number of resonances depends on the
scaling angle. However, as we will show by numerical examples in Section 2.4,
these statements hold exactly only when one is able to find the exact solutions to
the time-independent complex-scaled Schrödinger equation, and if the potential
is dilation-analytic which is not always guaranteed even for the simplest cases.

Since the complex scaling of the Schrödinger equation results in a non-
Hermitian eigenvalue problem, the standard scalar product definition does not
hold anymore. To ensure square integrability, it requires the introduction of
a generalized inner product of a non-Hermitian theory, the 𝑐-𝑝𝑟𝑜𝑑𝑢𝑐𝑡. The
c-product is defined through the eigenstates of a non-Hermitian operator in
a similar way as the standard scalar product is defined with the bra and
ket states of a Hermitian operator. The properties of this inner product are
discussed in detail in the relevant chapters of the book of Moiseyev [Nimrod
Moiseyev, 2011 ]. Here, we only mention that the c-product is defined through
the left and right eigenvectors of the non-Hermitian operator in its matrix
representation. Although, the decaying problems considered here are special
eigenvalue problems, the corresponding Hamiltonian operators are represented
by complex symmetric matrices for which the left and right eigenvectors are the
same. With respect to the c-product the resonance eigenfunctions of the complex
scaled non-Hermitian Hamiltonian of the decaying system are square-integrable,
hence the norm can be defined:∫

𝑎𝑙𝑙𝑠𝑝𝑎𝑐𝑒

𝑑𝑉Φ(𝑞)Φ(𝑞) =
(
Φ(𝑞)|Φ(𝑞)

)
. (2.19)

The ultimate purpose of this study is to precisely investigate three dimensional
nuclear decay problems with rather complicated nuclear potentials by the method
of complex scaling. Generally for these nuclear potentials of more complicated
structure, the Schrödinger equation (with or without complex scaling) cannot
be solved exactly. Although, these could be investigated numerically with
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discretization methods by implementing the complex spectral calculation scheme
instead of assigning boundary conditions.

Complex spectral calculation: discretization of the problem

After complex scaling the time-independent Schrödinger equation:

𝐻̂𝜃
0 Φ

𝜃(r) = 𝐸0Φ
𝜃(r) (2.20)

is now defined to include quasi-stationary states as singular and non-divergent
eigenstates of 𝐻̂𝜃

0 with complex eigenvalues. The spectrum of the complex-
scaled Hamiltonian contains bound states, complex-energy resonance-type states
and the "𝜃-rotated" continuum. How to obtain these solutions and the total
complex-energy spectra?

Generally, finding the exact solution to equation (2.20) for arbitrary non-
Hermitian𝑉(r) potentials is not possible, but it can be approximated, for instance
by discretization methods, numerically. By the complex spectral calculation,
after complex scaling, with an appropriate (not necessarily orthonormal) set of
square-integrable basis functions one might find the discretized total spectrum of
the non-Hermitian operator containing bound-state energies, complex resonance
energies and the rotated discretized continuum energies. This method is also
beneficial for determining nuclear resonances as it is discussed in [Myo et al.,
2020a ; Myo et al., 2020b ]. The expanded wave-function is the following with
the number of basis functions 𝑁 , the 𝜃-dependent expansion coefficients 𝑐𝜃

𝑗
and

the square-integrable basis functions denoted by 𝑤 𝑗(𝑟):

Φ𝜃(r) ≈
𝑁∑
𝑗=1

𝑐𝜃𝑗 𝑤 𝑗(r). (2.21)

The Hamiltonian matrix elements are expressed with the basis functions:

𝐻𝜃
𝑖 𝑗 = ⟨𝑤𝑖 |𝐻̂𝜃 |𝑤 𝑗⟩ . (2.22)

We emphasize, that if we were able to find the exact solutions, the 𝐴𝐵𝐶 theorem
[Aguilar et al., 1971 ; Balslev et al., 1971 ] would hold exactly and the bound
energies would be independent of 𝜃 and only the number of resonances would
depend on the scaling angle, while the continuum energies would fit exactly a
line rotated by 2𝜃. The convergence of the approximate solution to the exact one
depends on the number of basis functions, as a matter of fact. The eigenvalues
of equation (2.20) are approximately given by the spectra of the Hamiltonian
matrix 𝐻𝜃

𝑖 𝑗
, furthermore the eigenvectors of 𝐻𝜃

𝑖 𝑗
give the expansion coefficients

𝑐𝜃
𝑗

in formula (2.21).
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To conclude, the singular-state decay problem is non-hermitian due to the
specific (real) potential energy supporting a continuous spectrum for which
proper boundary conditions can be imposed to find diverging quasi-stationary
solutions and to move the dynamical problem to the non-hermitian domain,
but the interesting properties, stemming from this type of non-hermiticity, are
exposed by the complex scaling transformation of the stationary Schrödinger
equation. This renders the Hamiltonian operator of the system explicitly non-
hermitian and allows for the identification of the quasi-stationary solution with
a singular, square-integrable eigenfunction of the complex-scaled Hamiltonian,
the complex eigenenergy of which can be found by conventional discretization
methods.

2.3 Quasi-stationary states driven by time-dependent
perturbative potentials

Above, I explained the need for the non-hermitian treatment of decay phenom-
ena and introduced the essential concepts regarding the wavefunction-centered
description of quasi-stationary states. Up until now, I considered spontaneous
decay without explicit time-dependence of the Schrödinger equation of the
decaying system. This section is concerned with the proper practice of describ-
ing the interaction of some time-dependent potential with decaying systems
in the non-hermitian frame, by discussing one specific direction to solve the
time-dependent problem, that is the novel (t,t’)-formalism.

2.3.1 The (t,t’)-formalism

One particular analytical approach to investigate - in a wavefunction-centered
way - specific time-dependent potential-driven decays is the (t,t’)-formalism.
By this novel method one diverts the time-dependent problem to a "time"-
independent one in a generalized, extended Hilbert space, hence allowing for the
mathematical tools of perturbation calculations formulated for time-independent
cases. This formalism can be generalized for non-Hermitian cases [Bengtsson
et al., 2008b ]. The formalism was originally developed for time-periodic
problems in scattering theory (Floquet-formalism) but it was generalized for
arbitrary time-dependence also [Chu et al., 2004a ]. In this subsection I attempt
to briefly summarize the main aspect of the (t,t’)-method.

In essence, the formalism puts the time parameter of the evolution equation
to a different role in a generalized Hilbert space (extended Hilbert space ℋ𝑒𝑥𝑡) by
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regarding it as an extra coordinate there. The extended Hilbert space is the tensor
product space of the original Hilbert space ℋ of square integrable functions
with respect to the spatial variable and an extra Hilbert space ℋ𝑡 containing
square integrable functions with respect to a coordinate 𝑡:

ℋ𝑒𝑥𝑡 = ℋ ⊗ ℋ𝑡′ , (2.23)

where the 𝑡 symbol stands for the time coordinate.
In this extended Hilbert space the original time-dependent Schrödinger-

equation could be viewed as a ’time’-independent one, considering ’time’ (𝑡′) as
the evolution parameter in the extended Hilbert space, hence producing us the
required stationary formulas. This idea is in the spirit of the method.

For a given element of the extended Hilbert space in coordinate represen-
tation Φ̃(𝑞, 𝑡) the square integrability with respect to all the coordinates (the
general coordinates 𝑞 and 𝑡), in the standard norm sense:

⟨⟨Φ̃𝛼 |Φ̃𝛽⟩⟩ =
∞∫

−∞

d𝑡
∫

𝑎𝑙𝑙𝑠𝑝𝑎𝑐𝑒

d𝑉Φ̃∗
𝛼(𝑞, 𝑡)Φ̃𝛽(𝑞, 𝑡) < ∞. (2.24)

This is, of course, can be formulated with respect to the c-norm when dealing with
the eigenfunctions of non-Hermitian operators (with left and right eigenfunctions
Φ̃𝐿𝜃

𝛼 (𝑞, 𝑡), Φ̃𝑅𝜃
𝛽 (𝑞, 𝑡)):

((Φ̃𝜃
𝛼 |Φ̃𝜃

𝛽 )) =
∞∫

−∞

d𝑡
∫

𝑎𝑙𝑙𝑠𝑝𝑎𝑐𝑒

d𝑉Φ̃𝐿𝜃
𝛼 (𝑞, 𝑡)Φ̃𝑅𝜃

𝛽 (𝑞, 𝑡) = 𝛿𝛼𝛽 . (2.25)

Such doubly square-integrable functions from the extended Hilbert space are,
for instance, the eigenfunctions of the Floquet-type operator 𝐻̂𝐹:

𝐻̂𝐹(𝑞, 𝑡) = 𝐻̂(𝑞, 𝑡) − 𝑖ℏ 𝜕

𝜕𝑡
(2.26)

which is now considered 𝑡′-independent [Pfeifer et al., 1983 ], where 𝑡′ is
the evolution parameter on the extended Hilbert space. The corresponding
Floquet-type eigenvalue equation with the 𝜀 Floquet-type eigenenergy:

𝐻̂𝐹(𝑞, 𝑡)Φ̃(𝑞, 𝑡) = 𝜀Φ̃(𝑞, 𝑡). (2.27)

𝐻̂(𝑞, 𝑡) is the original Hamiltonian of the original Schrödinger equation with the
progress parameter 𝑡 (that is regarded as a coordinate in ℋ𝑒𝑥𝑡)

𝑖ℏ
𝜕

𝜕𝑡
Ψ𝜃(𝑞, 𝑡) = 𝐻̂(𝑞, 𝑡)Ψ(𝑞, 𝑡). (2.28)
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where Ψ(𝑞, 𝑡) ∈ ℋ is the solution of the original problem that we would like to
obtain.

𝐻̂𝐹(𝑞, 𝑡) is the generator of the 𝑡′ (quantum) time evolution in the extended
Hilbert space:

𝑖ℏ
𝜕

𝜕𝑡′
𝜒(𝑡′; 𝑞, 𝑡) = 𝐻̂𝐹𝜒

𝜃(𝑡′; 𝑞, 𝑡), (2.29)

As it was proved in [Pfeifer et al., 1983 ], if the stationary (𝑡′ = 0) solutions of
this equation (the Floquet-type eigenfunctions Φ̃(𝑞, 𝑡)) exactly satisfy the original
𝑡-dependent Schrödinger equation, then upon the projection 𝑡′ ≡ 𝑡 𝜒𝜃(𝑡′; 𝑞, 𝑡)
yields the solution Ψ(𝑞, 𝑡) of the original problem [Peskin et al., 1993 ]. As it is
anticipated, for 𝜀 = 0 it gives the same result as the solution of the 𝑡′-progress
equation in the extended Hilbert space when projected to the original Hilbert
space (𝑡′ ≡ 𝑡).

Altogether, to obtain the time-dependent solutions of the original problem,
one should solve the Floquet-type eigenvalue equation. However, it was found,
that this gives the exact time-dependent solutions if and only if the original
Hamiltonian is time-independent, otherwise it is an approximation. Hereby, it
must be emphasized that the advantage of this formalism is that approximation
tools of time-independent problems, such as the time-independent perturbation
theory, can be utilized formally to solve time-dependent ones thus reducing the
strong dependence of the results on numerical solvers needed for calculating
the dynamics. In the next subsection the formally time-independent (first-
order) perturbation calculation will be presented in regards of the Floquet-type
eigenenergy.

A remarkable property of the (t,t’)-perturbation calculation is that it is exclusively
applicable for quasi-stationary states, as in states which decay in time.

2.3.2 Derivation of the complex energy-correction formula

This subsection is dedicated to present the author’s analytical result concerning
the first-order (t,t’)-perturbative complex energy-correction formula for time-
dependently perturbed decaying systems. This formula is the fundamental
original result of this thesis.

Take a specific time-independent non-Hermitian Hamiltonian 𝐻̂0 represent-
ing the decaying system which is perturbed by a time-dependent potential 𝐻̂𝐼(t),
the time evolution of the whole system is described by the general Schrödinger
equation:

iℏ 𝜕

𝜕𝑡
Ψ(r, 𝑡) = 𝐻̂(t)Ψ(r, 𝑡), (2.30)
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where the total Hamiltonian is 𝐻̂(t) = 𝐻̂0 + 𝐻̂𝐼(t). The non-perturbed system
includes a spherical potential 𝑉(r) with characteristic properties that makes 𝐻̂0

non-Hermitian, therefore the spectrum of the Hamiltonian contains complex
eigenvalues, as mentioned above. The corresponding states are quasi-stationary
states of the basic non-perturbed system, we will address these in the following
way:

𝐻̂0Φ(r) = 𝐸0Φ(r), (2.31)

where 𝐸0 = 𝐸0𝑟 − i
2Γ is the complex eigenenergy. One of the interesting questions

is how the complex energy eigenvalues might be altered in the presence of a
time-dependent external potential 𝐻̂𝐼(t)?

After solving the eigenvalue problem of the time-independent system by
the Complex Scaling transformation and the complex spectral calculation scheme,
as it is thoroughly explored in Subsection 2.2.1, and obtaining the stationary
solutions, the focus shall be placed on acquiring the full time-dependent solution
of (2.30). As we focus only on the quasi-stationary states one shall apply the
CS-transformation on equation (2.30) also in order to keep the states regularized:

iℏ 𝜕

𝜕𝑡
Ψ𝜃(r, 𝑡) = 𝐻̂𝜃(r, 𝑡)Ψ𝜃(r, 𝑡), (2.32)

where the CS-transformed Hamiltonian is 𝐻̂𝜃(𝑡) = 𝐻̂𝜃
0 + 𝐻̂𝜃

𝐼
(t). An additional

increment of situations with regard to quasi-stationary states (non-Hermitian
problems), is the applicability of the (t,t’)-formalism, which diverts the time-
dependent problem to a ’time’-independent one in a generalized, extended
Hilbert space, hence allowing for the mathematical tools of perturbation cal-
culations formulated for time-independent cases. If the wave function Ψ𝜃(r, 𝑡)
describes a quasi-stationary state then the time dependent part of Ψ𝜃(r, 𝑡) is
regularized and could indeed be normalized, because in this case the energy
is complex. Therefore the Hilbert space of the non-Hermitian system can be
extended with the time parameter 𝑡 by regarding it as an extra coordinate there.
The expanded Hilbert space is a tensor product space of the original Hilbert
space ℋ of square-integrable functions with respect to the spatial variable and
an extra Hilbert space ℋt containing square-integrable functions with respect to
a coordinate 𝑡.

The CS-transformed Schrödinger equation (2.32) can be rearranged according
to the (t,t’)-formalism:

0 = [𝐻̂𝜃
F (𝑡) + 𝐻̂

𝜃
𝐼 (r, 𝑡)]Ψ

𝜃(r, 𝑡), (2.33)

where
𝐻̂𝜃

F (𝑡) = 𝐻̂𝜃
0 (r) − iℏ 𝜕

𝜕𝑡
(2.34)
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is the Floquet-type operator of a complex symmetric Hamiltonian in the expanded
Hilbert space. Now 𝐻̂𝜃

𝐼
(r, t) is considered as a perturbation, hence in leading

order equation (2.33) corresponds to the eigenvalue equation of the 𝐻̂𝜃
F (𝑡)

operator when the Floquet-type eigenvalue is equal to zero (𝜀 = 0):

𝐻̂𝜃
F (𝑡)Φ̃

𝜃(r, 𝑡) = 𝜀Φ̃𝜃(r, 𝑡). (2.35)

The eigenvalue equation (2.35) can be solved by the Fourier-method combined
with the complex spectral calculation. Equation (2.35) can be separated with
respect to the coordinates r, 𝑡:

1
Φ𝜃(r)

𝐻̂𝜃
0 (r)Φ

𝜃(r) − 1
𝜑(𝑡) iℏ 𝜕

𝜕𝑡
𝜑(𝑡) = 𝜀, (2.36)

which can only be satisfied if the two terms on the left equal the constants
𝐸0 −𝐸2, respectively, giving two solvable differential equations. The choice of the
constant 𝐸0 is, of course, due to the fact that the first term on the left side of (2.36)
is the unperturbed original eigenvalue equation, that has already been solved,
while 𝐸2 is just a not necessarily real constant. Hence the Floquet eigenvalue is
𝜀 = 𝐸0 − 𝐸2 and the Floquet-type eigenfunction can be written as:

Φ̃𝜃(r, 𝑡) = Φ𝜃(r)𝜑(𝑡). (2.37)

After substituting the single solutions, one obtains the following expression
(with 𝐸2 = 𝐸0 − 𝜀):

Φ̃𝜃(r, 𝑡) = 𝒩e−
𝑖
ℏ
(𝐸0−𝜀)𝑡Φ𝜃(r) (2.38)

= 𝒩e−
𝑖
ℏ
(𝐸0r−𝜀)𝑡e−

Γ
2ℏ 𝑡

′
Φ𝜃(r),

where𝒩 = ((Φ̃𝜃(r, 𝑡)|Φ̃𝜃(r, 𝑡))) is the complex normalization factor of the complex-
scaled eigenfunctions in the extended Hilbert space which comes from equation
(2.25), and 𝐸0 corresponds the eigenvalue of 𝐻̂𝜃

0 , in equation (2.20). This one
exactly solves the original 𝑡-dependent Schrödinger equation for 𝜀 = 0. As it is
anticipated, for 𝜀 = 0 it gives the same result as the solution of the 𝑡′-progress
equation in the extended Hilbert space when projected to the original Hilbert
space ([𝑡 ≡ 𝑡′]):

𝜒𝜃
0 (𝑡

′; r, 𝑡)|𝑡′≡𝑡 = 𝒩e−
𝑖
ℏΦ𝜃(r)𝜑(𝑡) (2.39)

= 𝒩e−
𝑖
ℏ
(𝐸0−𝐸2)[𝑡′≡𝑡]e−

𝑖
ℏ
𝐸2Φ𝜃(r)

= 𝒩e−
𝑖
ℏ
𝐸0[𝑡′≡𝑡]Φ𝜃(r)

So, the (t,t’)-method is, in fact, exact for the unperturbed problem. The presence
of the interaction term alters the Floquet-type eigenenergy and intuitively the
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change in the Floquet-type energy gives the shift in the 𝐸0 complex energy.
The formally time-independent perturbation calculation is performed with the
unperturbed Floquet-type eigenfunction having the variable 𝑡 as a coordinate.

In the special case when the perturbation only depends on 𝑡 and not on
the position coordinate, the Floquet-type eigenfunction can be expanded in the
basis of the time-independent problem. For spherically symmetric problems
(for which the time-independent quasi-stationary solution can be separated into
radial and angular parts: Φ𝜃(r) = Φ𝜃(𝑟)𝑌ℓ ,𝑚(Ω), where 𝑌ℓ ,𝑚(Ω) are the spherical
harmonics of order ℓ ) and with expression (2.21), the solutions can be written in
the following way:

Φ̃𝜃(r, 𝑡) = 𝒩
𝑁∑
𝑗=1

e−
𝑖
ℏ
(𝐸0−𝜀)𝑡𝑐𝜃𝑗 𝑤 𝑗(𝑟)𝑌ℓ ,𝑚(Ω), (2.40)

where 𝜀 must be zero and 𝑌ℓ ,𝑚(Ω) denote the spherical harmonics which are
due to the spherical potential 𝑉(𝑟) (certainly 𝑌ℓ ,𝑚(Ω) is a constant in s-wave
approximation).

Finally, as it was mentioned above, 𝐻̂𝜃
𝐼
(r, t) is considered as a perturbation,

the effect of which on the unperturbed system can be formally approximated
by time-independent perturbation formalism in the framework of the (t,t’)-
formalism. Accordingly, the first-order energy correction yields

𝜀(1) = ((Φ̃𝜃(r, 𝑡)|𝐻̂𝜃
𝐼 |Φ̃

𝜃(r, 𝑡))) = (2.41)

= 𝒩2
∞∫

0

d𝑡e−
Γ
ℏ
𝑡
(
Φ𝜃(r)|𝐻̂𝜃

𝐼 (r, 𝑡)|Φ
𝜃(r)

)
,

where Φ𝜃(r) = ∑𝑁
𝑗=1 𝑐

𝜃
𝑗
𝑢𝑗(𝑟)𝑌ℓ ,𝑚(Ω). The derived equation (2.41) is one of the

most important results of the thesis where the real and imaginary parts of 𝜀(1)

divided by 𝐸0𝑟 or Γ yield the relative change caused by the time-dependent
perturbation in the real eigenenergy shift and essentially in the shift of the width
of the decaying state.
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2.4 Model calculation for a particle trapped in a
Gaussian potential well subjected to pulse-type
drivings

This section is concerned with the aim to emphasize the generality of the
merged formalism of non-Hermitian quantum theory and the (t,t’)-formalism.
This section conatains the author’s own numerical results. In the followings a
toy model is presented to demonstrate how the above formulated theoretical
considerations shall be applied in practical calculations. Nevertheless, ultimately
this methodology is proved to be applicable for suitably chosen mean field
potentials which could describe alpha-decay processes in nuclei, that is the
fundamental purpose of this thesis.

Now, let us consider a time-independent Hamiltonian that represents a
spherically symmetric bound system with a Gaussian potential well. Due to
the potential, the system could possess quasi-stationary states, one of which is
occupied by a particle of reduced mass 𝑚. The time-independent, unperturbed,
complex-scaled Hamiltonian takes the following form:

𝐻̂𝜃
0 (𝑟) =

−ℏ2

2𝑚 e−2𝑖𝜃

(
1
𝑟

d2

d𝑟2 𝑟

)
+𝑉kG(𝑟e𝑖𝜃), (2.42)

where ℏ2

2𝑚 = 1
2 MeVfm2, the potential 𝑉𝑘G(𝑟) is a Gaussian potential with

arbitrary parameters 𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘 , 𝐷𝑘 , (𝑘 = 1, 2) introduced in [Csótó et al., 1990 ]:

𝑉𝑘G(𝑟) = −𝐴𝑘𝑒−𝐶𝑘 𝑒
2𝑖𝜃𝑟2 + 𝐵𝑘𝑒−𝐷𝑘 𝑒

2𝑖𝜃𝑟2
. (2.43)

At first, the 𝜃 = 0 case is considered, which, in fact, is the original Hamiltonian
that represents the physical system before complex scaling. The discretized
spectrum of the unperturbed time-independent Hamiltonian is obtained by
diagonalization (2.22). The radial part of the wavefunction 𝑢𝜃(𝑟) is expanded in
terms of a harmonic oscillator basis (Csótó et al., 1990 ) with oscillator parameter
𝑏, for the 𝑙 = 0 case:

𝑢𝜃(𝑟) =
𝑁∑
𝑗=0

𝑐𝜃𝑗
1
𝑟
𝑒
− 𝑟2

2𝑏2 ℒ1/2
𝑗

(𝑟2/𝑏2) 1
𝑏3/2

[
2Γ(𝑗 + 1)
Γ(𝑗 + 3/2)

]1/2
, (2.44)

where 𝑁 is the number of basis functions used, ℒ1/2
𝑗

is the 𝑗-th Laguerre
polynomial andΓ is the gamma function. The𝜃-dependent expansion coefficients
𝑐 𝑗 are determined by complex variational calculations. The unscaled spectrum
is depicted in the underlying Figure 2.1.
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Figure 2.1: Real spectrum of the Hamiltonian with potential 𝑉2G(𝑟) with 𝜃 = 0◦ and 𝑏 = 0.51.
The specific parameters of potential 𝑉2G(𝑟) are the followings: 𝐴2 = 15, 𝐵2 = 12, 𝐶2 = 0.3 and
𝐷2 = 0.1.

Re(E) [MeV]

-1.5

-1

-0.5

0

Im
(E

) 
[M

eV
]

rotated scattering states

quasi-stationary state

bound state 1

bound state 2

0

50

100

q
s

-5 0 5 10 15 20 25 30 35

Re(E
qs

)=1.491 MeV

Im(E
qs

)=-1.22  10
-5

 MeV

=0.03

-2

-1.5

-1

-0.5

0

Im
(E

) [M
eV

]

rotated scattering states

quasi-stationary state

bound state

0

50

100

q
s

0 5 10 15 20 25 30 35 40 45

Re(E) [MeV]

Re(E
qs

)=2.393 MeV

Im(E
qs

)=-8.712  10
-5

 MeV

=0.03

Figure 2.2: Complex non-Hermitian spectra of the Hamiltonian with potential 𝑉1G(𝑟) (a) and
𝑉2G(𝑟) (b) choosing the scaling angle as 𝜃 = 0.03, the number of basis functions as𝑁 = 20, while
the oscillator parameters are 𝑏 = 0.9 for potential 𝑉1G(𝑟) (the specific parameters for potential
𝑉1G(𝑟) are: 𝐴1 = 8, 𝐵1 = 4, 𝐶1 = 0.16 and 𝐷1 = 0.02.) and 𝑏 = 0.51 for potential 𝑉2G(𝑟). The
lower subfigures emphasize the relative deviation of the discrete eigenvalues from the 2𝜃-line
𝜅

qs
𝜃 =

(−𝜃qs
𝜃 · 100

)
.
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We find, that the spectrum of the unscaled operator possesses one bound
state and discretized continuum states with real, positive energy eigenvalues.
One particular positive eigenvalue is highlighted in Figure 2.1 at real energy
Re(𝐸) = 2.393 MeV. In the followings we will show that this eigenenergy
corresponds to a quasi-stationary state of the system, after the problem is
rotated to its natural coordinate system upon performing the complex scaling
transformation. This procedure uncovers the imaginary part of the eigenenergy
in the spectrum which corresponds to the finite lifetime of the state.

After the CS-transformation, applying the complex spectral calculus, the
complete spectrum of the non-Hermitian Hamiltonian is achieved as it is shown
in Figure 2.2 for the two different potential models in equation (2.43). In the
subfigures, the 𝜅

qs
𝜃 =

(−𝜃qs
𝜃 · 100

)
ratio indicates the necessary deviations of the

complex-scaled (rotated) continuum energies from the 2𝜃-line. This discrepancy
is due to the finite basis the wavefunction is expanded on. The spectra in
Figure 2.2 are achieved by setting the number of basis functions 𝑁 = 20, as
the results already show convergence for such amount of basis functions. As
it is anticipated, the convergence fastens by using larger scaling parameters 𝜃,
although for potentials containing exponential functions 𝜃 should be chosen
carefully in order to avoid oscillations appearing in the transformed potential.
For our purpose, a relatively small scaling angle is sufficient, since we are
looking for quasi-stationary states with widths (Γ) many orders of magnitude
smaller than those of molecular resonances. For 𝜃 = 0.03 the convergence is fast
enough for both potential shapes however, the unwanted oscillations are not yet
present. Nevertheless, the bound-state energies and the energies corresponding
to quasi-stationary states are robust to the choice of 𝜃 as long as it does not
exceed the critical range (𝜃 < 𝜋

4 ) [Myo et al., 2020b ] and so long as the harmonic
oscillator basis function expansion coefficient 𝑏 is chosen appropriately. By
relatively higher values of 𝑏 the lower-energy spectrum is obtained with higher
accuracy, although for smaller values of 𝑏 the high-energy part is described
well and the basis functions are not adequate to approximate sufficiently the
quasi-stationary solutions that should appear at lower energies.

After the quasi-stationary states and the complex eigenvalues of the decaying
system are obtained by the CS-transformation and the complex spectral calculus,
the situation when the system is coupled to an external time-dependent potential
field can be investigated properly with the (t,t’)-formalism as explained in
Subsection 2.3.2. Consider a plain time-dependent potential with Gaussian
anharmonic time-dependence:

𝐻̂𝜃
𝐼 (r, 𝑡) = 𝑉

𝜃
𝐼 (𝑡) = 𝐴0cos

(
𝜁𝑡
ℏ

)
e−

(
𝜁
𝜎ℏ 𝑡

)2

, (2.45)
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where 𝜁/ℏ is the frequency of the potential, 𝐴0 is the amplitude of the external
potential and 𝜎 is the width of Gaussian envelope function.

When the system is coupled to the external time-dependent potential with
Gaussian anharmonic time-dependence, one expects the lifetime of the quasi-
stationary state to decrease, so at the same time, the width shall increase. In the
followings, we present our first-order perturbative results (applying equation
(2.41)) with regard to the modifications the width and the lifetime suffer due to
the presence of the perturbative external potential, in the case of the two different
potential models. In (2.41) the integration with respect to the time coordinate
is performed over the whole coordinate space. The normalization factor 𝒩
is computed by the use of the spectral calculation method in the extended
Hilbert space (applying equation (2.25)). Performing the integration in the
energy correction (2.41) for the specific external potential (2.45), one obtains the
following analytical closed-form expression (for the physically motivated case of
Γ
𝜁 << 𝜎):

𝜀(1) =
𝒩2

4 𝐴0
√
𝜋
𝜎
𝜁

e
1
4

(
Γ2
𝜁2 −1

)
𝜎2

· (2.46)

·
[
e−i Γ𝜎2

2𝜁

(
1 + i · erfi

(𝜎
2

))
+ ei Γ𝜎2

2𝜁

(
1 − i · erfi

(𝜎
2

))]
,

where erfi(𝑥) denotes the imaginary error function. In order to emphasize
that the time-dependent, interactive potential could indeed be considered as
a perturbation, the relative change of the real part of the energy eigenvalues
are depicted in Figure 2.4 and Figure 2.5. Since the ratio of the perturbed and
unperturbed lifetimes serves as an appropriate measure of the effect of the
external potential, some numerical values of the relative change of the widths
are summarized in Table 2.1 and Table 2.2 for three different external control
parameters.

A remarkable trait of the problem is that even though the external potential
could only slightly alter the discrete real energies of bound and quasi-stationary
states, the imaginary part (the width) might change with several orders of
magnitude.

It shall be stressed that, although the real continuum energies might become
moderately altered at some energy region, they cannot be treated sufficiently by
the presented calculation method and they are not in the focus of our analysis.
This substantial trait is highlighted in the above mentioned figures and tables,
where Γpert stands for the modified width. It is found that the value of the
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Figure 2.3: The relative change of the width Γpert

Γ
, in the case of potential 𝑉1G(𝑟), as a function of

the width of the Gaussian envelope function, for fixed 𝜁 = 0.1.

𝜁 Re(𝐸qs) Γ Γ
pert
𝜎=1

Γ
pert
𝜎=1
Γ

0.01 1.491 6.09 · 10−6 6.50 · 10−4 106.5

0.1 1.491 6.09 · 10−6 7.05 · 10−5 11.5
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Table 2.1: The widths corresponding to
the quasi-stationary states at real energy
Re(𝐸) = 1.491 MeV in the case of the poten-
tial model 𝑉1G(𝑟). The modified widths Γpert

and the relative changes of the width Γpert

Γ
are

calculated with three different frequency pa-
rameters (𝜁) of the external potential and with
𝜎 = 1. The parameter 𝐴0 is set arbitrarily
as 𝐴0 = 10000 throughout the computations.
All the quantities are measured in MeV.

Figure 2.4: The relative change of the real part
of the energy eigenvalues corresponding to the
potential model 𝑉1G(𝑟) for three different fre-
quency parameters 𝜁 with 𝜎 = 1. The bound
and quasi-stationary energy corrections are
highlighted by an ellipse.

modified width depends on the frequency parameter of the external potential
(2.45). Also, one might want to check how the ratio of the lifetimes depends on
the width of the Gaussian envelope function (𝜎). This 𝜎-dependency is depicted
in Figure 2.3 for a fixed frequency parameter 𝜁 = 0.1. We observe that, after
a peak-like change, the effect vigorously decreases as the width 𝜎 increases,
as anticipated, since as 𝜎 → ∞ the Gaussian envelope potential converges to
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𝜁 Re(𝐸qs) Γ Γ
pert
𝜎=1

Γ
pert
𝜎=1
Γ

0.01 2.393 4.36 · 10−5 9.36 · 10−5 2.15

0.1 2.393 4.36 · 10−5 4.49 · 10−5 1.11

1 2.393 4.36 · 10−5 4.41 · 10−5 1.01
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Table 2.2: The widths corresponding to
the quasi-stationary states at real energy
Re(𝐸) = 2.393 MeV in the case of the po-
tential model 𝑉2G(𝑟). The modified widths
Γpert and the relative changes of the width Γpert

Γ

are calculated with three different frequency
parameters (𝜁) of the external potential and
with 𝜎 = 1. The parameter 𝐴0 is taken as
𝐴0 = 10000 throughout the computations.
All the quantities are measured in MeV.

Figure 2.5: The relative change of the real
part of the energy eigenvalues corresponding
to the potential model𝑉2G(𝑟) for three different
frequency parameters 𝜁 with 𝜎 = 1.

a plane-wave form. This behaviour is in accordance with the conclusion of
previous computations with respect to laser pulse-assisted internal conversion
processes [D. Kis et al., 2010 ]. Nevertheless, we conclude that by this theoretical
method, one is able to find plausible, finite corrections to the width of the
quasi-stationary states. A notable increment of the the presented computational
method is obtaining the perturbative corrections to the lifetimes directly from the
non-Hermitian spectrum of the Hamiltonian operator representing the decaying
system.
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Properties of super-intense
laser-assisted decay within the

non-hermitian formalism

In this chapter, I introduce and explain my own results concerning the
coherent electromagnetic field-induced shift of the complex energy of single
quasi-stationary states, elaborating thoroughly the special situation of gauge-
transformations within the non-hermitian frame and in relation to strong-field
laser fields. This chapter sets ground for an alternative, strongly analytical
description of laser-assisted alpha decay to be presented in the next chapters.
This chapter contains the author’s own analytical and numerical results and
corollaries.

3.1 Applicability of the classical description of the
coherent electromagnetic field

When the interaction of a physical system with a coherent electromagnetic
field (laser field) is considered, one must involve the eigenstates of the Hamil-
tonian of the electromagnetic field into the total state of the interacting system.
When the interaction happens with a laser field then the state of the electro-
magnetic field must be described by a coherent state, that is by definition the
eigenstate of the photon-annihilation operator:

𝑎𝑘 |𝜆𝑘⟩ = 𝜆𝑘 |𝜆𝑘⟩ , (3.1)

with 𝑘 denoting all the possible mode indices of the photon. The free Hamiltonian
of a coherent electromagnetic field requires the second-quantized description,
accordingly any interaction with the laser field contains the scalar and vector

27
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potential of the quantized electromagnetic field built up by creation and annihi-
lation operators. However, a special transformation can be constructed [D. P. Kis,
2013 ,] which transfers the coherent state to vacuum! This (time-dependent)
transformation reads

𝑇̂𝑘(𝑡) = exp
(
𝜆𝑘ei𝜔𝑘 𝑡 𝑎̂𝑘 − 𝜆∗

𝑘e
−i𝜔𝑘 𝑡 𝑎̂

+
𝑘

)
, (3.2)

where 𝜔𝑘 stands for the frequency of the laser. In addition, when considering
the interaction of laser fields with a (in our case a non-relativistic) system, the
interaction Hamiltonian is complemented by a new term, that is the classical
vector potential determined by the well-defined eigenvalue 𝜆𝑘 and polarization
(𝜖𝑘) of the coherent state:

Â(𝑘, r, 𝑡) = 𝐴0

(
𝜆𝑘𝜖𝑘ei(k𝑘r−𝜔𝑘 𝑡) + 𝜆∗

𝑘𝜖𝑘e
−i(k𝑘r−𝜔𝑘 𝑡)

)
, (3.3)

where 𝐴0 is an amplitude depending on the frequency and intensity of the
field. One must note that this transformation remains valid only if the system
does not undergo such transformations that could transform the coherent state
back from vacuum. In this thesis we do not engage in such transformations.
Henceforth, one creates the terms in the interaction Hamiltonian that describes
the interaction of the system with a classical vector potential that appropriately
represents the laser field since it is only evoked by the effect of a transformation
operator. This interaction Hamiltonian is specified in the next section.

3.2 The interaction Hamiltonian
Now, we consider a coherent electromagnetic field characterized by a classical

vector potential (A(r, 𝑡)) that is taken into account by minimally coupling the
vector potential to the kinetic part of the Hamiltonian operator describing a
non-relativistic system characterized by a reduced mass 𝑀. Thus, in Coulomb
gauge (∇A = 0) where the scalar potential is omitted, the total and already
complex-scaled Hamiltonian of the laser-assisted decaying system yields:

𝐻̂𝜃(r, 𝑡) = 1
2𝑀

(
p𝜃 − 𝑒

𝑐
A𝜃(r, 𝑡)

)2
+𝑉(𝑟e𝑖𝜃), (3.4)

where 𝑒 is the elementary charge and 𝑐 is the speed of light. Due to the gauge
choice the squared term in equation (5.33) gets simplified, hence we get the
commonly known velocity gauge formula where the remaining terms containing
the vector potential determine the interaction Hamiltonian 𝐻̂𝜃

𝐼
(r, 𝑡) as follows:

𝐻̂𝜃
𝐼 (r, 𝑡) =

−𝑒
𝑀𝑐

p𝜃A𝜃(r, 𝑡) + 𝑒2

2𝑀𝑐2

(
A𝜃(r, 𝑡)

)2
. (3.5)
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This form can be further reduced by applying the dipole approximation or long-
wave approximation (LWA), which converts the vector potential as A𝜃(r, 𝑡) →
A𝜃(𝑡), thereby eliminating the spatial dependence of the vector potential. One
shall note that this approximation is automatically valid in the case of the
interaction with nuclear systems, since the characteristic wave-length of typical
lasers (1-1000 eV) is at least five orders of magnitude larger than the nuclear size.

We use here the velocity gauge formula, although there are multiple examples
in literature in relation to laser-matter interactions where this form is substituted
with ease by an expression containing the electric field, referring to it as a special
type of gauge-choice: the length gauge (also referred to as 𝑟𝐸-gauge). In the
next subsections the question of the gauge-choice, especially with regard to
complex-scaling and the description of high-intensity laser fields is thoroughly
discussed, for the derivation of the laser-induced complex-energy correction
formula we adopt the velocity-gauge expression of the interaction Hamiltonian.

3.3 Derivation of the first-order, (t,t’)-perturbative
laser-induced complex-energy correction func-
tion

Now considering the above-specified interaction Hamiltonian, in this subsec-
tion I intend to discuss the calculation of the correction to the complex energy of
the quasi-stationary state due to the presence of the vector potential representing
the external laser field.

The parametrization of the vector potential depends on the polarization. In
this study calculations are presented for both linearly and circularly polarized
laser fields, in LWA. The concrete form of the vector potential is specified later. In
order to stress the generality of the formalism, I take as the basic non-perturbative
system the already presented toy model 2.4 where a particle of reduced mass 𝑚
is trapped inside a Gaussian-type potential barrier.

In the interaction Hamiltonian in equation (3.5) there are two terms containing
the vector potential on different powers. We are looking for the following matrix
element ((t,t’)-expectation value rather) to obtain the first-order perturbative
correction to the complex energies of the quasi-stationary states:

((Φ̃𝜃(r, 𝑡)|𝐻̂𝜃
𝐼 |Φ̃

𝜃(r, 𝑡))). (3.6)

Note that one must consider the spatial integrals also which, in this case, are
separated to integrals over radial and spherical angular coordinates, due to the
system possessing spherical symmetry. Generally, it is found that considering
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this spherically symmetric problem, independently of the polarization direction
the perturbative complex-energy correction (2.41)

((Φ̃𝜃(r, 𝑡)|𝐻̂𝜃
𝐼 ,1 |Φ̃

𝜃(r, 𝑡))) = 0 (3.7)

for the first term in (3.5) 𝐻̂𝜃
𝐼 ,1 = −𝑒

𝑀𝑐p
𝜃A𝜃(r, 𝑡), as a result of the integrals over

spherical angular coordinates (Ω = 𝜙,Θ) with the spherical harmonics 𝑌ℓ ,𝑚(Ω)
appearing in the spatial part of the wave-function Φ𝜃(r) = ∑𝑁

𝑗=1 𝑐
𝜃
𝑗
𝑢𝑗(𝑟)𝑌ℓ ,𝑚(Ω).

It is an essential distinct property of the non-hermitian treatment of the problem,
that will be elaborated later on. It is important to note that this trait might be a
consequence of calculating an expectation value, in other words with the initial
and final states being equal, rather than a transition matrix element typically
applied in calculations concerning laser-assisted nuclear processes. This is
validated if the Keldysh-Gamma parameter is much smaller than one 𝛾KG << 1
(see for example [Reiss, 2008 ]), furthermore when the external laser field cannot
alter significantly the real part of the complex energy, as in, the perturbation
does not transfer the system to a different energy level. This will be the case for
laser-nuclei interactions.

To obtain the matrix element for the second term 𝐻̂𝜃
𝐼 ,2 = 𝑒2

2𝑀𝑐2

(
A𝜃(r, 𝑡)

)2
,

one is allowed to calculate the integrals over spherical coordinates and the
time coordinate of the extended Hilbert space separately. Differently from the

frequently applied theoretical frameworks, in this case the
(
A𝜃(r, 𝑡)

)2
matrix

element gives non-zero contribution; moreover, due to the use of the c-product,
in the calculation of matrix elements (expectation values) the phase symmetry of
the system is not present, therefore the phase transformation of the eigenfunction
between the different gauges cannot be performed.

As a direct consequence of these, it must be pointed out here that in the case
of quasi-stationary states, described within the framework of non-Hermitian
quantum theory, the (𝑝𝐴) and (𝑟𝐸) gauges are unsuitable and insufficient because
the quadratic term of the vector potential is non-vanishing in the interaction
Hamiltonian [M. Sargent et al., 1974 ] which in Coulomb gauge includes only
the pA and the A2 components. In the presented calculation scheme, since the
A2(r, 𝑡) term gives the non-zero contribution, the unitary transformation that
connects the (𝑝𝐴) and (𝑟𝐸) gauges is not justified, hence it is not appropriate to
regard our Schrödinger equation in either one of those (sub-) gauges but in the
standard Coulomb gauge. This circumstance is detailed and clarified in the next
subsection.

Analytical closed formulas are obtained with the following specification of
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the vector potential. For linear polarization the vector potential is built up as

A(r, 𝑡) = 𝐴0e𝑧cos
(
𝜁
ℏ
𝑡 + 𝛼

)
e
(
− 𝜁𝑡

ℏ𝜎

)2

, (3.8)

while for circular polarization A(r, 𝑡) is expressed as

A(r, 𝑡) = 𝐴0

(
e𝑥cos

(
𝜁
ℏ
𝑡 + 𝛼

)
+ e𝑦sin

(
𝜁
ℏ
𝑡 + 𝛼

))
e
(
− 𝜁𝑡

ℏ𝜎

)2

, (3.9)

where e𝑥 , e𝑦 , e𝑧 are the unit vectors in Cartesian coordinate system, 𝜁
ℏ
, 𝛼 are the

frequency and the phase of the laser field, respectively and 𝜎 is the width of
the Gaussian envelope function. 𝐴0 can be expressed with the amplitude of the
corresponding electric field 𝐸0 =

𝜁
ℏ𝑐
𝐴0, where 𝐸0 =

√
4𝜋
𝑐

√
𝐼 with 𝐼 denoting the

intensity of the laser field.
Performing the integration over the whole coordinate space in 𝜀(1,l) =

((Φ̃𝜃(r, 𝑡)|𝐻̂𝜃
𝐼 ,2 |Φ̃𝜃(r, 𝑡))), the following closed-form expressions are achieved

for the energy correction, for the physically motivated limit of Γ
𝜁 << 𝜎. The

latter condition refers to the situation of actual nuclear physical systems. In
the interesting case of alpha decay the typical order of magnitude of the decay
width is smaller than 10−14 MeV and the mean-field widths (to be specified
later) are also at most 10−7 MeV, which trait justifies the condition Γ

𝜁 << 𝜎 for a
certain range of 𝜁 values (𝜁 accounts for the photon energy in physical processes:
typically 1 − 1000 eV for super-intense lasers). It shall be noted here that the
value of the photon energy cannot be arbitrarily small for a given intensity due
to possible relativistic effects, see [Reiss, 2008 ] and Subsection 5.1.3 for further
clarifications. As a result, in the case of linear polarization the energy correction
yields:

𝜀(1,l) = 𝒩2𝒦 𝐼ℏ

𝜁3

√
𝜋
2

( 1
4𝜎e

Γ2
8𝜁2𝜎2 𝑓 (𝜎, Γ, 𝜁) + (3.10)

+ ℎ (𝜎)
[
e−2i Γ𝜎2

8𝜁 e2i𝛼𝑔(𝜎) + e2i Γ𝜎2
8𝜁 e−2i𝛼𝑔∗(𝜎)

] )
,

where the function 𝑔(𝜎) =
(
1 + i · erfi

(
𝜎√
2

))
and 𝑔∗(𝜎) is its complex conjugate,

as well as 𝑓 (𝜎, Γ, 𝜁) =
[
1 − erf

(
Γ√
8𝜁𝜎

)]
, and function ℎ(𝜎) = 𝜎

16e
(
Γ2
𝜁2 −4

)
𝜎2
8 . The

energy correction for circular polarization is determined as:

𝜀(1,c) = 𝒩2𝒦 𝐼ℏ

𝜁3

√
𝜋
8

1
𝜎

e
Γ2

8𝜁2𝜎2 𝑓 (𝜎, Γ, 𝜁). (3.11)

Note that the norm factor 𝒩2 is a complex quantity (as c-norm) and depends
on the width of the quasi-stationary state Γ [Szilvasi et al., 2022 ]. The
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constant 𝒦 includes the followings: 𝒦 =
𝛼EM2𝜋(ℏ𝑐)3

𝜇𝑐 , where 𝜇 = 𝑀𝑐2 and 𝛼EM is
the electromagnetic fine structure constant (remember that in the previously
introduced Gaussian model system the following parameterization is used:
ℏ2

2𝑀 ≡ 1
2 ).

It is clearly seen from equations (3.10) and (3.11) that the energy correction
formulas are roughly inversely proportional to the photon energy 𝜁, although
one must bare in mind that this non-relativistic model is not predictive for
arbitrary 𝐼 − 𝜁 values, rather for certain intensity and photon energy pairs which
ensure that one does not cross the limit of the non-relativistic approximation
[Reiss, 2008 ]. This particular 𝜁-dependency behavior is also a characteristic
trait of certain laser-assisted nuclear processes [Kalman et al., 1986 ; D. Kis et al.,
2010 ], in addition to laser-electron interactions described by the ponderomotive
potential energy 𝑈pon, which grows with 𝜁−2 in the case of continuous plane
weave lasers [Reiss]. Although, in the matter of laser pulses one has the
freedom to parameterize the pulse length 𝑇 with the photon energy through
introducing a dimensionless pulse width 𝜎. In this study the following pulse
length parameterization is used: 𝑇 = ℏ𝜎

𝜁 which produces an additional 𝜁−1 in
the energy correction. The signature characteristic of the control-parameter
dependence of superintense-laser and alpha cluster interaction in this framework
might only be investigated in the context of the non-relativistic limit that is
quantified by the ponderomotive potential of the alpha cluster (Subsection 5.1.2)
that is presented in Section 5.4.

It shall be mentioned that a significant trait of the closed forms 𝜀(1,p), where
the superscript p denotes the two possible polarization states, is that it is a
general formula in the sense that it yields the complex energy correction to any
suitably chosen decaying system subjected to the above-specified laser field. To
quantify the measure of effect the external laser field has on the complex energy
of the quasi-stationary state, typical values of the external control parameters
(𝐼 , 𝜁, 𝜎) are adopted from studies concerning the non-relativistic description of
laser-matter interactions [D. Kis et al., 2018 ], see Subsection 5.1.3.

3.4 The question and discussion of the gauge-choice

Whenever one is faced with problems involving - in a broader sense -
the fundamental interactions of particle physics (the currently state-of-the-art
framework of nuclear physics also) such as the strong interaction and the
electroweak interaction, given these are exquisitely described today by gauge
theories, it is indispensable to regard the question of the gauge choice of the
gauge fields or potentials. In this thesis I consider laser-matter interaction in
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a non-relativistic aspect - for which the theoretical background is introduced
in Section 3.2 -, hence from the viewpoint of the gauge choice the classical
electromagnetic vector-potential must be examined.

After the development of quantum mechanics, it became clear that the
fundamental quantities of the electromagnetic interaction are not the electric
and magnetic fields (E,B), rather the vector potential A(r, 𝑡) and the scalar
potential (𝜙(r, 𝑡)). Although, the potentials inherently have the property to be
indefinite upon a total time derivative; the set of potentials to represent the
fields is not unique. Hence, there should exist special transformations (unitary
transformations) that intend to map between different sets of potentials; these
transformations are called gauge transformations. Practical purposes decide, in
general, which gauge-fixing is suitable for a given problem. For the description
of a non-relativistic electromagnetic interaction a commonly used gauge is the
Coulomb-gauge (∇A = 0) that is usually complemented by fixing 𝜙(r, 𝑡) = 0
when the problem is investigated far from any sources (it is always true for a
plane-wave).

However, in the context of electromagnetic fields interacting with matter
there exists several approximate-gauges that can be applied in special situations
and intend to simplify the computations of, for example, transition matrix
elements. Such gauges are the length gauge or (𝑟𝐸)-gauge; and the (𝑝𝐴)-gauge.
Those gauges are both obtained by the "simplification" of the velocity-gauge
Hamiltonian considered in the dipole-approximation

𝐻̂𝐼(r, 𝑡) =
−𝑒
𝑀𝑐

pA(𝑡) + 𝑒2

2𝑀𝑐2
(
A(𝑡)

)2
. (3.12)

The (𝑝𝐴)-gauge emerges straightforwardly when transition matrix elements are
calculated with plane-waves in the hermitian formalism of quantum mechanics,
since in this case the (A(𝑡))2 term does not contribute to the transition, it is
only a number multiplying an orthogonal inner product (A2 ⟨Φ𝑖 |Φ𝑘⟩) (it is very
important here that this inner product is the hermitian one!):

𝐻̂
pA
𝐼

(r, 𝑡) = −𝑒
𝑀𝑐

pA. (3.13)

The (𝑟𝐸)-gauge is a result of the electric dipole approximation and is physically
motivated for longitudinal electromagnetic fields (the laser field is not such a
field). It has the form

𝐻̂rE
𝐼 (r, 𝑡) = −𝑒

𝑀𝑐
rE, (3.14)

where E is the electric field. The (𝑟𝐸)-gauge Schrödinger equation emerges math-
ematically, by a special unitary transformation, from the (𝑝𝐴)-gauge Schrödinger
equation, but this transformation can only be applied when the (A(𝑡))2 term is
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already transformed out by a unitary transformation, otherwise these gauges
cannot be considered. Three conditions are necessary for this: dipole approxima-
tion, transition matrix elements and the phase symmetry of the eigenfunctions.
In the calculation scheme for the complex-energy shift in non-hermitian quantum
mechanics we calculate an expectation value in c-product, hence not fulfilling
the phase-symmetry requirement. This major difference is accentuated in the
next subsection.

Gauge-transformations in Hermitian and non-hermitian systems

The non-hermitian quantum-mechanical framework includes several differ-
ences compared to the Hermitian formulation. A pivotal difference lies in the
definition of the scalar product and norm on the Hilbert space. The conventional
definitions are not valid in the non-Hermitian picture, rather a special c-product
and c-norm must be used, see Subsection 2.2.1. This has serious consequences
for the solution of the Schrödinger equation: the most crucial one is that the
wave function loses the phase symmetry (due to the properties of the c-product,
which does not contain the complex conjugate of the eigenfunction) which is
present in the Hermitian case. It is in relation with the fact that when dealing
with decaying systems there is no time reversal symmetry anymore (just as for
open quantum systems). This results in the circumstance that in the calculation
scheme that is presented above the usual phase change transformation, that is
valid for hermitian systems, cannot be executed, hence the A2 term remains in
the Hamiltonian. As a consequence of this the gauge-invariance issue must be
revised when calculating quasi-stationary states (decaying states), especially in
perturbation theory.

To further emphasise my point, I collected the possible cases of the interaction
of some external laser field with Hermitian and non-Hermitian quantum systems
with regard to the matrix elements:

1. Case 1: Hermitian system and external electromagnetic field:

(a) 1a: with transition between two levels, nonzero 𝑐fi transition ampli-
tude:

• ⟨f|rE|i⟩ ≠ 0;
• ⟨f|pA|i⟩ ≠ 0;
• ⟨f|pA + A2 |i⟩ = ⟨f|pA|i⟩ ≠ 0;

(b) 1b: without transition between two levels, just small energy perturba-
tions

• ⟨f|rE|i⟩ = 0;
• ⟨f|pA|i⟩ = 0;
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• ⟨f|pA + A2 |i⟩ = 0;

2. Case 2: non-Hermitian system and external electromagnetic field (using
the c-product (.|.|.) ):

(a) 2a: with transition between two levels, nonzero 𝑐fi transition ampli-
tude:

• (f|rE|i) ≠ 0;
• (f|pA|i) ≠ 0;
• (f|pA + A2 |i) ≠ 0;

(b) 2b: without transition between two levels, just small energy perturba-
tions

• (f|rE|i) = 0;
• (f|pA|i) = 0;
• But (f|pA + A2 |i) = (f|A2 |i) ≠ 0;

In Case 1a and 1b (hermitian systems), the gauge invariance is exact. In case
1a, A2 term can be transformed out or cannot lead to transition. In Case 1b,
A2 term can also be transformed out, although in such a situation there is no
energy correction to the real eigenergy due to the lack of transition. In contrast
to Case 1, in the non-hermitian cases (2a, 2b) the gauge transformation cannot
be performed due to the properties of the c-product, in other words, A2 term
cannot be transformed out.

In the last case (Case 2b) although the real energy correction is zero (the
Keldysh parameter≪ 1, the energy level cannot be changed), due to the non-
Hermitian nature of the problem, there is an additional degree of freedom that is the
imaginary part of the complex energy which is proportional to the width of the
quasi-stationary state (Γ). The external electromagnetic field might change this
quantity without altering the real part of the energy. This cannot be observed in
Hermitian systems.

The peculiarity of super-intense laser fields with regard to the gauge choice

In his several articles, H. R. Reiss discusses the special situation of ultra-
high intensity coherent electromagnetic fields interacting with matter. In this
subsection I aim to summarize his most essential findings and conclusions in
relation to the proper approach of high-intensity laser and matter interaction
on the basis of gauges, that is in accordance with the conclusions of the non-
hermitian, complex-energy shift calculation method I presented in Section
3.3.

From the viewpoint of this thesis, the laser-nucleus interaction is central. For
this reason, when one observes the literature covering the field of laser-nucleus
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interaction (see for example [J. Qi et al., 2019 ; Pálffy et al., 2020 ; Rehman et al.,
2022 ]), evidently a great number of studies operate with the length gauge that
is conventionally used in electrodynamics, and it originates from the traditional
treatment of electromagnetic interactions with matter when no high-intensity
lasers were considered. It is argued in this thesis and also in the work of Reiss
that the question of gauge-invariance involving special gauges frequently used
in, for example, the description of laser-matter interactions (the gauges discussed
in Section 3.4) shall be revisited and treated carefully.

In [Reiss, 2008 ; Reiss, 2002 ; Reiss, 2014 ] Reiss explores the question of
gauge-invariance in special situations involving typically strong-field lasers;
as well as emphasises and contrasts the two fundamentally different cases of
electromagnetic interactions with matter: the longitudinal quasi-constant electric
field versus the laser field that is a transverse coherent electromagnetic plane-wave
field.

Reiss concludes that the length gauge is fine for problems that address the
interaction of matter with such electromagnetic field that can be considered
longitudinal but for transverse fields such as an intense laser field the total,
velocity gauge shall be applied. It is also examined in [Reiss, 2014 ] that
when an electron exists in a strong plane-wave field (propagating field) it
necessarily acquires a ponderomotive 4-potential energy that appears in the
mass-shell condition in a dimensionless way via the intensity-dependent strong-
field coupling (the intensity-dependent strong-field coupling 𝑧f is introduced
in Subsection 5.1.2). The main conclusion of the author’s reasoning is that the
ponderomotive potential energy is an inherent property of propagating laser
fields that is only manifested in the velocity gauge, not in the length gauge. I will
return to the relevance of the ponderomotive potential energy when discussing
the approximation limits (non-relativistic limit) of strong-field interactions with
an alpha cluster.

Based on the above, when describing the perturbative interaction of non-
hermitian systems with some external coherent electromagnetic field, the usual
gauge transformation between the gauges (r.E, or p.A or p.A + A2) is not valid. It
is argued that there exists a physical gauge (which is the velocity gauge), which
is in accordance with the conclusion of H. Reiss [Reiss, 2002 ; Reiss, 2008 ; Reiss,
2014 ; Reiss, 2019 ; Reiss, 2021 ]: for the description of the interaction between
ultrahigh-intensity laser fields and matter the velocity gauge is adequate.



4

Theoretical description of alpha
decay

The field of theoretical nuclear physics has made significant advancements
in comprehending alpha decay, which is regarded as a critical process for
studying nuclear stability and structural characteristics. Theoretical models
strive to improve the accuracy of alpha decay half-life predictions, enhancing our
grasp of nuclear forces and interactions among nucleons. These studies [Varga
et al., 1992 ; Rowley et al., 1992 ; Mohr, 2006 ; Duarte et al., 2002 ; Brown, 1992 ;
Royer, 2000 ; Royer et al., 2002 ; Basu, 2003 ; Gambhir et al., 2005 ; Gupta et al.,
2002 ] focus on either the proposition of a universal decay law partly in order to
explain decay properties and enhance the effectiveness of predicting decay rates
of a broad number of isotopes for practical purposes, or the microscopic theories
governing cluster radioactivity and nuclear structural properties for theoretical
advancements and precision calculations. For the latter purpose nowadays high-
performance computational techniques are incapacitated due to the complexity
of the underlying nuclear interactions originating from the in itself perplexing
theory of strong interactions. However these microscopic computations are
proved to be efficient in simulations and predictions of single nuclei, these do
not necessarily advance the general knowledge about the processes occurring in
the atomic nucleus.

During my own theoretical research, I intended to turn the focus on building
analytically more controllable and quantum mechanically vigorous models which
naturally could give more insight into the general phenomenon of alpha decay.
In this section, I endeavor to give a brief summary of the current understanding
of alpha decay both on theoretical and empirical divisions, especially reviewing
the common theoretical frameworks and models, commonly applied in recent
studies, emphasizing the properties relevant for the description of laser-assisted
nuclear alpha decay considering this constitutes the core subject of this thesis.

37
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From this point of view, the general mean-field framework of atomic nuclei and
the conventional quantum-mechanical description of alpha tunneling is reviewed
in this and the following sections, supplemented by the novel non-hermitian
quantum-mechanical approach for the description of tunneling proposed in the
author’s recent studies [Szilvasi et al., 2022 ; Szilvasi et al., 2024 ] and explained
thoroughly in Chapter 2. For this purpose, I incorporated as the basis of my study
the specific frame that characterizes alpha decay as a two-step process involving
the cluster formation and cluster tunneling phases, that will be elaborated in
Section 4.2. In this section, I attempt to review the basic ideas and theoretical
frameworks regarding the process of alpha decay, while in the next section I
oppose the conventional descriptions of tunneling to the novel non-hermitian
quantum-mechanical approach and finally present my own results with the
purpose of elucidating the essential signatures of the non-hermitian quantum-
mechanical, mean-field cluster model of alpha tunneling by investigating special
heavy, alpha-decaying isotonic chains.

4.1 Properties of alpha-decay

In this section I only address the properties of alpha decay that are crucial for
my investigation. I also introduce some rather important knowledge about alpha
decay derived upon early quantum-mechanical theories or empirical grounds.

In an alpha-decaying isotope with mass number 𝐴1 and atomic number 𝑍1,
we consider a subsystem consisting of two bound protons and neutrons (this is
the alpha cluster), which is observed to be emitted from the nucleus in a form of
an alpha particle, hence due to the emission an 𝐴 = 𝐴1 − 2, 𝑍 = 𝑍1 − 2 nucleus
is created that is referred to the daughter nucleus in the literature. The alpha
particle radioactivity was first observed by Ernest Rutherford in 1899.

Alpha decay is a probabilistic process which is usually described by the
energy of the alpha particle emitted and a quantity depicting the probability
of the emission. The specification of this quantity depends on the type of
description one chooses to characterize alpha decay. For a statistical (and also
practical) purpose, one shall operate with the exponential decay law and define
quantities such as the decay rate 𝜆 and the half-life 𝑇 = ln2

𝜆 which are assigned,
measurable quantities of every decaying isotope. However, from the point of
view of theoretical purposes, one ought to investigate the fundamental process of
the alpha decay phenomenon that is found to be a purely quantum-mechanical
problem. The possibility of tunneling was first explained mathematically by
George Gamow in 1928 [Gamow, 1928 ] by the notion of quantum-mechanical
tunneling by defining a tunneling probability.
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The energy released during alpha decay, known as the Q-value, is the
difference between the mass of the parent nucleus (𝑀𝑃) and the combined
masses of the daughter nucleus (𝑀𝐷) and the alpha particle (𝑀𝛼):

𝑄𝛼 = (𝑀𝑃 −𝑀𝐷 −𝑀𝛼) 𝑐2

Here, 𝑐 is the speed of light in vacuum. This energy is shared between the
alpha particle and the daughter nucleus according to conservation of momentum.

Since the alpha particle is much lighter than the daughter nucleus, the
kinetic energy (𝑇𝛼) of the alpha particle is approximately equal to the Q-value
𝑀𝐷 ≫ 𝑀𝛼:

𝑇𝛼 ≈ 𝑄𝛼𝑀𝐷

𝑀𝐷 +𝑀𝛼
≈ 𝑄𝛼

The interaction between the nucleons inside the nucleus is always a delicate
topic, that is why the nuclear interaction between parts of the nucleus is usually
approximated by an average potential. Working in the cluster-daughter nucleus
model, in the mean-field approximation, the alpha cluster moves in a potential
(𝑉(r)), shaped by the short-range attractive nuclear force between nucleons and
the Coulomb repulsion between protons: at short distances (within the nucleus),
the attractive nuclear part of the potential dominates, but as we move away from
the nucleus, the Coulomb decay determines its shape, thus creating a potential
barrier in front of the particles. From a classical physics perspective, two things
can happen to the particles: if their energy (𝑄𝛼) is greater than the height of the
potential barrier, they can leave the nucleus; if it is lower, they cannot.

From the broader quantum mechanical perspective, the alpha cluster is in a
special, so-called quasi-bound (or quasi-stationary) state, meaning it has a finite
lifetime, or in other words, it is a decaying state (see Section 2.1). This is due to
the nature of the potential felt by the alpha cluster, which can be understood
as a potential barrier that "traps" the alpha particle, although the probability of
passing through the barrier is finite. This phenomenon can be well understood
illustratively with the quantum mechanical concept of tunneling. However,
alpha tunneling can be viewed through two different perspectives. The first one
involves using the conventional tunneling picture, and an alternative approach
is based on the complex energy corresponding to the quasi-stationary state. The
latter concept has been introduced in 2 and is also the core subject of this thesis,
while the first one is based on the WKB approximation, according to which,
traditionally, the tunneling probability 𝑝 is given by:

𝑝 = exp

(
−2

∫ 𝑟2

𝑟1

√
2𝑀
ℏ2

(
𝑉(𝑟) −𝑄

)
d𝑟

)
(4.1)
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where 𝑀 is the reduced mass of the alpha cluster and the daughter nucleus,
𝑟1 and 𝑟2 are the classical turning points (the points where the energy of the
alpha cluster intersects the potential), and ℏ is the reduced Planck constant. It
is of paramount importance to emphasise that the potential energy term 𝑉(𝑟)
present in the formula must necessarily be time-independent, as the formula, in
its current form, is defined for a stationary system.

The Geiger-Nuttall law [Biswas, 1949 ] shall also be mentioned. There is
voluminous literature covering the expressions of the Geiger-Nuttall law with
several possible experiment-based or theory-based extensions (see [Froman,
1957 ; Wapstra et al., 1959 ; Taagepera et al., 1961 ; Viola et al., 1966 ; Keller et al.,
1972 ; Poenaru et al., 1980 ; Hatsukawa et al., 1990 ; Brown, 1992 ; Royer, 2000
]). It provides an empirical relation between the half-life and the energy of the
emitted alpha particle. It shows that nuclei with higher alpha energies decay
more rapidly:

log10 𝑇 = 𝑎
𝑍√
𝑄𝛼

− 𝑏

where 𝑎 and 𝑏 are empirical constants, 𝑍 is the atomic number of the
daughter nucleus, and 𝑄𝛼 is the alpha energy. It is important to remark at
this point, that the half-life of the alpha-decay process (a statistical quantity) is
related to the fundamental quantities essential in the discussion of the quasi-
stationary state representing the alpha cluster in an alpha-decaying nucleus:
𝑇 = ℏ · ln2/Γdecay = 𝜏/ln2, with Γdecay denoting the decay width and 𝜏 denoting
the lifetime of the alpha cluster. In Section 4.3.3 I introduce a particular
formulation of this law for isotonic series, employing the (mean-field) complex
energy of the quasi-stationary state of the alpha cluster.
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4.2 Characterization of alpha decay as a resultant of
two separate processes

Alpha decay is a complex spontaneous nuclear process which is driven
by nuclear forces and electromagnetic interaction. During this research I
incorporated an alternative picture to interpret this decay phenomenon, in
which alpha decay is regarded as a resultant of two independent processes,
which are the alpha cluster preformation due to nuclear structure effects and the
interaction between the alpha cluster and the remaining nucleus which leads
to tunneling through the Coulomb barrier. This type of depiction of the decay
phenomenon also provides the basic framework for the traditional description
of alpha decay via the WKB-approximation. Typically, the decay process is
characterized by the decay width (Γdecay) which is constructed by quantities that
denote the two separate steps of the total decay process. In the followings I
would only mention the traditional quantum-mechanical, perturbative approach
to derive the total decay width, nevertheless in this chapter I focus essentially on
the characterization of the Coulomb tunneling of the preformed alpha cluster.
For the description of tunneling the commonly applied mean-field nuclear
models are proved to be capable to produce the tunneling width of the decay
(Γ), hence in the next section I provide the framework for the cluster-mean-field
description.

In this chapter, I would like to introduce a factor that intuitively bears the
name of the nuclear structure factor and is denoted by 𝑠0 in the followings.

The tunneling part of the decay process can be characterized by the al-
ready preformed alpha cluster occupying a quasi-stationary state with complex
eigenenergy. In this study I rely on the approximation that the interaction
between the preformed alpha-cluster and the remaining nucleus is considered
within the mean-field frame, neglecting any effects stemming from the nuclear
structure. Hence, it is important to distinguish between the total width of alpha
decay (Γdecay) and the width of the performed alpha cluster (Γ):

Γdecay = 𝑠0Γ, (4.2)

where we call 𝑠0 the nuclear structure factor, which includes the clustering effects
and the possible corrections to the interaction between the alpha cluster and the
remaining nucleus (for example pair correlations). In Subsection 4.3.2 I present
my computations with regard to the complex energy of an alpha cluster in the
mean-field frame, by non-hermitian quantum-mechanical methods. It must be
emphasized here, that the model to be presented cannot predict the total width
of the alpha decay, rather the mean-field tunneling width can be derived from
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the Hamiltonian of the system. In Subsection 4.3.3 I explain the justification for
such a model in relation to the subject of Chapter 5 where I show that this type
of model is capable to adequately describe the relative change of the lifetime of
alpha-decaying nuclei induced by some high-intensity laser.

In addition, it shall be indicated that the traditional description of alpha
decay is based on the WKB-approximation which is a quasi-classical treatment.
In their article [Gurvitz et al., 1987 ; Buck et al., 1992 ] the authors derive a
perturbative formula to express the decay width of an alpha cluster (a stationary
formula)

Γ
decay
𝛼 = 𝑆𝛼𝐹

ℏ2

4𝜇 exp

[
−2

∫ 𝑟3

𝑟2

𝑘(𝑟)𝑑𝑟
]
, (4.3)

where 𝑆𝛼 is the spectroscopic factor (it includes the fine structure information),
𝐹 is the normalization factor, 𝑟2 and 𝑟3 denote the turning points of the potential
and 𝑘(𝑟) is the potential and energy-dependent wave-number. One can clearly
see that equation (4.2) and (4.3) have the same structure despite having rather
different interpretation, the quantities denoting the tunneling properties and
the fine-structure characteristics represent independent processes. In contrast to
the traditional approach, the model that is in the core of this thesis is based on
a non-perturbative approximation, which directly yields the tunneling width
from the discretized Hamiltonian spectrum.

4.3 Cluster-mean-field description of the Coulomb-
tunneling phase of the decay-process

The interaction between nucleons inside the nucleus is substantially a chal-
lenging many-body problem.

Since the birth of nuclear physics, the problem of understanding the force
between nucleons has been an ongoing challenge. This understanding is
necessary to provide sufficiently precise theoretical calculations and conclusions
about the properties of atomic nuclei and various nuclear processes.

To this end, numerous nuclear models have been developed. Most of them
are based on initial empirical findings, primarily known through scattering
experiments. We can evaluate the success of these models (e.g., the Liquid
Drop Model, Fermi Gas Model, Shell Model, and Collective Model) based on
the consistency of the measurable quantities calculated with these models and
experimental results. In calculations within the framework of the Independent
Particle Shell Model, we have freedom in selecting the specific form of the central
mean-field potential, defined in the Mean Field approximation to eliminate
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pairing interactions. To gain as much information as possible about the nuclear
force, it is crucial to accurately understand the pair potential generally involved
in the many-body Hamiltonian. Generally, non-relativistically, the many-body
Hamiltonian operator for nucleons bound in the nucleus can be written as
follows:

𝐻̂ =

𝐴∑
𝑖=1

p2
𝑖

2𝑀 +
∑
𝑖 , 𝑗

𝑉𝑝(r𝑖 − r𝑗), (4.4)

where 𝐴 denotes the number of nucleons in the given nucleus (which is also
the mass number), 𝑀 is the reduced mass of the nucleons, p𝑖 is the kinetic
momentum of each nucleon, and𝑉𝑝 is the pair potential. The second term of the
Hamiltonian, the pair potential, is essentially a two-particle operator, while the
kinetic term is the sum of one-particle operators. The essence of the Shell Model
is that if this pair potential can be approximated with a suitable average-field
potential, the many-body operator decomposes into the sum of one-particle
operators.

In the mean-field frame the nuclear pair potential is replaced by a pilot
potential (mean potential, average-field potential) that includes the average
contribution of the interacting nuclear forces acting upon a single particle. The
introduction of such a mean potential results in a single-particle Schrödinger
equation.

Considering the case of the alpha-cluster the single-particle Hamiltonian
𝐻̂0(r) consists of a kinetic part 𝐻̂kin =

p2

2𝑀 of an alpha cluster of reduced mass
𝑀 =

𝑚𝛼 ·𝑀rn
𝑚𝛼+𝑀rn

≈ 4.003 (𝐴−4.003)
𝐴 𝑚n with the average nucleon mass 𝑚n and mass

number 𝐴 of the remaining nucleus, and the yet-to-be specified mean potential
of the nuclei 𝑉̂(r):

𝐻̂0(r) =
p2

2𝑀 + 𝑉̂(r). (4.5)

In this study the nuclear mean potential felt by the alpha cluster is represented
by a spherically symmetric potential barrier (𝑉(𝑟)). There are several ways to
construct such a nuclear potential energy term, although I consider here two
similar expressions that are illustrated in 4.3.

In both cases the quantum barrier is built up with a uniquely parametrized
attractive nuclear potential part along with a repulsive Coulomb potential
attached to it. This attachment is realized through the Fermi function.

In the first specific case the attractive part is the commonly considered
Woods-Saxon-type interaction. The potential energy term reads:

𝑉̂WSC = −𝑉0 𝑓 (𝑟) +
(
1 − 𝑓 (𝑟)

) 𝑐0
𝑟
, (4.6)



44 4. Theoretical description of alpha decay

where the constant 𝑐0 of the Coulomb-term 𝑐0
𝑟 contains the following quantities

and physical parameters: 𝑐0 = 2 · 𝑍 · 𝛼ℏ𝑐 with 𝑍 connoting the atomic number
of the daughter-nucleus and 𝛼 denoting the fine-structure constant at vacuum
energy. The function 𝑓 (𝑟) is a Fermi-type function:

𝑓 (𝑟) = 1 + ch(𝑅/𝑎)
ch(𝑟/𝑎) + ch(𝑅/𝑎) , (4.7)

where 𝑎 is the Fermi-function’s length-parameter and 𝑅 is the nuclear radius.
In the second case, the attractive part is complemented with a harmonic

oscillator multiplicative factor in order to distort the shape inside the nuclei and
only slightly alter the vicinity of the Coulomb barrier. (𝑉̂WOC abbreviates the
combined use of the Woods-Saxon, harmonic oscillator and Coulomb potentials.
The total form of the spherical potential generally reads:

𝑉̂WOC = 𝑉0

(
𝐾0

𝐿2 𝑟
2 − 2

)
𝑓 (𝑟) +

(
1 − 𝑓 (𝑟)

) 𝑐0
𝑟
, (4.8)

where 𝑉0 is the maximal depth of the attractive potential and 𝐿 is the length-
parameter of the harmonic oscillator potential, while 𝐾0 =

𝑐0
𝑉0𝐿

+ 2.
The primary free parameters of the models are those of the Woods-Saxon

and harmonic oscillator terms: 𝑎, 𝑉0, 𝐿. The other two inner parameters can be
expressed with them: 𝐾0 =

𝑐0
𝑉0𝐿

+ 2 and 𝑅 =

√
2𝐿√
𝐾0

.
After writing the Schrödinger equation in spherical coordinates, since the

problem is spherically symmetric, it can be divided into a radial part and
an angular part. Including a centrifugal potential with angular momentum
quantum number ℓ , having been obtained from the eigenequation of the angular
momentum operator, the radial Schrödinger equation is achieved

𝐻̂ℓ
0Φ0(𝑟) =

(
−ℏ2

2𝑀
d2

d𝑟2 + 𝑉̂(𝑟) + ℏ2ℓ (ℓ + 1)
2𝑀𝑟2

)
Φ0(𝑟) = 𝐸Φ0(𝑟), (4.9)

where 𝑉̂(𝑟) denotes the possible mean-field nuclear potentials (in this study the
𝑉̂WOC and 𝑉̂WSC; and where Φ0(𝑟) is the time-independent radial wavefunction.
In this work explicit calculations are carried out considering only spherically
symmetric nuclei with ℓ = 0, thus allowing for the s-wave approximation and
the neglect of the centrifugal potential.

Substituting the ℓ = 0 order specific nuclear potential 𝑉̂WOC or 𝑉̂WSC to the
Hamiltonian in equation (4.9) 𝐻̂0(𝑟) = −ℏ2

2𝑀
d2

d𝑟2 + 𝑉̂(𝑟) the ℓ = 0 time-independent
Schrödinger equation of the alpha cluster in the mean-field potential is obtained:

𝐻̂0Φ0(𝑟) = 𝐸Φ0(𝑟). (4.10)
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(a) Coupled Woods-Saxon and Coulomb
type mean-field nuclear potential

(b) Coupled Woods-Saxon weighted by har-
monic oscillator and Coulomb type mean-
field nuclear potential

Figure 4.1: Mean-field nuclear potentials

4.3.1 Quasi-classical derivation of the tunneling width: the
conventional tunneling picture and the Gamow factor

Examining the problem of alpha decay, Gamow found that the probability
of a particle passing through the potential barrier (the probability of being on
the other side of the barrier) is non-zero and can be clearly characterized by the
so-called Gamow factor (𝐺), which depends on the potential [Gamow, 1928 ]:
the transition probability (the transmission coefficient) is 𝑇 = 𝑒−2𝐺, where 𝐺 is
the integral of the potential-dependent wave number (obtained by solving the
time-independent Schrödinger equation) as follows:

𝐺 =

∫ 𝐿

0
𝑘(r)dr, (4.11)

where the integration is performed over the region where 𝑄 < 𝑉(𝑟).
The regular depiction of a cluster state in a typical nuclear (mean-field)

potential is shown in Figure 4.2.
The alpha cluster has positive energy, while the energy of the bound states

are negative, resulting in a "strange" state that describes the alpha cluster. This
is the quasi-stationary (quasi-bound) state, which has a finite lifetime (unlike
stationary states).

According to the conventional understanding of decay phenomena, the
preformed alpha cluster in the quasi-bound state can escape from the nucleus
through quantum mechanical tunneling. It is important to note again that the
individual process of alpha-tunneling in the two-step picture can be modelled by
the mean-field method. In the following I aim to briefly express the regular mean-
field description of alpha tunneling using the traditional hermitian quantum
mechanical framework to calculate the transmission coefficient associated with
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Figure 4.2: Typical depiction of the alpha-cluster energy level in a quasi-bound state with positive
real energy in the Woods-Saxon and Coulomb-type nuclear mean-potential 𝑉(𝑟) = 𝑉WSC, see
equation 4.6.

the Gamow factor in a quasi-classical picture as the transmission coefficient is
proportional to the transition probability per unit time (the decay constant).

In scattering theory, the transmission coefficient (𝜂) is given by the ratio of
the transmitted (𝑗trans) and incoming (𝑗inc) currents:

𝜂 =



jtrans




jinc


 . (4.12)

According to elementary Hermitian quantum mechanics, an operator for the
current can be derived and defined from the time-independent Schrödinger
equation (in the absence of external time-dependent excitation, the problem of
alpha decay is described by the non-relativistic, time-independent Schrödinger
equation, see 4.3) and its adjoint in accordance with the "quantum-classical"
correspondence:

j = ℏ

2𝑀i (Φ
∗∇Φ −Φ∇Φ∗) , (4.13)

while the 𝜌 probability density emerges as

𝜌 ≡ |Φ|2 (4.14)

describing the probability of finding a quantum object of mass 𝑀, represented
by the wave-function Φ, in a given region of phase space. According to the
definition of classical current (in the case of plane waves) j ≈ 𝜌v, where v can
be identified with the object’s velocity (or group velocity) that is related to
the classical momentum k = M v. Thus, the expression for the transmission
coefficient significantly simplifies to:

𝜂 ≈ |Φtrans |2𝑘trans

|Φinc |2𝑘inc
. (4.15)

Let us estimate the transmission probability for the three-dimensional central
nuclear potential introduced in 4.3. For a general central potential 𝑉(𝑟) being
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dependent on a continuous parameter, the transmission coefficient (exploiting
isotropy |Φ|2 = |𝑅(𝑟)|2 |𝑌 |2) reads:

𝜂 =

∫
|𝑅(𝑟)trans |2𝑟2𝑘trans𝑑𝑟

∫
𝑑Ω|𝑌 |2∫

|𝑅(𝑟)inc |2𝑟2𝑘inc𝑑𝑟
∫
𝑑Ω|𝑌 |2

=

∫
|𝑅(𝑟)trans |2𝑟2𝑘trans𝑑𝑟∫
|𝑅(𝑟)inc |2𝑟2𝑘inc𝑑𝑟

. (4.16)

From the viewpoint of tunneling, the Coulomb potential is the interesting
part of the nuclear potentials (4.8) and (4.6), hence, for the sake of simplicity,
let us consider only the Coulomb potential 𝑉𝐶 and the ℓ = 0 case (the s-wave
approximation):

𝑉𝐶(𝑟) =
𝑐0
𝑟
, (4.17)

where the previously introduced constant 𝑐0 contains the atomic number of the
daughter nucleus 𝑍 and some typical constants of nuclear physics: 𝑐0 = 2 ·𝑍 ·𝛼ℏ𝑐
with 𝛼 denoting the fine-structure constant at vacuum energy. The Gamow
factor emerges as an integral of 𝑘0(𝑟), where the integration limits (𝑎, 𝑏) are
determined by the (real) energy (𝐸) of the cluster to be described:

𝐺 =

∫ 𝑏

𝑎

𝑑𝑟

√
2𝑚
ℏ2

(
𝑐0
𝑟
− 𝐸

)
=

√
2𝑚
ℏ2𝐸

2𝑍𝛼ℏ𝑐
arccos ©­«

√
𝑎

𝑏
−

√
𝑎

𝑏

(
1 − 𝑎

𝑏

)ª®¬
 ,
(4.18)

where the second expression is an approximate analytical closed form, from
which the transmission coefficient can be calculated as 𝜂 ∼ 𝑒−2𝐺, and from that,
the half-life can also be given according to the aforementioned relationship.
This estimated value for 212𝑃𝑜 is 𝑇 = 3𝜇𝑠 at an energy of 𝐸 = 8.77 MeV. The
above formula establishes a mathematical relationship between the half-life of
alpha decay and the energy of the alpha cluster. The postulate of early nuclear
physics models of alpha decay was that the higher the energy of the cluster, the
more likely the decay (in the tunneling picture, we get closer to the height of the
potential barrier; thus, with the decrease of the barrier, the decay probability
increases, see spontaneous fission), so the shorter the half-life assigned to the
decay. This expectation was experimentally supported, by the Geiger-Nuttal law
introduced in Section 4.1.



48 4. Theoretical description of alpha decay

4.3.2 Non-hermitian quantum-mechanical, non-perturbative
derivation of the tunneling width: the complex energy
picture

In this section the alpha cluster is investigated in the particular frame
of quasi-stationary states. In this frame the alpha cluster occupies a special
quasi-stationary state that possesses complex energy eigenvalue 𝐸qs = 𝐸0 − iΓ2 ,
the imaginary part of which yields the lifetime 𝜏 ∝ 1

Γ
of the state, while the real

part 𝐸0 is positive definite. The goals is to determine the mean-field tunneling
lifetime of the quasi-stationary state of the alpha cluster through the complex
energy.

As it was deeply elaborated in [Szilvasi et al., 2022 ] and in Chapter 2 and
the embedded papers, the inner property of potentials with the characteristics of
potential barriers such as 𝑉̂WOC in (4.8) makes the Hamiltonian 𝐻̂0 non-Hermitian
and naturally allows for the existence of complex energies in the total spectrum.
First, the complex part of the spectrum must be uncovered (numerically) and
the eigenfunctions must get regularized by non-Hermitian quantum-mechanical
techniques.

The peculiarity of the non-Hermitian quantum mechanical description of
the alpha-cluster is that the lifetime corresponding to the alpha cluster in
the nucleus might be derived directly from the complex spectrum of a non-
Hermitian operator. By applying complex scaling on the time-independent
radial Schrödinger equation (4.10)

𝐻̂𝜃
0 Φ

𝜃
0 (𝑟) = 𝐸Φ

𝜃
0 (𝑟), (4.19)

where the 𝐻̂𝜃
0 complex-scaled Hamiltonian operator shall be specified with the

appropriate mean-field nuclear potentials introduced in 4.3. The possible set of
eigenvalues 𝐸 of the now complex-scaled Hamiltonian operator 𝐻̂𝜃

0 is extended
into the complex plane, where the parameter 𝜃 is the scaling parameter of
the transformation and is presumed to be real throughout this paper [Szilvasi
et al., 2022 ]. The eigenfunctions of 𝐻̂𝜃

0 associated with complex eigenvalues
are regularized and square-integrable with respect to the c-product, the special
inner product of the Hilbert space regarding the transformed Hamiltonian.
To achieve the quasi-stationary solutions and discrete eigenenergies of (4.19),
generally one shall use numerical discretization techniques. For this purpose, the
complex spectral calculation is applied that was introduced in Subsection 2.2.1
Chapter 2. Following the methodology using the expressions (2.21) and (2.22)
the Hamiltonian matrix elements are calculated accordingly. For the problem of
(4.9) a suitable choice for the basis function set 𝑤 𝑗(𝑟) is the following harmonic
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oscillator type function

𝑤 𝑗(𝑟) =
1
𝑟
𝑒
− 𝑟2

2𝑏2 𝐿
1/2
𝑗

(
𝑟2

𝑏2

)
1
𝑏3/2

[
2Γ̃(𝑗 + 1)
Γ̃(𝑗 + 3/2)

]1/2

, (4.20)

with 𝐿 𝑗 denoting the 𝑗-th Laguerre polynomial and Γ̃ is the Gamma function.
Specifically in the case of 4.8, performing computations with this set is rather
favored, since the attractive part of the nuclear potential is built up with
a harmonic oscillator-type potential, thus the convergence of the numerical
computation is improved.

The relevant properties of discrete complex-scaled spectra regarding quasi-
stationary solutions (decaying-states) are thoroughly explored in 2.2.1. As
a reminder, the key distinguishing characteristic between bound and quasi-
stationary states versus the complex, rotated, discretized continuum lies in the
behaviour of their eigenvalues relative to the scaling parameter 𝜃. In theory, the
eigenvalues of bound and quasi-stationary states are robust against changes in 𝜃,
whereas those of the continuum states vary with it. Additionally, the distinctive
features of quasi-stationary energies from the bound-state energies are their
complex nature and their positive real part.

From the nuclear theory perspective, the quasi-stationary subset of the
discretized spectrum represents the possible energy-levels (Re(𝐸qs) = 𝐸0) the
alpha cluster of the decaying radioactive isotope might occupy in the nucleus
with the corresponding imaginary part (Γ) yielding the lifetime of that nuclear
energy-state.

Complex spectral calculations; demonstration and analyzes of the properties
of the numerical method

In practice, by tuning the free parameters of the nuclear potential, for a given
isotope with atomic number 𝑍 and mass number 𝐴, the experimentally known
alpha energies (the real part of the complex energy) can be estimated with their
corresponding lifetime directly from the non-Hermitian spectrum, numerically
by the complex spectral calculus. For example, for the 4.8 spherical nuclear
potential, the complex-scaled Hamiltonian is the following:

𝐻̂𝜃
0 =

−ℏ2

2𝑀
d2

d𝑟2 e−2i𝜃 +𝑉0

(
𝐾0

𝐿2 𝑟
2e2i𝜃 − 2

)
𝑓 (𝑟ei𝜃) +

(
1 − 𝑓 (𝑟ei𝜃)

) 𝑐0e−i𝜃

𝑟
. (4.21)

The experimentally known real energy 𝐸0 = Re(𝐸qs) = 8.9 MeV is found in
the spectrum upon setting the Woods-Saxon free parameters (𝑎, 𝑉0) as depicted
in Figure 4.3 and fixing the oscillator length parameter 𝐿 in order to obtain the
common value of the nuclear radius 𝑅 of 212Po. The width Γ corresponding
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Figure 4.3: Complex spectra achieved by the complex diagonalization procedure

to the real energy, identified in the figure, is achieved using 𝑁 = 30 basis
functions. While the value of the real energy is affected mostly by the choice of
the Woods-Saxon free parameters, the numerical value of Γ even more strongly
depends on the choice of the basis function parameter 𝑏 [Szilvasi et al., 2022 ].
The typical widths of alpha-decaying isotopes are many orders of magnitude
smaller than the real energies (Re(𝐸qs)), more specifically are of the 10−14 − 10−29

MeV interval, thus it is numerically challenging to extract the small values of Γ
with the expected numerical precision, even with regards to the proper order of
magnitude. Generally, the larger the number of basis functions the higher the
precision, although it requires greater numerical capacity.

As an example, results for Γ are presented using harmonic oscillator basis
functions in Figure 4.3. Computations with 𝑁 = 30 and 𝑏 = 1.35 fm yield
Γ = 2.5968 · 10−10 ± 10−13MeV for the WOC-potential, while a slightly different
result is obtained for the WSC-potential (Figure 4.3a) with 𝑏 = 1.31 fm and
𝑁 = 30.

An error of the computation might be attached to Γ from the following
considerations: since the imaginary energies of bound states should be zero in
principle, their difference from zero due to numerical deviations indicates the
magnitude of the error of the computation given that the computed imaginary
parts of the bound-state energies are significantly smaller than that of the quasi-
stationary energies. It shall be emphasized again that the discrepancy between
the numerically calculated value of the lifetime of the alpha cluster of 212𝑃𝑜

and the measured value of the lifetime of 212𝑃𝑜 is mainly due to the simplified
mean field representation of the nuclear interactions which is not sufficient to
thoroughly treat the peculiarities of isotopes stemming from the nuclear fine



4.3. Cluster-mean-field description of the Coulomb-tunneling phase of the decay-process51

structure, see equation 4.2. Although, this deficiency of the nuclear model does
not affect the to-be-presented description of laser-nuclei interaction, since the
external laser field is not expected to alter the structure of the nuclei, as it is
explained in [D. Kis et al., 2018 ] and referred to in [Szilvasi et al., 2022 ].

The precision of the numerical method was tested. The computations
were carried out by the symbolic toolbox of Matlab and by the numerical
approximation tools of Python.
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Figure 4.4: The convergence of the imaginary energies of bound and quasi-stationary states
provided by the Python algorithm

The integrals over the spatial coordinate 𝑟 in the matrix elements of 𝐻̂𝜃 are
generally functions varying according to higher powers of the spatial coordinate.
The more basis functions used in the computation, the higher powers appear in
the matrix elements. It is due to this, that while increasing the basis number 𝑁 ,
it is only up to a certain value of 𝑁 that the accuracy of the numerical results
improve. Beyond a specific 𝑁 , terms start to appear in the matrix elements
that Matlab’s symbolic toolbox cannot estimate with sufficient accuracy in
numerical calculations, hence the computation stops. Certainly, this depends
on the numerical capacity also. This maximal 𝑁 was found to be 𝑁 = 31,
the demonstrative calculations were carried out with 𝑁 = 30 according to the
systematic displayed in Figure 4.5, which is supported by the numerical results
provided by Python.

The python algorithm uses numerical integration techniques to solve the
eigenvalue problem. This purely numerical method enables the computations
to go further in 𝑁 , hence the convergence of the results could be tested. It is
indicated in Figure 4.4.
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4.3.3 Studying the quasi-stationary alpha-states in even-even
heavy isotonic chains with non-hermitian spectral calcula-
tions

The non-hermitian approach sets the stage for substituting the usual tun-
neling picture by a finite-lifetime quasi-stationary cluster-state that naturally
possesses a finite (non-zero) decay width in its complex eigenenergy, which is
directly elicited by solving the non-hermitian time-independent Schrödinger
equation. In this section my goal is to show that such a description is suitable
to serve as a feasible approximation for the half-life of special short-lifetime,
alpha-decaying isotones. In this section the details of the specific non-hermitian
calculation of the "tunneling-lifetime" and how it provides information about
the total "decay-lifetime" of isotones in certain isotone-groups is presented.

By the non-hermitian spectral calculation, the mean-field tunneling width
can be extracted to a certain accuracy provided by the computational apparatus.
Typically small lifetimes (not larger than microseconds) are estimated correctly,
since, smaller lifetime is equivalent to larger width that is computationally favor-
able. In Section 4.2 I proposed that for alpha decay the total decay width Γdecay

is manufactured in a way to reflect the two independent processes producing it:
Γdecay = 𝑠0Γ, where Γ is, again, the mean-field tunneling width, while 𝑠0 encodes
the nuclear fine-structure information (and also contains the uncertainties arising
from the determination of the mean-field tunneling width). Moreover, one can
observe certain regularities in some properties of heavy isotones. Particular
heavy, alpha-decaying, short-lifetime isotones (the 𝐴 ∈ [210, 224] island of the
isotope map) are organized into groups by their Q-values as a function of the
corresponding Coulomb factors (𝑍2

𝐴 ) (see Figure 4.8), and also with respect to
the half-lives. It is expected that for one 𝑁-isotone chain the 𝑠0 structure factor
is near constant, as in, the ratio Γdecay/Γ is close to 1 for the members of the
given istone group. This postulate is supported by the idea that the Coulomb
tunneling process of alpha decay is predominantly affected by the height of
the Coulomb barrier that is principally sensitive to the number of protons (𝑍),
while clustering (and all the nuclear structure-based phenomena) is exceedingly
influenced by the neutrons. Hence, it is anticipated that by extensively analysing
numerically (using the spectral calculation tools on the mean-field Hamiltonian)
the small alterations of the Coulomb barrier moving from one element of a given
isotone chain to another, one can track down the mean-field tunneling widths
of the nuclei. Compering them with the experimental total decay widths, the
assumption about the 𝑠0 structure function can in theory be validated.

The main goal is to exploit this special trait in order to prove the applicability of
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the aforementioned non-hermitian computational method of the alpha-tunneling
lifetime. Another aim is, furthermore, to present a tool to show how the life-time
(half-life) of not-yet experimentally detectable nuclei can be estimated from
NHQM-type (Non-hermitian quantum-mechanical) spectral calculations.

From now on, let us restrict our attention to even-even isotones in order to be
able to regard the problem spherically symmetric and use the exact formulae
introduced in the previous subsection 4.3.2. By this philosophy, the even-
even nuclei in the 𝑁 = 128, 130, 132 isotone chains are subjected to numerical
investigation.The numerical values of the relevant properties of these nuclei are
collected in Table 4.1.

N=128 N=130 N=132
Isotone Q𝛼 [MeV] T [𝜇𝑠] Γ𝑑𝑒𝑐𝑎𝑦 [MeV] Isotone Q𝛼 [MeV] T [𝜇𝑠] Γ𝑑𝑒𝑐𝑎𝑦 [MeV] Isotone Q𝛼 [MeV] T [𝜇𝑠] Γ𝑑𝑒𝑐𝑎𝑦 [MeV]

212Po 8.954 0.2939 1.552 ·10−15 214Po 7.833 163.47 2.79 ·10−18 218Rn 7.262 33750 1.35 ·10−20

214Rn 9.208 0.259 1.762 ·10−15 216Rn 8.198 45 1.014 ·10−17 220Ra 7.59 18000 2.53 ·10−20

216Ra 9.526 0.161 2.834 ·10−15 218Ra 8.54 25.91 1.761 ·10−17 222Th 8.133 1964 2.323 ·10−19

218Th 9.849 0.122 3.740 ·10−15 220Th 8.973 10.4 4.387 ·10−17 224U 8.6228 840 5.431 ·10−19

222U 9.48 4.7 9.707 ·10−17

Table 4.1: The experimental data of the isotones [jnds2020]
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Determination and investigation of the properties of the tunneling widths

One of the main goals of this section is to justify the hypothesis (4.2) in the
case of three appropriately chosen isotone groups by numerical calculations
and analysis. An additional purpose is to validate the previously introduced
[Szilvasi et al., 2024 ] and above-presented non-hermitian, mean-field cluster-
core model for estimating the mean-field alpha cluster lifetime. The first goal can
be accomplished by the approximation of the 𝑠0 nuclear structure factor from the
Γ−Γdecay plots after the numerical production of the mean-field widths. In order
to attempt to validate the calculation framework for Γ, specific empirical trends
present in the case of the three isotone groups (according to the experimental
data available) shall be investigated in the case of the calculated mean-field
widths. For the latter purpose, it is investigated whether the Geiger-Nuttal
law is exhibited also by the calculated mean-field widths for all the three
alpha-decaying isotone groups.

In order to numerically yield the complex spectra of the mean-field cluster-
core Hamiltonians of all the nuclei under investigation and find the quasi-
stationary eigenenergies, two different numerical approaches were used to
calculate the matrix elements 2.22. In the first case the matrix elements were
calculated using the symbolic toolbox of Matlab, while in the second case, a
numerical process, written in Python provided the solutions.

The overall mean-field NHQM-model contains three tunable parameters
(𝑎, 𝑉0, 𝑏). In order to identify the quasi-stationary alpha states (through their
complex eigenenergy) in the spectrum of the Hamiltonians corresponding to
each isotones, these parameters must be tuned. The mean-field nuclear potential
(4.6) has two free parameters, 𝑎 the diffusion parameter and 𝑉0 the depth of the
potential, the range of the possible values of which are dictated by experimental
clues. There is an additional parameter due to the discretization of the problem:
the harmonic oscillator basis parameter 𝑏. Provided that one is able to execute
the numerical computation of the matrix elements up to high basis number (𝑁),
the basis parameter should only moderately influence the end results. However,
in this case the computational performance limits the maximal basis number to
𝑁 = 30, hence the appropriate choice of 𝑏 is crucial [Szilvasi et al., 2022 ; Szilvasi
et al., 2024 ]. Eliciting the complex energy requires precise numerical analysis
on the basis of the three parameters.

The parameter tuning is primarily governed by the experimentally known
alpha energies 𝑄𝛼 (Table 4.1) which are essentially used as input parameters for
this model, and also by the premise that within an isotone chain the nuclear
potential parameters shall differ slightly.

Relying on the latter assumption, in the case of each single isotone chain
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the diffusion parameter and the oscillator parameter is fixed. In the manner of
this, for each isotone groups one shall fit the real part of the quasi stationary
alpha energies to the 𝑄𝛼 values, in order for this the 𝑉0 depth parameter of the
nuclear potential is migrated in the range of [40 − 55]MeV. Once the anticipated
alpha energy is found, the corresponding Γ mean-field width can be calculated
from the imaginary part of the eigenvalue. The computation of the mean-field
width was performed for all three isotone groups, the numerical results are
summerized in Tables 4.2, 4.3, 4.4.

After matching the calculated mean-field width to the experimentally known
total decay widths the 𝑠0 structure factor could be calculated for all single
isotones, and is estimated by linear fitting to the Γ − Γdecay data, that is depicted
in Figure 4.7. One can deduce from the data that the anticipated linear trend is
present in the case of all series. Although, as illustrated on the figures, one can
observe that the smallest mass-number nuclei of each series are quite distinct.
This observation suggests to exclude these nuclei from the fitting, and a possible
explanation for this feature could be that as the mass number decreases for an
isotone series, the 𝑍/𝑁 ratio also decreases, which signifies the increment of
the relative neutron number. The higher relative number of neutrons generally
implies stronger nuclear structural effect that, on the terms of this model, could
result in the distinction of the hypothetical structure factor 𝑠0.

Executing the linear fit on the three largest mass-number nuclei of the groups,
one can conclude that for𝑁 = 128 the calculated data is well-fitting on a line with
less than 4% relative error. This indicates the approximately constant nature of
the structure factor for these isotones. However, in the case of 𝑁 = 130, 𝑁 = 132
isotone chains, the calculated mean-field widths do not fit as smoothly on a line
as for the 𝑁 = 128 group, although the anticipated trend is still clearly exhibited
with the relative error of the slopes being less than 30%. An obvious explanation
for the declining trend could be found by taking into account the numerical
uncertainties of the mean-field width computation, that is certainly executed
with a given systematic error. Decreasing the numerical error by more proper
computational performance could increase the goodness of the solutions. It
shall be noted that higher neutron-number isotone chains correspond to longer
decay lifetimes.

Another demonstration of the calculation framework for the mean-field
widths is provided in Figure 4.8. Here, the empirical Geiger-Nuttal law (which
describes the observed linearity of the log(𝑇) −

√
𝑄𝛼 relationship for alpha-

decaying nuclei) is shown to be a good approximation for the calculated mean-
field tunneling widths and the real alpha energies. From the perspective of quasi-
stationary states (representing the state of the preformed alpha cluster within
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the mean-field potential), this law can be interpreted as a special relationship
between the real and imaginary parts of the complex eigenenergy.
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N=128
Matlab Python

a=0.66 fm
b=1.34 fm

a=0.66 fm
b=1.34 fm

Isotone ℜ(E𝛼) [MeV] Γ [MeV] V0 [MeV] Γdecay/Γ ℜ(E𝛼) [MeV] Γ [MeV] V0 [MeV] Γdecay/Γ
212Po 8.94 17 · 10−9 51 9.123 · 10−8 8.949 30.94 · 10−9 51.38 5.0162 · 10−8

214Rn 9.275 53.5 · 10−9 50.4 3.29 · 10−8 9.203 58.49 · 10−9 50.88 3.0125 · 10−8

216Ra 9.534 84.7 · 10−9 49.9 3.131 · 10−8 9.520 92.93 · 10−9 50.30 3.0496 · 10−8

218Th 9.872 116.8 · 10−9 49.3 2.44 · 10−8 9.843 122 · 10−9 49.72 3.0656 · 10−8

Table 4.2: The applied parameters and the calculated alpha energies (ℜ(𝐸𝛼)) and mean-field
widths (Γ) of the isotones in group N=128.

N=130
Matlab Python

a=0.66 fm
b=1.34 fm

a=0.66 fm
b=1.34 fm

Isotone ℜ(E𝛼) [MeV] Γ [MeV] V0 [MeV] Γ𝑑𝑒𝑐𝑎𝑦/Γ ℜ(E𝛼) [MeV] Γ [MeV] V0 [MeV] Γ𝑑𝑒𝑐𝑎𝑦/Γ
214Po 7.841 6.7 · 10−9 52.05 4.161 · 10−10 7.797 4.6 · 10−9 52.49 6.094 · 10−10

216Rn 8.136 56.3 · 10−9 51.4 1.802 · 10−10 8.158 56.9 · 10−9 51.86 1.781 · 10−10

218Ra 8.549 102.7 · 10−9 50.8 1.715 · 10−10 8.499 101.2 · 10−9 51.25 1.74 · 10−10

220Th 8.965 135.2 · 10−9 50.1 3.244 · 10−10 8.929 134.1 · 10−9 50.53 3.271 · 10−10

222U 9.46 149.4 · 10−9 49.3 6.497 · 10−10 9.435 148.4 · 10−9 49.71 6.543 · 10−10

Table 4.3: The applied parameters and the calculated alpha energies (ℜ(𝐸𝛼)) and mean-field
widths (Γ) of the isotones in group N=130.

Prediction of unknown half-lives: estimating the half-life of 𝐴 = 220, 𝑍 = 92
nucleus

A possible direction to exploit the estimation of the structure factor of the
isotone series could involve the potential predictions about the widths and
half-lives of certain experimentally not-yet-known nuclei. Such nucleus is the
(𝐴 = 220, 𝑍 = 92) uranium for which no experimental data is present in the
literature. According to our predictions, this nucleus could undergo alpha decay
and belong to the N=128 isotone group, potentially having the shortest half-life.
Based on this assumption, the structure factor estimation for the N=128 isotonic
chain can be applied to predict the half-life of the U-220 nucleus. To achieve this,
linear regression of the Γ-Γdecay data will be performed. Initially, the mean-field
width (Γ) of the (𝐴 = 220, 𝑍 = 92) nucleus needs to be determined from the
complex spectrum. The complex eigenenergy of this nucleus will be determined
by extrapolating the 𝛼-particle energy (𝑄𝛼) from experimental data shown in
Figure 4.6 (𝑄𝛼 = 10.14 MeV), followed by tuning the potential depth parameter
𝑉0 such that the real part of the complex energy (ℜ(𝐸𝛼)) matches 𝑄𝛼. The
computed value of the mean-field tunneling width for U-220 is Γ𝑈 = 140.2×10−9

MeV with 𝑉0 = 49.18 MeV.
Accurate calculation of the mean-field widths in this series provides a solid
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N=132
Matlab Python
a=0.7 fm

b=1.34 fm
a=0.7 fm

b=1.34 fm
Isotone ℜ(E𝛼) [MeV] Γ [MeV] V0 [MeV] Γ𝑑𝑒𝑐𝑎𝑦/Γ ℜ(E𝛼) [MeV] Γ [MeV] V0 [MeV] Γ𝑑𝑒𝑐𝑎𝑦/Γ

218Rn 7.299 34.7 · 10−9 52.32 3.9 · 10−13 7.262 33.86 · 10−9 52.75 3.99 · 10−13

220Ra 7.602 47.86 · 10−9 51.77 5.3 · 10−13 7.592 47.56 · 10−9 52.16 5.33 · 10−13

222Th 8.155 58.83 · 10−9 51 39.49 · 10−13 8.127 58.76 · 10−9 51.31 39.53 · 10−13

224U 8.625 61.4 · 10−9 50.14 88.46 · 10−13 8.627 61.86 · 10−9 50.51 87.8 · 10−13

Table 4.4: The applied parameters and the calculated alpha energies (ℜ(𝐸𝛼)) and mean-field
widths (Γ) of the isotones in group N=132.

basis for estimating the unknown decay width and half-life via linear regression,
as the Γdecay(Γ) function exhibits linearity with less than 4% relative error for
this series (indicating that the structure factor can be considered approximately
constant). The result of the linear regression is shown in Figure 4.9, where the
estimated half-life is 𝑇est

U = 141.7± 5.3 ns. The error reflects the standard error of
the linear regression. It is noteworthy that the numerical values presented above
were obtained using the Python algorithm; Matlab also produced 𝑇est

U = 139.6
ns, falling within the estimated error interval, that is not surprising according
to the conclusion of 4.3.2 drawn by analysing the two numerical approaches.
From the obtained numerical results, the final estimate for the half-life can be
given using the weighted average and its corresponding standard deviation:
𝑇est

U = 140.9 ± 4.3 ns.
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Figure 4.9: Estimation of the half-life of U-220 nucleus from fitting on the three isotones with the
largest mass number (𝐴) of N=128 group. The mean-field tunneling widths used are produced by
the Python algorithm, while the linear regression was executed by Matlab fitting. The predicted
value of the half-life of U-220 is: 𝑇est

𝑈
= 141.7 ± 5.3 ns, where the error estimate involves

the standard error of the linear regression. The predicted half-life using the mean-field widths
computed by Matlab is 139.6 ns which falls within the estimated error interval.



5

Super-intense laser-assisted alpha
decay

This chapter addresses the primary objective of this thesis: the investigation
of the coupled laser-nucleus system in the context of alpha decay. The previous
chapters set the ground for the appropriate description of laser-assisted alpha
decay. Drawing from these considerations, the task shall be reformulated as
(or specified to): model how a super-intense laser field might influence the
mean-field lifetime attached to an alpha cluster.

This chapter provides a thorough and careful exploration of the problem,
starting with providing the appropriate conceptual framework of the super-
intense laser and nucleus interaction that is examined in Section 5.1. This
section focuses on the thorough discussion of the non-relativistic limit in strong-
field interactions, particularly emphasizing the importance of the calculation
of the ponderomotive potential. I underline the main concepts and present my
corollaries in the matter.

Section 5.2 provides a brief insight to the investigation of laser-assisted alpha
decay within the traditional Hermitian quantum-mechanical calculation scheme.
I present my analytical and numerical results obtained for the interaction with
continuous-wave laser. In Section 5.3 I explain how this approach is limited to
time-periodic external drivings.

In Section 5.4 I turn to the approach established in the previous chapters,
which aims to solve the problem using the non-hermitian quantum-mechanical
framework, that is the natural framework for quasi-stationary states, the descrip-
tion of which is mathematically compatible with the (t,t’)-formalism. In this
section I demonstrate my numerical results obtained for the complex-energy
shift. I investigate how the relative change of the mean-field tunneling width
depends on the parameters of the laser pulse, and how this dependence can be
addressed numerically in relation to the photon energy and intensity. Finally, I
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intend to show the systematic behavior of the relative change of the lifetime for
the nuclei in the 𝑁 = 128 isotonic chain, based on my numerical analysis.

5.1 General properties of the interaction of alpha-
decaying nuclei and super-intense lasers

There can be found voluminous literature exploring the theoretical possi-
bilities of laser-assisted alpha decay [Mişicu et al., 2013a ; Mişicu et al., 2013b ;
Misicu et al., 2016 ; Delion et al., 2017 ; Bai et al., 2018 ; J. Qi et al., 2019 ; Rehman
et al., 2022 ]. Most of them follow similar line of concept when they provide
the conceptual framework for the problem, especially for the description of the
interaction. Naturally, the non-relativistic Schrödinger equation is solved within
the dipole approximation that is legitimate considering that the relative size
of the nucleus and the typical wavelength of the laser light is small enough.
However, a great number of these studies operate with the length gauge that is
conventionally used in electrodynamics and do not usually address the problem
at the limit of the non-relativistic approximation that is closely related to the
notion of the ponderomotive potential.

In this section I intend to set the conceptual grounds for the high-intensity
laser and alpha-cluster interaction, exploring the limitations of the non-relativistic
theory and accentuating the attributes of the many-photon strong-field interac-
tion that manifests in the context of high-intensity laser-induced phenomena
such as the complex-energy shift function of the alpha cluster to be presented
later on.

5.1.1 Intense-laser driven alpha cluster: which part of the nu-
clear force is subjected to the laser?

The typical magnitude of alpha-cluster energy levels inside the nucleus are
between 4 − 10 MeV. The experimentally achievable photon energy magnitudes
in the super-intense laser experiments planned for the near future are expected
in the range of 1 − 1000 eV. It is evident that a monochromatic field with such
energy is not capable of altering the cluster energy enough to excite the alpha
cluster to a higher energy level (or, in our model, to a different eigenstate). As a
conclusion, the perturbative description of the interaction is justified.

It has already been referred to in 4 that inside the nucleus, considering the
mean-field picture, the attractive part of the nuclear force dominates over the
electric (Coulomb) part. Estimating the magnitude of the amplitude of the laser
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(𝐴0) by using 𝐸0 =
𝐸ph
ℏ𝑐
𝐴0, where 𝐸0 =

√
4𝜋
𝑐

√
𝐼 with 𝐼 denoting the intensity of

the laser field, and compare it to the amplitude of the electric field inside the
nucleus (𝐸) at 𝑟 = 𝑅, one finds that the amplitudes are comparable. Let the
intensity of the laser field be 𝐼 = 1018𝑊/𝑐𝑚2:

𝐸0 =

√
4𝜋
𝑐

·
√
𝐼 ≃ 1012

√
𝑀𝑒𝑉

𝑐𝑚
, (5.1)

𝐸 ≃ 4.7 · 1012
√
𝑀𝑒𝑉

𝑐𝑚
. (5.2)

Thus, by these estimations one can state that the effect the laser field has on the
nuclear part of the potential can be neglected. Primarily the Coulomb-interaction
is exposed to the laser. One might also conclude that a threshold peak-intensity
value can be identified for laser-nuclei interaction happening via coupling to
the Coulomb potential (influencing the Coulomb potential well). However, it is
discussed in the next subsections that upon considering super-high intensity
laser fields, one must pay attention to the relation between the intensity and
photon energy when investigating problems in certain limits (for example the
non-relativistic limit) since the strength of the high-intensity laser coupling
depends on the ratio of the photon energy and intensity.

5.1.2 The ponderomotive potential

From the classical physical point of view, whenever charged particles are
subjected to some electromagnetic field, during the interaction they experience
a - generally nonlinear - force resulting in a harmonic "motion", characterized by
a quiver energy, also known as the ponderomotive potential energy. Despite
of the indisputable advantage of such an illustrative formulation, it has been
established (see for more detail [Reiss, 2014 ]) that the proper and fundamental
interpretation of this energy is the ponderomotive potential energy, not a type of
kinetic energy.

Following the disciplines of the classical description of a charged particle
in some electromagnetic field, the expression for the acquired ponderomotive
energy can be derived by considering the force the particle undergoes and
calculating the average energy of the particle over a time period. Historically,
the ponderomotive potential energy was defined for an electron quivering in a
homogeneous electric field. However, the major significance of this quantity ap-
pears in the description of interactions by strong-field quantum electrodynamics
(SFQED). Phenomena requiring the strong-field model (such as interactions with
high-intensity coherent plane-waves) typically start from a relativistic approach,
hence entailing the relativistic generalization of the ponderomotive potential.
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Originally, the ponderotomotive potential energy term arises from the vector
potential 𝐴𝜈 [Reiss, 2014 ]:

𝑈p =
𝑒2

2𝑚𝑐2 ⟨|𝐴𝜈𝐴𝜈 |⟩ , (5.3)

where 𝑚 is the mass of the charged particle subjected to the high-intensity
plane-wave field and the bracket denotes the cycle-average. Specifically, for the
interaction of a free electron with a continuous plane-wave:

𝑈p =
𝐼

(2𝜔)2 (5.4)

with 𝜔 photon energy and 𝐼 (peak) intensity. An effective coupling constant can
be defined for charged particle interaction with strong electromagnetic fields.
This quantity is also referred to as intensity parameter and is practically the
dimensionless expression of the ponderomotive potential energy. This coupling
can be expressed in several ways depending on what one intends to measure.
When expressing the non-relativistic limit of the strong-field interaction theory,
the intensity parameter for a charged particle of mass 𝑚 is given as:

𝑧f = 2
𝑈p

𝑚𝑐2 . (5.5)

When 𝑧f = 1 the interaction must be treated relativistically. It is evident from the
expression of the ponderomotive potential with the intensity and photon energy
that the relativistic limit may be approached from two distinct directions: when
𝐼 → ∞ obviously, and when 𝜔 → 0. (Note that the expressions in this section are
given in atomic units, since they were invented in the theory of atomic electron
interactions.)

This condition is further explored in the next section.

5.1.3 Discussion of the non-relativistic limit for an alpha cluster

Following from the previous section, since the interaction is realized through
a strong-field coupling (𝑧f), the peculiarities arising from the strong-field must
be addressed carefully. One such characteristic is the limit of the non-relativistic
approximation, which, considering the interaction with a high-intensity laser
field (transvers plane-wave field) has a high-intensity limit and also a low-
frequency limit.

Accordingly, the typical values of the external control parameters of the laser
field (𝐼 , 𝐸ph) must be assigned carefully. In the present theoretical approach
a classical description of the laser-matter interaction is given - considering a
classical laser field and an alpha cluster in a mean-field potential -, neglecting
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any relativistic effect, which has to be justified upon setting the intensity-photon
energy values. There can be found considerable studies concerning the non-
relativistic description of laser-electron interactions based on the calculation of
ponderomotive potentials [Reiss, 2002 ; Reiss, 2008 ; Reiss, 2014 ; Reiss, 2019 ]
which suggest that either the 𝐸ph → 0 or the 𝐼 → ∞ limits leads to the relativistic
domain. There exists a condition with regard to the non-relativistic treatment of
a free electron in a (plane-wave) laser field which is detailed in [Reiss, 2008 ].
According to [Della Picca et al., 2016 ] the effect of a few-cycle laser pulse could
be estimated from the maximum of a cycle-dependent ponderomotive potential
energy, which is equal to the ponderomotive energy of a plane-wave laser.

In the situation of alpha-decay instead of a free electron a quasi-bound alpha
particle is exposed to the laser, the rest mass of which (≈ 4 GeV) is almost
three orders of magnitude larger than the rest mass of the free electron (≈ 0.5
MeV), which - according to the relativistic condition 𝐼

𝜔2 = 2𝑚e𝑐
2 [Reiss, 2008 ] -

guaranties that the limits defined for the electron can serve as a lower estimate
to the limits for the alpha cluster. Based on this argument, Table I in Figure
5.3 summarizes the reasonable numerical values of the relative change of the
lifetime obtained by the non-relativistic region of the laser parameter pairs.

It is essential to emphasize that this feature of strong laser fields restricts all
the non-relativistic theoretical models to a maximal intensity and a minimal
photon energy! The 𝐸ph → 0 limit leads to the relativistic domain where our
model is not predictive. According to this restrictive aspect of the framework of
the model, an upper bound can be determined for the possible effect of the laser
on the lifetime. Although, it is necessary to emphasize that this circumstance
and the defined bounds on the intensity and photon energy values are the
consequence of the fabricated model, they are not necessarily originated from
the nature of the physical process.
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5.2 Investigations within the Hermitian framework:
laser-modified alpha-cluster potential in the Hen-
neberger picture

I included this section in order to illustrate how, applying the decay width
produced by the standard WKB approximation and operating within that
framework, one can mathematically address the problem of the laser-coupled
system in terms of time dependence. Several articles in the literature approach
the laser-assisted alpha decay problem working within the WKB framework
[Delion et al., 2017 ; J. Qi et al., 2019 ; Pálffy et al., 2020 ; Rehman et al., 2022 ].
Many are the studies that follows the below presented mathematical technique
to treat the time-dependence (e.g. [Delion et al., 2017 ]) that reach similar
conclusions as the authors in [D. Kis et al., 2018 ] (that is the basis of this
section), however several results are reached by a different methodology which
fails to carefully manage the aspect of time dependence in relation to the WKB
form of the decay width.

This section is concerned with the presentation of an alternative approach
serving to estimate the influence of a periodic laser field on the WKB decay
width [Kalbermann, 2008 ] in zero-order, without stepping into the - otherwise
necessary - realm of non-hermitian quantum theory. The ultimate purpose
is to demonstrate that investigating the problem via a rather simple model
in zero-order, the effect of the laser is such that it always seemed worthy to
further explore the problem with more accurate and rigorous models such as the
non-hermitian-based (t,t’)-perturbation theory which is also suitable to study
laser pulses.

In the following calculation scheme the influence of the laser on the life-
time (width) is mapped onto the alteration of the nuclear potential (notably
the Coulomb barrier) through a mathematical technique. The alteration of
the Coulomb barrier is manifested in the Gamow factor. The laser-modified
Gamow factor is obtained through the special Henneberger transformation and
is calculated for the 210Po isotope.

5.2.1 The Henneberger transformation

As it is discussed in Chapter 4, the problem of 𝛼 tunneling can be described
by (special solutions of) the time-independent Schrödinger equation. Although,
in the presence of an intense laser field, which is characterized by the vector
potential, A (r, 𝑡), the Hamiltonian is time-dependent. Following the discussion
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presented in Subsection 3.2 and Section 3.4, considering the Schrödinger equation
in radiation gauge

iℏ 𝜕

𝜕𝑡
Ψ(𝑟, 𝑡) = 𝐻̂(𝑟, 𝑡)Ψ(𝑞, 𝑡), (5.6)

where

𝐻̂ =
1

2𝑀

(
p − 𝑒

𝑐
A (𝑡)

)2
+𝑉 (𝑟) , (5.7)

where 𝑀 is the reduced mass of the 𝛼-cluster. The dipole approximation can
be used so the vector potential depends only on time A (r, 𝑡) = A (𝑡). In this
framework this approximation is valid when the wave length 𝜆 of the radiation
field is greater than the characteristic size of the nucleus, thus 𝜆 is greater than
the characteristic length of tunneling (𝑟3 − 𝑟2, denoting the region between the
turning points of the nuclear potential). The potential energy term 𝑉 (𝑟) refers
to one of the typical nuclear potentials introduced and discussed in Chapter 4
and corresponds to a central, spherically symmetric problem.

In this subsection I investigate the time-dependent problem from a unique
approach: the Henneberger transformation. By the Henneberger transformation
the explicit time-dependence of the problem is rendered implicit. In the
followings, I briefly present the main steps of such a transformation.

In order to simplify the calculations, let us take care of the A2-term in
the Hamiltonian. Remember, that in this section, I intend to provide the
laser-modified decay width through the traditional approach, without the non-
hermitian quantum-mechanical toolkit (and hence, without the restrictions
following from it in relation to the quadratic term of the vector potential in the
Hamiltonian).

Considering the dipole-approximation and staying within the hermitian
quantum-mechanical territory (remember Section 3.4), in this situation the
A2-term can indeed be transformed out by a unitary transformation:

𝑈2 = exp

(
i
ℏ

e2

2𝑀c2

∫ 𝑡

A2 (𝜏)d𝜏

)
. (5.8)

The Henneberger transformation is the following special unitary transforma-
tion to be applied on the total Schrödinger equation

𝑈1 = exp
(
− i
ℏ

S (𝑡)p
)
, (5.9)

where
S (𝑡) = e

𝑀c

∫ 𝑡

A (𝜏)d𝜏. (5.10)

As a result, the time-dependence is carried by the quantity S(𝑡) that appears
only in the argument of the unperturbed time-independent potential energy
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term: 𝑉H(r, 𝑡) ≡ 𝑉
(
r − S (𝑡)

)
. This is the implicit time-dependence obtained by

the Henneberger transformation.
After carrying out the transformations Φ = 𝑈1𝑈2Ψ [Henneberger, 1968 ] to

equation (5.6), the time-dependent Schrödinger equation transforms into this

𝑖ℏ
𝜕Φ

𝜕𝑡
=

[
p2

2𝑀 +𝑉
(
r − S (𝑡)

) ]
Φ. (5.11)

The interaction term containing the explicit time dependence disappears
from the Hamiltonian, in exchange for the spatial coordinate being shifted by an
oscillatory term that oscillates according to the period of the laser. The potential
energy generated this way, with a shifted argument, now only implicitly carries
the time dependence, and like the vector potential, this potential energy also
becomes a periodic function 𝑉H(r, 𝑡) ≡ 𝑉

(
r − S (𝑡)

)
and 𝑉H(r, 𝑡) = 𝑉H(r, 𝑡 + 𝑇)

with time period𝑇 = 2𝜋/𝜔 (where 𝜔 is the main frequency of the monochromatic
electromagnetic field). This periodicity can be exploited, the periodic potential
can be expanded in Fourier basis [Gilary et al., 2002 ], namely

𝑉𝐻 (r, 𝑡) =
∞∑

𝑛=−∞
𝑉𝑛 (r) e𝑖𝑛𝜔𝑡 , (5.12)

where

𝑉𝑛 (r) =
1
𝑇

∫ 𝑇

0
e−𝑖𝑛𝜔𝑡𝑉H (r, 𝑡)d𝑡. (5.13)

In the present study and also in the related paper of the author [D. Kis et al., 2018
] the investigation only covers the zero-order problem, any higher-order terms

in the Fourier-expansion are considered as a perturbation and are not taken into
account in this work, their influence can only be assessed using time-dependent
perturbation calculations, however such a procedure is not compatible with the
WKB framework (this is a weakness of the model). Accordingly, the zero-order
Hamiltonian yields

𝐻0(r) =
p2

2𝑀 +𝑉0 (r) =
p2

2𝑀 + 1
𝑇

∫ 𝑇

0
𝑉

(
r − S(𝑡)

)
d𝑡. (5.14)

It is important to notice that the periodic property of the vector potential is
crucial to carry out the calculations. This also means that the calculation scheme
presented here has a limitation to periodic external drivings.

The zero-order Hamiltonian (5.14) is already a time-independent operator,
now it might be possible to define the zero-order laser-modified width (4.3).
However, with the shift in the spatial coordinate due to the Henneberger
transformation, the central symmetry of the potential energy is lost. Since
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the core idea of this approach is to be able to define a modified decay width,
within the WKB-approximation, for the laser-driven (ultimately time-dependent)
system, it is essential to extract the spherical part of the total potential in order
to obtain an isotropic Hamiltonian. For this purpose one shall expand 𝑉0(r) in
series of the spherical harmonics

𝑉0(r) =
∞∑
ℓ=0

ℓ∑
𝑚=−ℓ

2ℓ + 1
4𝜋 𝐶ℓ𝑚 (𝑟)𝑌ℓ𝑚 (Ω) = 𝑉00(𝑟) +

1∑
𝑚=−1

𝑉𝑚
01(𝑟)𝑌1𝑚 + ..., (5.15)

where 𝑌ℓ𝑚(Ω) is the (ℓ , 𝑚) order spherical harmonics [Bronshtein et al., 1985 ]
and r = 𝑟 ·Ω. By this, in the Hamiltonian, an isotropic and anisotropic potential
term can be distinguished:

𝐻0 =
p2

2𝑀 +𝑉00(𝑟) +
∞∑
ℓ=1

𝑉0ℓ (r), (5.16)

where the central part is 𝑉00

𝑉00(𝑟) =
1

4𝜋
1
𝑇

∫ 𝑇

0

∫
4𝜋
𝑉

(
r − S(𝑡)

)
dΩd𝑡. (5.17)

Appendix C presents the validation of WKB approximation for the Hamilto-
nian (5.16).

This model is based on the density-dependent cluster model (DDCM) theory,
so the deformation of the proton density caused by the external laser field shall
be investigated in the calculations. The problem of the deformed density and
deformed cluster potential is briefly discussed here.

The deformed (non spherical) charge density 𝜌ℓ is derived from the 𝑉0ℓ

via the Maxwell equation. The numerical investigations show that if the laser
intensity is 𝐼 < 1021Wcm−2 then the non-spherical potentials 𝑉0ℓ and so the
non-spherical charge densities are three orders of magnitude smaller than the
spherical part of the potential and density in the cases ℓ = 1, 2. Therefore the
dipole (ℓ = 1) and quadrupole (ℓ = 2) deformations of the density are negligible,
the leading term is indeed (5.17) in the Hamiltonian. In other words it means
that the cluster potential can be considered as a spherical Fermi-function in the
presence of the laser field in DDCM.

Ultimately, laser-modified 𝛼 decay can be described by a time-independent,
isotropic potential in zero-order approximation, so the Hamiltonian yields

𝐻00 =
p2

2𝑀 +𝑉00(𝑟). (5.18)

The Schrödinger equation which includes Hamiltonian 𝐻00 can be subdivided
into three separate differential equations: one of them depends only on the
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radial variable 𝑟, and the other part only depends on the angular variables
Ω or (𝜃, 𝜙). As the potential 𝑉00 only depends on the radial variable, the
angular part is substituted by the centrifugal potential 𝑉cp

ℓ
(𝑟). So the three

dimensional Schrödinger equation becomes a one-dimensional equation which
can be rewritten by introducing a new radial wave function 𝑢 ≡ 𝜙0(𝑟) · 𝑟

d2𝑢

d𝑟2 + 2𝑀
ℏ2

[
𝐸 −𝑉00(𝑟) −𝑉cp

ℓ
(𝑟)

]
𝑢 = 0. (5.19)

Equation (5.19) has the same mathematical form as the laser-free case of 𝛼-
decay has, thus the expressions (4.1) and (4.3) can be applied to calculate the
laser-modified life-time. In 𝑠-wave approximation the centrifugal potential is
negligible, the laser modified, zero-order width Γlas

0 of the quasi-bound state of
the 𝛼-cluster can be written as

Γlas
0 = 𝑃𝐹las ℏ2

4𝑀 exp

(
−2

∫ 𝑟3

𝑟2

𝜅 (𝑟)d𝑟

)
, (5.20)

where 𝐹 𝑙𝑎𝑠 is the laser modified normalization factor and

𝜅 (𝑟) =
√

2𝑀
ℏ2

[
𝑉00 (𝑟) −𝑄

]
, (5.21)

where the potential 𝑉00 is defined by (5.17), and 𝑉00 > 𝑄. In practice there is no
need for the absolute calculation of the laser-modified processes, the introduction
of the relative change due to the presence of the laser field is usually sufficient,
this ratio ℜ is defined by

ℜ =
𝐹 𝑙𝑎𝑠

𝐹
exp

−2

(∫ 𝑟3

𝑟2

𝜅(𝑟)d𝑟 −
∫ 𝑟3

𝑟2

𝑘(𝑟)d𝑟
) , (5.22)

where 𝑟2 and 𝑟3 are the laser-modified classical turning points, and in many
cases 𝐹las ≈ 𝐹.

5.2.2 The relative change of the widths with mean-field nuclear
potentials: analytical and numerical results for a single
isotope

In this subsection let us experiment how some continuous laser field effects
a typical mean-field nuclear potential. Investigating a nuclear potential sug-
gests that an additional turning point, 𝑟2, might now be subject to potential
modifications. Two different potential models are chosen to be subjected to the
Henneberger transformation upon accounting for the interaction with some
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continuous laser field. As the previous chapters formulated, each of these
nuclear potential models strongly relies on the theory of the Shell Model, where
we account for the mean field that each nucleon experiences due to the collective
influence of the others. The ratio ℜ(𝑖), which describes the difference between
the decay constants of the laser-modified and the laser-free cases, is derived for
the two possible polarization states of the laser.

Calculations are performed using the already introduced Section 4.3 mean-
field nuclear potential built up with the Woods-Saxon attractive part and a
Coulomb-type repulsive part:

𝑉(𝑟) = −𝑉0 𝑓 (𝑟) +𝑉c(1 − 𝑓 (𝑟)). (5.23)

It has already been stated that the effect the laser field has on the nuclear part
of the potential can be neglected. Hence, it is worth carrying out the Henneberger
transformation only to the Coulomb part. Based on the previous section, one is
able to define the laser-modified potential in zero-order approximation

𝑉00(𝑟) =
1

4𝜋
1
𝑇

∫ 𝑇

0

∫
4𝜋

dΩd𝑡 𝑉0

1 + e(𝑟−𝑅)/𝑎
+

+ 2𝑍𝑒2

𝑟

[
1 − 2rS(𝑡)

𝑟2 + 𝑆2(𝑡)
𝑟2

]−1/2

·
(
1 − 1

1 + e(𝑟−𝑅)/𝑎

)
. (5.24)

In this case both turning points (𝑟2,𝑟3) can only be calculated by solving the
equation 𝜅(𝑟) = 0 numerically.

Following the method we have already showed using the simplified model,
the calculations can be specified for the two polarization cases by the definition
of S.

At the linearly polarized case the zero-order potential can be written as:

𝑉 𝐼𝑎
00 (𝑟, 𝜉) =

1
4𝜋

1
2𝜋

∫ 2𝜋

0

∫
4𝜋

dΩd𝑡 𝑉0

1 + e(𝑟−𝑅)/𝑎
+

+ 2𝑍𝑒2

𝑟

[
1 + 2𝜉cos(𝜗)sin(𝑥)

𝑟
+ (𝜉)2sin2(𝑥)

𝑟2

]−1/2

·
(
1 − 1

1 + e(𝑟−𝑅)/𝑎

)
.(5.25)

Considering a circularly polarized electromagnetic wave, one can obtain the
below presented closed formula for the zero-order potential:

𝑉 𝐼𝑏
00 (𝑟, 𝜉) =

1
4𝜋

1
2𝜋

∫ 2𝜋

0

∫
4𝜋

dΩd𝑡 𝑉0

1 + e(𝑟−𝑅)/𝑎
2𝑍𝑒2

𝑟

(
1 − 1

1 + e(𝑟−𝑅)/𝑎

)
·[

1 + 2𝜉sin(𝜗)
𝑟

(
cos(𝜑)sin(𝑥) + sin(𝜑)cos(𝑥)

)
+ (𝜉)2

𝑟2

]−1/2

. (5.26)
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By computing these expressions numerically one is able to calculate the Gamow-
factors and the ratio defined in the previous section.

In the following, we are using the model of the homogeneously charged
sphere to represent the Coulomb potential of the remaining nucleus. It is derived
from the Maxwell equations.

𝑉(r) =


2𝑍𝑒2

|r| 𝑟 ≥ 𝑅 (outside),

2𝑍𝑒2

2𝑅 ·
(
3 − |r|2

𝑅2

)
𝑟 < 𝑅 (inside),

(5.27)

Based on the idea of the previous subsection, one can also neglect the
laser field’s effect on the nuclear part of the potential, but the Henneberger
transformation must be carried out to the Coulomb part, both inside and outside
the sphere. Note that the fitting constants of the potential also change as an effect
of the presence of the laser field. So, it is important to apply the Henneberger
transformation before fitting the boundary conditions. By this method, the
potential will surely be continuous at 𝑟 = 𝑅. It is an important distinguishing
property of this nuclear model. According to this, one shall note that this type
of Coulomb potential model does not sufficiently describe the nuclear potential
inside the nucleus. Certainly, it is not a problem from the viewpoint of studying
the effect of the laser field, however, due to the Henneberger transformation
inside the sphere, it induces the appearance of a stronger modifying effect inside
the nucleus. This is only a consequence of the chosen Coulomb potential model.

The result of the Henneberger transformation always depends on the intensity
of the laser field. Hence, these fitting parameters can only be calculated when one
specifies the intensity. After applying the Henneberger transformation on the
potential, we get directly from

∮
𝜕𝑉

EdA =
∫
𝑉
𝜌d𝑉 now without knowing exactly

the fitting constants (𝐶1, 𝐶2), the laser- modified potential under discussion will
reach the below form taking into consideration the linearly polarized case: inside
(𝑟 < 𝑅)

𝑉 𝐼𝐼𝑎,𝜉
00 (𝑟) =

1
4𝜋

1
2𝜋

∫ 2𝜋

0

∫
4𝜋

dΩd𝑥𝑉0
1 + cosh(𝑅/𝑎)

cosh(𝑟/𝑎) + cosh(𝑅/𝑎) + 𝐶2 −
2𝑍𝑒2

2𝑅3 𝑟
2 ·

·
[
1 + 2𝜉cos(𝜗)sin(𝑥)

𝑟
+ (𝜉)2sin2(𝑥)

𝑟2

]
(5.28)

outside (𝑟 ≥ 𝑅)

𝑉 𝐼𝐼𝑎
00 (𝑟, 𝜉) =

1
4𝜋

1
2𝜋

∫ 2𝜋

0

∫
4𝜋

dΩd𝑥𝑉0
1 + cosh(𝑅/𝑎)

cosh(𝑟/𝑎) + cosh(𝑅/𝑎) +
2𝑍𝑒2

𝑟
·

·
[
1 + 2𝜉cos(𝜗)sin(𝑥)

𝑟
+ (𝜉)2sin2(𝑥)

𝑟2

]−1/2

. (5.29)
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Considering circularly polarized state the zero-order potential has the form
inside (𝑟 < 𝑅)

𝑉 𝐼𝐼𝑏
00 (𝑟, 𝜉) =

1
4𝜋

1
2𝜋

∫ 2𝜋

0

∫
4𝜋

dΩd𝑥𝑉0
1 + cosh(𝑅/𝑎)

cosh(𝑟/𝑎) + cosh(𝑅/𝑎) + 𝐶2 −
2𝑍𝑒2

2𝑅3 𝑟
2 ·

·
[
1 + 2𝜉sin(𝜗)

𝑟

(
cos(𝜑)sin(𝑥) + sin(𝜑)cos(𝑥)

)
+ (𝜉)2

𝑟2

]
(5.30)

outside (𝑟 ≥ 𝑅)

𝑉 𝐼𝐼𝑏
00 (𝑟, 𝜉) =

1
4𝜋

1
2𝜋

∫ 2𝜋

0

∫
4𝜋

dΩd𝑥𝑉0
1 + cosh(𝑅/𝑎)

cosh(𝑟/𝑎) + cosh(𝑅/𝑎) +
2𝑍𝑒2

𝑟
·

·
[
1 + 2𝜉sin(𝜗)

𝑟

(
cos(𝜑)sin(𝑥) + sin(𝜑)cos(𝑥)

)
+ (𝜉)2

𝑟2

]−1/2

.(5.31)

The 𝐶1 constant disappears as a consequence of fitting the boundary condi-
tions. The other constant can only be computed numerically from the continuity
condition. The ratio ℜ introduced in the previous subsection can be described
as

ℜ(𝑗) = exp
−2

√
2𝑀
ℏ2

(∫ 𝑟̂3

𝑟̂2

√
𝑉
𝑗

00(𝑟, 𝜉) −𝑄d𝑟 −
∫ 𝑟3

𝑟2

√
2𝑍𝑒2

𝑟
−𝑄d𝑟

) , (5.32)

where 𝑗 = 𝐼𝑎, 𝐼𝑏, 𝐼𝐼𝑎, 𝐼𝐼𝑏.
After obtaining the analytical formulas, the 𝛼-decay of 210Po isotope is subject

to numerical investigations in intense laser field by using the formula (5.32). The
charge number is 𝑍 = 84, the alpha energy is 5.407 MeV [Firestone et al., 1996 ].

Figure 5.1. shows the shape of the spherically symmetric potential felt by
the 𝛼-cluster with some pair of laser intensities and photon energies against
the distance from the nucleus (the zero point denotes the point of the central
of mass). Each figure belongs to the two different nuclear potential models in
order: Fermi-type Wood-Saxon potential, homogeneous sphere potential. Both
figures have the potential 𝑉00 depicted in the laser-free case, and with linearly
polarized and circularly polarized electromagnetic wave in order with solid line,
dashed line and dotted line. In Figure 5.1. (a) and (b) the intensity is 𝐼 = 5 · 1019

W/cm2 and the photon energy is 𝐸𝑝ℎ = 100 eV. It can be seen that the effect of the
presence of the laser field for the modified Coulomb potential strongly depends
on the polarization state of the monochromatic electromagnetic field and on the
field intensity.

Figure 5.2. shows the calculated Gamow-factors (the substraction of the
laser-free and laser-modified Gamow factors) plotted against certain values of
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Figure 5.1: The computed 𝑉00 potential as a function of the distance measured from the nuclear
radius (𝑟)with laser intensity of 𝐼 = 5 ·1019 W/cm2 and photon energy of 𝐸𝑝ℎ = 100 eV. Subfigure
(a) shows the deformation of the Fermi-type nuclear mean-field potential, while subfigure (b)
displays the modification in the nuclear potential represented by a Coulomb term based on
the uniformly charged sphere model, both setting having 𝑉0 = −52 MeV and 𝑎 = 0.65 fm as
the nuclear potential parameters. Three different cases are represented: solid line stands for
the laser-free case; dashed line stands for the linearly polarized case; dotted line stands for the
circularly polarized case.
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Figure 5.2: The difference between the laser-free and laser-modified Gamow factors plotted
against a narrow range of intensity values using the Fermi-type potential model choosing the free
parameters as 𝑎 = 0.65 fm and 𝑉0 = −52 MeV.

the intensity. It is clearly seen from Figure 5.2. that by the increase of the intensity
the subtraction of the Gamow-factors increase approximately linearly in the
given intensity region. So the results are more notable when a higher intensity
laser field is applied (with fixed photon energy). Based on paper [Misicu et al.,
2016 ] more greater ratio values are expected by applying laser pulse than in
the case of plane wave laser field.

The applied realistic nuclear potentials has their own free parameters (a [fm],
𝑉0 [MeV]). So we investigated what happens to our results if we change them.
Thus the ratio (𝑅𝑖 𝑗) was calculated in some specific cases of the values of the
mentioned free parameters, for example one of the 𝑉0 − 𝑎 pairs comes from
[Buck et al., 1992 ].

It is clearly seen again from the above table that the effect the laser field has
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Model (j), Polarization (i) Intensity (W/cm2) 𝑎(fm) 𝑉0(MeV) ℜ(ij)

(𝑗 = 1), (𝑖 = 1) 5 · 1019 0.65 −52 8.4015
(𝑗 = 1), (𝑖 = 1) 5 · 1019 0.7 −141.9 3.9414
(𝑗 = 1), (𝑖 = 1) 5 · 1019 0.76 −137.7 3.3319
(𝑗 = 1), (𝑖 = 2) 5 · 1019 0.65 −52 123.2366
(𝑗 = 1), (𝑖 = 2) 5 · 1019 0.7 −141.9 48.1420
(𝑗 = 1), (𝑖 = 2) 5 · 1019 0.76 −137.7 29.1531

(𝑗 = 2), (𝑖 = 1) 5 · 1019 0.65 −52 3.3129
(𝑗 = 2), (𝑖 = 1) 5 · 1019 0.76 −137.7 3.8796
(𝑗 = 2), (𝑖 = 1) 5 · 1019 0.7 −141.9 2.7542
(𝑗 = 2), (𝑖 = 2) 5 · 1019 0.65 −52 34.9973
(𝑗 = 2), (𝑖 = 2) 5 · 1019 0.7 −141.9 84.4423
(𝑗 = 2), (𝑖 = 2) 5 · 1019 0.76 −137.7 18.6598

Table 5.1: The computed values of the ratio 𝑅(𝑖 𝑗) with the two possible polarization state of
the laser field denoted by i while 𝑗 encoding the two applied potential models. j = 1 stands
for the uniquely parameterized Woods-Saxon and Coulomb potential, while j = 2 indicates
the homogeneously charged sphere model for the electrostatic repulsion of the nucleons. i = 1
symbolizes the linear polarization state, while i = 2 connotes the circularly polarized field. The
photon energy is set to 100 eV. 𝑎 and 𝑉0 are the free parameters of nuclear mean-field potential
model.
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on the static potential strongly depends on the polarization. Table 1. shows that
in the cases of circularly polarized state the ratio ℜ(𝑖 𝑗) (which is proportional to
the laser modified decay probability) is one or two orders of magnitude greater
than in the cases of the linearly polarized state. It can also be inferred that the
parameters of the applied nuclear potential can influence the final results.

Based on these numerical results it is concluded that the derived expression
(5.32) give non-zero laser modified physical effects in a very narrow range
of values of the intensity and the photon energy. When the theoretical steps
were introduced it was remarked that during the calculations only the zero-
order spherical harmonics (ℓ = 0) potential energy term is taken into account.
Nevertheless, the ℓ = 1 cases were also checked, which gave some rather
insignificant additions to the already presented results.

5.3 The limitations of the Henneberger-transformation-
based approach

The above-presented model of laser-assisted alpha decay proved to be suitable
for describing the remaining nucleus and alpha cluster system in the mean-field
approximation, coupled to the laser field characterized by a periodically time-
dependent classical vector potential, with respect to the WKB decay lifetime,
under a non-relativistic approximation and considering the zeroth-order Fourier
series expansion of the time-dependent interaction. Such a description and the
zeroth-order expression of the laser-modified width serves as a checkpoint in
the theory of laser-assisted alpha decay: the performed numerical computations
provided results showing that the effect of the laser (at a given intensity and
photon energy) is non-negligible even at zeroth order, thus laying the foundation
for further research.

As elegant as the Henneberger-transformation-based model is in addressing
the problem of laser-driven alpha decay, it has some serious limitations in its
application. The time-independent formulation of the interaction Hamiltonian
is the exclusive consequence of the Fourier expansion of the Henneberger-
transformed potential energy and the identification of a time-independent
zeroth-order interaction term. Any higher-order - hence time-dependent - terms
of the Henneberger-transformed potential energy cannot be considered while
working within the WKB approximation. The property of the potential that
allows for such an expansion is the periodicity of the vector potential representing
the external laser field. For non-periodic drivings, such as laser pulses, the
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extraction of a time-independent term is not this straightforward. The core of
this approach is to manipulate the time-dependence of the coupled-laser system
in order to arrive at a Schrödinger equation that is consistent mathematically in
the WKB-framework, hence allowing for the derivation of a laser-modified decay
width. However, the production of the decay width is more natural and most
importantly quantum-mechanically accurate in the natural coordinate system of
decay that requires the non-hermitian formulation of quantum mechanics.

However, it was proved in [Pfeifer et al., 1983 ] that the special (t,t’)-formalism
(originally Floquet-formalism) is extendable to problems with general, not only
periodic time-dependence [Sambe, 1973 ]. This result naturally lays the
groundwork for the direction of further research from the perspective of the
model framework. As it was already discussed in Chapter 2, the appliance of the
(t,t’)-formalism requires a wave-function centered description, hence the demand
for the non-hermitian extension of the alpha-decay problem is evident. The next
section summarizes the numerical results obtained within this framework.

5.4 Results within the non-hermitian framework:
the laser-induced shift of the complex energy-
eigenvalue of the alpha cluster

In this chapter I present my numerical results of laser-assisted alpha decay
obtained within the non-hermitian framework. Chapter 3 sets the conceptual
ground and the mathematical framework for the description of the laser-coupled
system in the non-hermitian formalism as well as the derivation of the complex-
energy shift formulae. Building upon this and the concepts of Section 5.1 on the
subject of the properties of super-intense laser interacting with an alpha cluster,
conclusive findings of the matter are formulated.

Let us return to the previously discussed (see Subsection 3.1 specification
of the external coherent electromagnetic field in the context of interacting with
non-hermitian systems. As it was already introduced and explained, we specify
𝐻̂𝜃
𝐼
(r, 𝑡) by a non-relativistic, classical vector potential (A(r, 𝑡)) characterizing

the external laser field by minimally coupling the vector potential to the kinetic
part of the Hamiltonian operator. The problem is considered in Coulomb
gauge (∇A = 0) and within the Long Wave Approximation; and according to
3.4 exclusively the velocity gauge is adoptable, in which case the interaction
Hamiltonian of the laser-assisted decaying system has the form:

𝐻̂𝜃
𝐼 (r, 𝑡) =

−𝑒
𝑀𝑐

p𝜃A𝜃(𝑡) + 𝑒2

2𝑀𝑐2

(
A𝜃(𝑡)

)2
. (5.33)
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where 𝑒 is the elementary charge and 𝑐 is the speed of light. Later on the
fine structure constant 𝛼 is indicated in the analytic formulas instead of the
elementary charge, according to the relation: 𝑒2 = 𝛼 · ℏ · 𝑐.

The vector potential is specified for two different polarization cases (p = l, c):
results are presented for linearly (l) and circularly (c) polarized laser fields. In
both cases the vector potential contains a Gaussian-envelope function accounting
for the effect of laser pulses. For linear polarization the vector potential is built
up as

A(l)(𝑡) = 𝐴0e𝑧cos

(
𝐸ph

ℏ
𝑡 + 𝛾

)
e
−
(
𝐸ph𝑡
ℏ𝜎

)2

, (5.34)

while for circular polarization A(r, 𝑡) is expressed as

A(c)(𝑡) = 𝐴0

(
e𝑥cos

(
𝐸ph

ℏ
𝑡 + 𝛾

)
+ e𝑦sin

(
𝐸ph

ℏ
𝑡 + 𝛾

))
e
−
(
𝐸ph𝑡
ℏ𝜎

)2

,

where e𝑥 , e𝑦 , e𝑧 are the unit vectors in Cartesian coordinate system, 𝐸ph
ℏ

, 𝛾 are
the frequency and the phase of the laser field, respectively and 𝜎 is the width of
the Gaussian envelope function. 𝐴0 can be expressed with the amplitude of the
corresponding electric field 𝐸0 =

𝐸ph
ℏ𝑐
𝐴0, where 𝐸0 =

√
4𝜋
𝑐

√
𝐼 with 𝐼 denoting the

peak intensity of the laser field in the unit of MeV
s·fm2 . Due to the circumstance that

in this calculation scheme expectation values are computed rather than transition
matrix elements, upon performing integrals over the whole coordinate space
in the extended Hilbert space to get the correction from the (t,t’)-expectation
value in equation (2.41), only the quadratic vector potential term (second term
in equation (5.33)) gives non-zero contribution.

Computing this expectation value 𝜀(1,p) = ((Φ̃𝜃(r, 𝑡)| 𝑒2

2𝑀𝑐2

(
A𝜃(p)(r, 𝑡)

)2
|Φ̃𝜃(r, 𝑡))),

the already introduced closed-form expressions are achieved for the complex
energy correction of the (preformed) quasi-stationary alpha cluster. According
to this the complex energy correction of the alpha cluster in the case of linear
polarization (with the condition Γ

𝐸ph
<< 𝜎 which is justified by the typical order

of magnitude of nuclear decay widths (Γdecay
exp < 10−14 MeV), for laser photon

energies within the non-relativistic limit):

𝜀(1,l) = 𝒩2𝒦 𝐼ℏ

𝐸3
ph

√
𝜋
2

( 1
4𝜎e

Γ2
8𝐸2

ph𝜎2
𝑓 (𝜎, Γ, 𝐸ph) + (5.35)

+ ℎ (𝜎)
[
e
−2i Γ𝜎2

8𝐸ph e2i𝛾𝑔(𝜎) + e
2i Γ𝜎2

8𝐸ph e−2i𝛾𝑔∗(𝜎)
] )
,
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where the function 𝑔(𝜎) =
(
1 + i · erfi

(
𝜎√
2

))
and 𝑔∗(𝜎) is its complex conjugate.

The function 𝑓 (𝜎, Γ, 𝐸ph) is expressed as 𝑓 (𝜎, Γ, 𝐸ph) =
[
1 − erf

(
Γ√

8𝐸ph𝜎

)]
, and

function ℎ(𝜎) = 𝜎
16e

(
Γ2
𝐸2

ph
−4

)
𝜎2
8

. Physical constants are encompassed by 𝒦 =

𝛼2𝜋(ℏ𝑐)3
𝜇𝑐 , where 𝜇 = 𝑀𝑐2. The width Γ is also implicitly present in the complex

normalization factor 𝒩2. Using the same symbols, the energy correction for
circular polarization is determined as:

𝜀(1,c) = 𝒩2𝒦 𝐼ℏ

𝐸3
ph

√
𝜋
8

1
𝜎

e
Γ2

8𝐸2
ph𝜎2

𝑓 (𝜎, Γ, 𝐸ph). (5.36)

In practice it is reasonable to determine the relative change of the width,
which is inversely proportional to the relative change of the lifetime (𝜏):

𝜏

𝜏las =
Γlas

Γ
= 1 + 𝜀(1,p)

Γ
. (5.37)

Although the above formulae suggest a sole intensity and photonenergy-
dependent function, however it is not reasonable to look at the complex energy
correction formula as a clear function of the intensity and the photon energy.
Because taking the divergent 𝐸ph → 0 and 𝐼 → ∞ limits leads us to false
conclusions that typically arise in the description of many-photon strong-field
phenomena that shall be discussed in terms of the ponderomotive potential
energy along with the non-relativistic approximation as is suggested in [Reiss,
2019 ; Reiss, 2021 ] and that are detailed in Section 5.1.

It is clearly seen from equation (5.35) and (5.36) that the correction 𝜀(1,p) is
proportional to the intensity, which is consonant to the intensity-dependence of
the ponderomotive potential energy typically obtained in calculations concerning
laser-matter interactions with plane waves.

The photon-energy dependence, though, significantly alters from that of the
ponderomotive energy, which is due to the fact that now laser impulses are
studied which are mathematically represented by a photon-energy dependent
Gaussian envelope function (the pulse length is measured in 𝜎ℏ

𝐸ph
, where 𝜎 is

a dimensionless quantity). The shape of Γ𝑙𝑎𝑠

Γ
is presented in Figure 5.5 for the

appropriate intensity-photon energy range which is to be quantitatively given in
the next subsection.
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5.4.1 The relative change of the lifetime as a function of the
laser control parameters

In this subsection demonstrative calculations are presented for the laser-
modified lifetime of the alpha cluster formed in the 212Po isotope, by means of
exploring the external control-parameter-dependence of the relative change of
the width of the quasi-stationary state Γlas

Γ
= 1 + 𝜖(1,𝑝)

Γ
.

The quantitative limit of the non-relativistic approximation for laser-assisted
alpha-decay in the non-hermitian framework is depicted in Figure 5.3 considering
typical photon energy values and the super-high-intensity regime. The relative
change of the width of the quasi-stationary state Γlas

Γ
= 1+ 𝜖(1,𝑙)

Γ
is calculated for the

different intensity-photon energy pairs (fixing the laser phase 𝛾 and the width
of the laser pulse 𝜎 and considering linearly polarized laser field). The dark
red area of the table contains those pairs that exceeds the numerical limit of the
non-relativistic approximation. All the values below the gradient are obtained
within the non-relativistic approximation, thus are the only considerable results
of our model (light purple cells).
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Figure 5.3: The quantitative limit of the non-relativistic approximation. The table contains the
numerical values of the complex-energy shift that are obtained by different peak intensity and
photon energy settings.

The appropriate intensity-photon energy region, posed in the table in Figure
5.3, is encircled by an ellipse in Figure 5.4 in order to highlight the distinct
parameter domains that corresponds to the relativistic and non-relativistic limits
of the many-photon strong field interaction.

Turning to the examination of the additional laser parameters, it can be
deduced from Figure 5.5 that the maximal effect (highest Γlas, smallest 𝜏las) is
obtained for 𝜎 = 1 (when the pulse length is equal to 𝑇̃ = ℏ

𝐸ph
) and the effect is

more pronounced for phase-shifts around 𝛾 = 𝑛𝜋 (𝑛 = 0, 1, 2...). It could be
stated that as a result of this wavefunction-centered computational technique, a
circularly or linearly polarized laser pulse could produce an evident increment
in the width of the quasi-stationary state, thus the lifetime of the alpha-cluster
in a mean-field nuclear potential could decrease. As an illustrative example,
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Figure 5.4: The diagram indicate the increment in the width of the alpha-cluster (decrement in
the lifetime) in log scale for a laser pulse with a typical range of peak intensity and photon energy.
It is also shown that the complex energy shift indeed grows linearly with the intensity, although
due to the relative width formula (Γlas

Γ
= 1 + 𝜖(1,𝑝)

Γ
), for relatively small intensity values paired

with higher photon energies the linearity of the function is spoiled.

setting the peak intensity of the laser pulse 𝐼 = 1024 𝑊
𝑐𝑚2 and the photon energy

𝐸ph = 100 eV along with 𝛾 = 0 and 𝜎 = 1 the decrement in the lifetime is around
1

70𝜏 for linearly polarized laser, although for a significantly lower peak intensity
value, 𝐼 = 1021 𝑊

𝑐𝑚2 , there is still a few percent decrease predicted in the lifetime
for the relatively high photon energy 𝐸ph = 100 eV.
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Figure 5.5: The relative change of the width of the quasi-stationary state representing the
alpha-particle Γlas

Γ
= 1 + 𝜖(1,l)

Γ
, for both circular and linear polarization cases of the laser field,

fixing the photon energy 𝐸ph = 100 eV and field intensity 𝐼 = 1022 W
cm2 . The effect of the external

laser field decreases with the width of the Gaussian envelope function 𝜎 in the same fashion for
both polarization cases.

With respect to the quantitative limit of the photon energy and peak intensity
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pairs induced by the non-relativistic requirement, for an appropriately chosen
intensity range for 100 eV photon energy, the first-order relative energy correction
𝜖1,l as a function of the peak intensity is depicted in Figure 5.6 regarding a laser
field in linearly polarized state.
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Figure 5.6: The relative imaginary energy correction of the quasi-stationary alpha cluster 𝜖(1,𝑙)
Γ

as a function (setting a logarithmic scale) of the peak intensity 𝐼 of the external propagating
laser pulse in linear polarization state, fixing the photon energy 𝐸ph = 100 eV. The effect of the
external laser field increases with the peak intensity. Note that axis 𝑦 is in logarithmic scale.
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5.4.2 Numerical results for the N=128 isotonic chain

In Chapter 4 I determined the mean-field tunneling widths (Γ) of special
alpha-decaying isotonic nuclei in the cluster-remaining nucleus picture from the
complex energy. The investigation of the relationship between the calculated
mean-field tunneling widths (Γ) and the total decay widths (Γdecay) known from
experiments for the 𝑁 = 128 isotonic chain confirmed the hypothesis with high
accuracy that the variation in the Coulomb barrier of the heavy, alpha-decaying
nuclei composing the studied isotonic series predominantly determines the
differences in their decay lifetimes. In the case of these nuclei, the nuclear
structure remains nearly constant (expressed via the previously introduced
factor 𝑠0), while the variation in the number of protons (𝑍) primarily affects
the Coulomb barrier, the alteration of which is what determines the mean-field
tunneling lifetime.

This hypothesis and these findings suggest that the effect of any external
driving that alters the Coulomb barrier can be traced via the change in the mean-
field tunneling width. In Section 5.1, it was shown that an intense laser field
with the typical peak intensities and photon energies predominantly influence
the Coulomb barrier of the nucleus.

According to these observations and knowledge, it is worth to investigate
the complex energy shifts and calculate the relative change of the mean-field
tunneling widths of nuclei in the context of isotonic series with neutron number
N=128.

The investigated isotones and their mean-field tunneling widths along width
the relative change of the widths Γlas

Γ
are displayed in Table 5.2.

Γ [MeV] Γlas/Γ
212Po 30.94 · 10−9 1.633
214Rn 58.49 · 10−9 1.711
216Ra 92.93 · 10−9 1.79
218Th 122 · 10−9 1.871

Table 5.2: The relative change of the mean-field widths of the quasi-stationary cluster states in
nuclei from the N=128 isotonic series. The laser control parameters are set to: 𝐼 = 1022 W

cm2 ,
𝐸ph = 100 eV, the pulse length 𝜎 = 1 and the phase shift is 𝛾 = 0.

Table 5.2 shows a slight difference in the effect of the laser pulse with 𝐼 = 1022

W
cm2 , 𝐸ph = 100 eV, despite of the mean-field tunneling widths (and so the total
decay widths according to Chapter 4) being more distinct (relatively). The largest
mean-field width belonging to 218Th is 4 times larger than the smallest width
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belonging to 212Po, while the difference between the relative changes is at most
2.4.

Nevertheless, one can observe a systematic in Γlas

Γ
as a function of the lifetime

(or decay width). Note, that there is an inverse relation between the lifetime of
the alpha cluster (𝜏) and the corresponding decay width (Γ), hence 212Po has the
largest lifetime (and the smallest alpha energy 𝐸𝛼 or decay energy 𝑄𝛼) and 218Th
has the smallest one (hence the largest alpha energy). The relative change of the
lifetime is the most significant for 218Th (the higher the ratio of Γlas

Γ
the shorter

the lifetime gets due to the laser field). In this series Th has the smallest neutron
to proton ratio (𝑍 = 90), although the alpha-energy level is the highest for this
nuclei (see Table 4.2). In an intuitive picture, this refers to the thorium isotope
with the shortest lifetime being closest to the peak of the Coulomb barrier, where
the barrier is also narrowest (the probability of tunneling depends on both the
height and width of the barrier); which circumstance could potentially enhance
the effect of the external laser field.

Moreover, a similar systematics can be observed in the relative change of
the lifetime as in the dependence of decay widths and alpha energies on 𝑍2/𝐴.
The ratios (Γlas

Γ
) form an arithmetic series as a function of the relative number

of protons. The underlying systematics is preserved. This observation could
potentially facilitate the extrapolation of the anticipated relative change of the
lifetime to other (even-even) nuclei within the isotonic series. However, caution
must be exercised here, as increasing the number of neutrons relative to protons
strengthens the effects arising from the nuclear structure, which extends beyond
the scope of the current model framework.
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Summary and conclusion

In this thesis I set my primary task to examine the issue of laser-assisted
alpha decay by studying the lifetime of the alpha cluster formed in radioactive
alpha-decaying isotopes, and by investigating the possible modifications to the
lifetime induced by the influence of some external laser field: continuous plane
wave or laser pulse.

In this study I considered alpha decay as a two-step process which is composed
of the formation of the alpha cluster (clustering) and the interaction between
the preformed alpha cluster and the residual nucleus; the latter resulting in the
tunneling through the Coulomb barrier. I discussed that, in leading order, the
most pronounced effect of the laser field is displayed in the potential alteration
of the Coulomb barrier, primarily influencing the tunneling process; the impact
on the nuclear structure is not significant due to the strength of the nuclear
forces. In this dissertation, therefore, I investigated the tunneling phase of alpha
decay in the case of heavy alpha-decaying isotone nuclei, concentrating on the
alpha cluster in the mean-field potential of the surrounding nucleons.

I investigated the problem within the non-relativistic and dipole approxi-
mation, taking into account that the validity of these approximations depends
on the intensity and photon energy jointly and this dependence is expressed
through the ponderomotive potential of the alpha cluster. According to this,
I determined those photon energy and intensity pairs that do not exceed the
validity of the approximations. The external laser field was represented as
a classical vector potential and the interaction was realized through minimal
coupling and considered as a perturbation.

As a first step I performed demonstrative calculations, wherein the tunneling
process is interpreted within the conventional quantum mechanical framework
using the expression for the decay width (Γdecay) derived in WKB-approximation,
with the Gamow factor representing the tunneling. I examined the effect of the
laser field through the alteration of the Coulomb barrier in the nuclear potential

84
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(that manifests in the change of the Gamow factor) due to the interaction
with a periodically time-dependent vector potential. In this case I rendered the
time-dependence of the external laser field implicit through the Henneberger
transformation, which allows for the determination of the zeroth-order, laser-
modified decay width in the case of periodic vector potentials. The goal was to
show that, even under significantly simplified conditions—considering a plane-
wave laser and calculating the laser-modified decay width in a zeroth-order
approximation—the effect of the laser is non-negligible. I performed numerical
calculations for 210Po isotope and drew the main conclusion that the ratio of
the laser-modified and laser-free widths (ℛ = Γlas

Γ
) is largest upon considering

circularly polarized laser.
The model based on the Henneberger transformation is consistently applica-

ble only in the case of laser fields with periodic time-dependence. To investigate
further and to be able to study the effects of laser pulses an alternative modeling
framework was required.

In this framework I identified the alpha cluster as a quasi-stationary state
with complex energy, the imaginary part of which yields the decay width. I
studied the interaction of the alpha cluster with a super-intense laser pulse within
the (t,t’)-formalism, that provides an appropriate framework for the analytical
and perturbative investigation of time-dependent, non-periodic potentials (by
regarding the time parameter as an extra coordinate in an extended Hilbert
space). To perform the perturbative investigation, the non-hermitian quantum-
mechanical framework - and specifically the Complex-scaling transformation of
the Schrödinger equation - was necessary which provides the natural environ-
ment for the consistent treatment of quasi-stationary states. The complex energy
of the quasi-stationary state was obtained by the complex spectral calculation that
is based on the diagonalization of the complex-scaled Hamiltonian. I derived
a first-order (t,t’)-perturbative, analytical formula within the non-hermitian
framework, that gives the shift in the complex energy due to some external, not
necessarily time-periodic driving of the system in a quasi-stationary state.

I specifically investigated the limitations of applying characteristic gauges
(the rE length-gauge and the pA radiation-gauge) in the interaction between
intense coherent electromagnetic fields and matter, when examining a system
characterized by quasi-stationary states within a non-Hermitian quantum me-
chanical framework. I found that upon describing quasi-stationary states in
non-Hermitian quantum theory the phase transformation of the wave function
that connects the different gauges cannot be performed due to the use of the
c-product that is the non-hermitian inner product. Hence the radiation and
length gauges could not be applied in the presented theoretical framework, the
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physical gauge is the velocity gauge.
The super-intense laser-induced first-order (t,t’)-perturbative correction to

the decay width of the alpha cluster was calculated for the alpha-decaying
isotones 212Po, 214Rn, 216Ra, and 218Th, considering different polarization states
of the external Gaussian laser pulse. From numerical computations it was
found that the relative change of the lifetime is non-zero for at least 𝐼 = 1020

𝑊
𝑐𝑚2 peak-intensity with small enough photon energy, e.g 𝐸ph = 100 eV, and
is largest for 212Po among the four isotones, while a similar systematics could
be observed in the relative change of the lifetime as in the dependence of
decay widths and alpha energies on 𝑍2/𝐴. It was also found that the pulse
length exerts a dominant influence on the shift in the imaginary energy, which
decreases with an increasing number of cycles, while the effect is greater when
considering circularly polarized laser field. It can be stated that, according to
this non-hermitian quantum theory based model, the influence of some external
laser pulse might produce decrement in the lifetime of an alpha-cluster.

The determination of the decay width of the quasi-stationary alpha cluster
state through complex spectral calculations does not yield the total decay width,
only that which is associated with the tunneling process. Thus, an important
objective was the validation of the calculations, using the experimentally known
decay lifetimes of specific isotone series. For this purpose, I investigated the
even-even N=128, 130 and 132 isotonic chains with several nuclei and computed
the mean-field tunneling widths by the complex spectral calculation method
through numerical analysis. By fitting to experimental data, I proved that for
the studied isotonic chains, the complex alpha cluster energy characterizing the
mean-field tunneling is suitable to trace empirical trends that is manifested in
the fulfillment of the Geiger-Nuttal law by the real and imaginary parts of the
complex cluster energy. Hence, in this case, the decay is properly depicted by a
non-perturbatively derived, single quantity.

As the final conclusion, the main scientific yield of my analysis is that by rep-
resenting the alpha cluster as a quasi-stationary state with complex energy eigen-
value, a quantum-mechanically consistent description of the decay phenomenon
can be given by means of applying the apparatus of non-hermitian quantum
theory, which is naturally extendable to the analytical, perturbative mathematical
treatment of the interaction of the alpha cluster with time-dependent laser pulses,
by the (t,t’)-formalism.

As a future direction, the developed framework is readily adaptable to study
super-intense laser-induced modifications to, for example, spontaneous fission
or nuclear compound reaction rates; and could also serve as a fundament
to investigate laser-assisted alpha decay in even-odd deformed isotones, and



6. Summary and conclusion 87

potentially longer lifetime nuclei (for which advanced numerical precision and
the more nuanced description of clustering is required).
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Theses of the dissertation

Thesis 1

I investigated the theoretical possibility of laser-assisted alpha decay in the
presence of an intense laser field (𝐼 ≥ 1019 W/cm2) assuming a plane-wave laser.
In the non-relativistic and long-wavelength approximation, using mean-field
nuclear models, I calculated the relative change (ℛ = Γlas

Γ
) in the decay width

(Γ) valid in the Wentzel-Kramers-Brillouin (WKB) approximation for the alpha-
decaying isotope 210Po in the Henneberger picture. I examined the dependence
of ℛ on the frequency (𝜔) and intensity (𝐼) of the external laser field for both
circularly and linearly polarized laser fields. I demonstrated that, for circularly
polarized lasers, depending on the free parameters of the Woods-Saxon nuclear
potential, the estimated zero-order value of the ratio lies between ℛ = 30 and
ℛ = 123, indicating that the effect of the intense laser field on the decay width is
already significant at the zeroth order of the Fourier expansion.

Related publication: [D. Kis et al., 2018 ]

Thesis 2

I developed a general method suitable for determining the change in the complex
spectrum of a quasi-bound system in the leading order of perturbation theory in
the presence of a non-periodic time-dependent potential. By combining the (𝑡 , 𝑡′)-
formalism with a numerical discretization method for determining the complex
energy spectrum, I derived an analytical, closed formula for the Floquet-type
energy eigenvalue correction

(
𝜖(1)

)
in the leading order of perturbation theory,

which can be trivially projected onto the actual energy correction. As a result
of the method, I determined the change in the imaginary energy, interpreted
as the change in the lifetime of the state, caused by different time-dependent
Gaussian-type perturbing potentials.

Related publication: [Szilvasi et al., 2022 ]
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Thesis 3

I investigated the perturbative effect of an intense laser pulse, represented by
a minimally coupled classical vector potential characterized by a Gaussian
envelope function, on a quasi-bound system described by a special Gaussian-
type potential barrier, in terms of the complex energy eigenvalue of the decaying
system. Using the (𝑡 , 𝑡′)-perturbation theory, I derived a general analytical
formula for the first-order complex-energy correction, applicable to decaying
systems described by continuous analytical potentials, in the field of either
linearly or circularly polarized laser pulses. I established that, in the calculation of
the first-order (𝑡 , 𝑡′)-perturbative complex-energy correction, the non-zero matrix
element contribution arises from the quadratic term in the vector potential

(
A2

)
instead of the term proportional to pA that regularly appears in electromagnetic
interactions.

Related publication: [R. Szilvási et al., 2023 ]

Thesis 4

I demonstrated that the non-Hermitian description of quasi-bound states inter-
acting with an intense laser field, characterized by a classical vector potential,
and specifically the application of the 𝑐-product, excludes the validity of the
special (pA) and (rE) gauges for this problem. Furthermore, the "velocity-gauge"
can be considered a physical gauge, consistent with the general description
of systems interacting with intense laser fields under specific approximations
(LWA and non-relativistic). I showed that the mathematical reason behind this
is the requirement to apply the 𝑐-product on the complex-scaled system, which
leads to a violation of the phase symmetry of the wave function. Consequently,
the phase transformations of the wave function, as required by the full gauge
symmetry, are only valid to a limited extent.

Related publication: [R. Szilvási et al., 2023 ]

Thesis 5

I performed an approximation of the complex energy spectrum of the Hamilto-
nian describing the quasi-stationary alpha-cluster state and the residual nucleus
system, considering different mean-field nuclear potentials—specifically, the
Woods-Saxon potential coupled to a Coulomb barrier and a Woods-Saxon cor-
rected harmonic oscillator potential. Through a detailed analysis of the harmonic
oscillator basis functions and the nuclear potential parameters, I identified the
alpha energy (𝐸𝛼) of the 212Po alpha-decaying isotope with a numerical precision
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of approximately 1%. Furthermore, I determined the decay width characterizing
the quasi-stationary state and demonstrated its relation to the total decay width
of alpha decay.

Related publication: [Szilvasi et al., 2024 ]

Thesis 6

I employed the analytical, complex Floquet type, first-order perturbative, non-
relativistic energy-correction formula derived to laser pulses for the alpha-
decaying isotones 212Po, 214Rn, 216Ra, and 218Th. I explored the dependence of
the relative change of the lifetime on the key control parameters of the laser
pulse, including peak intensity, photon energy, pulse duration, and phase shift.
It was found that the pulse length exerts a dominant influence on the shift in
the imaginary energy, which decreases with an increasing number of cycles.
Additionally, the combined values of peak intensity and photon energy jointly
determine the magnitude of this change. I provided an estimate of the boundaries
of the non-relativistic approximation’s validity in the context of alpha-cluster
interactions with super-intense laser pulses. The results indicate that, at a photon
energy of 100 eV, a peak intensity of 1024 W/cm2 is still permissible, and the
computed relative change of the lifetime is largest for 212Po among the four
isotones.

Related publication: [Szilvasi et al., 2024 ]

Thesis 7

In the non-Hermitian model framework I developed, I determined the complex
energy eigenvalue, with particular emphasis on the imaginary part, Γ, for short
lifetime nuclei in the isotone series with 𝑁 = 128, 130, and 132. I demonstrated
that for the 𝑁 = 128 isotone series, the ratio of the calculated Γ values to
the experimentally known total decay widths (Γdecay) is constant within 4%
accuracy. This consistency confirms that for these isotonic nuclei, the dominant
contribution to the difference in the decay widths, in the alpha-cluster and
residual nucleus system is due to changes in the Coulomb barrier induced by
the protons. Based on this, I provided an estimate for the half-life of the yet
unobserved uranium isotope with 𝑍 = 92, 𝐴 = 220, yielding 𝑇 = 141.7 ± 5.3
ns. I concluded that for alpha-decaying isotones, the empirical nature of the
Geiger-Nuttall law can be adequately described by a single, non-perturbatively
calculated quantity, the complex energy of the quasi-bound state describing the
alpha cluster.

Related publication: [Réka Szilvási et al., 2025 ]
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A

Appendix A: Mathematical
grounds of the complex scaling

transformation

One can show that the general properties of the scaling operator have some
crucial significance. Generally the scaling operator is unitary:

𝑆̂−1
𝜃 = 𝑆̂−𝜃 = 𝑆̂∗𝜃 , (A.1)

𝑆̂−1
𝜃 𝑆̂𝜃 = 𝑆̂∗𝜃𝑆̂𝜃 = 𝐼. (A.2)

By the use of a basis of square integrable functions (Φ, 𝜙), it is straightforward
to show that 𝑆̂𝜃 is also self adjoint:∫

𝑑𝑞Φ(𝑞)𝑆̂+𝜃𝜙(𝑞) =
∫

𝑑𝑞𝜙(𝑞)𝑆̂∗𝜃Φ(𝑞) =
∫

𝑑𝑞Φ(𝑞)𝑆̂𝜃𝜙(𝑞), (A.3)

where the effect of the scaling function as the rotation into the complex plane
on an eigenfunction of the Hamiltonian is written as:

𝑆̂𝜃Ψ(𝑞) = 𝑒 𝑖
𝜃
2 Ψ(𝑞𝑒 𝑖𝜃). (A.4)

As a consequence of the properties of the scaling operator, it is quite straight-
forward to prove that a Hermitian Hamilton operator (𝐻̂ = 𝐻̂+) stops being
self-adjoint after the complex scaling transformation has been performed, and
this feature appears explicitly in the scaling angle:

𝐻̂𝜃 = 𝑆̂𝜃𝐻̂𝑆̂
−1
𝜃 , (A.5)

𝐻̂𝜃 = 𝑆̂𝜃𝐻̂𝑆̂−𝜃 . (A.6)

Respectively 𝐻̂−𝜃 can be written as:

𝐻̂−𝜃 = 𝑆̂−𝜃𝐻̂𝑆̂𝜃 . (A.7)
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Utilizing the self-adjoint property of the scaling operator, one gets the
followings for the adjoint of the complex scaled Hamiltonian:

𝐻̂+
𝜃 = (𝑆̂𝜃𝐻̂𝑆̂−𝜃)+ = 𝑆̂+−𝜃𝐻̂

+𝑆̂+𝜃 = 𝑆̂−𝜃𝐻̂
+𝑆̂𝜃 . (A.8)

Since the unscaled Hamiltonian is considered to be self-adjoint (𝐻̂+ = 𝐻̂),
this expression is exactly equals 𝐻̂−𝜃, hence the non-Hermiticity of the scaled
Hamiltonian is proved:

𝐻̂+
𝜃 = 𝐻̂−𝜃 . (A.9)

One can ask how the complex scaled Hamiltonian, which is - according to
the above proof - not self adjoint (𝐻̂+

𝜃 = 𝐻̂−𝜃), operates on any square integrable
functions - complex scaled resonance (Φ(𝑞), 𝜙(𝑞)) and bound states ( 𝑓 , 𝑔) also.
First, it is important to remember that for a complex scaled but otherwise
Hermitian Hamiltonian the left and right (also complex scaled) eigenfunctions
are the same. In this case the c-product is equivalent to the standard scalar
product having the complex conjugate of the eigenfunctions as the bra state:

⟨Φ(𝑞)∗ |Φ(𝑞)⟩ =
∫
𝑎𝑙𝑙𝑠𝑝𝑎𝑐𝑒

𝑑𝑉Φ(𝑞)Φ(𝑞) =
(
Φ(𝑞)|Φ(𝑞)

)
. (A.10)

Again, this is only true for Φ(𝑞), 𝜙(𝑞) having complex eigenvalues, for bound
states ( 𝑓 , 𝑔) that have real eigenenergies the standard scalar product applies.
However, by complex scaling these bound states, it is essential to pay attention
to the complex conjugation operation. Analytical continuation suggests that the
complex conjugation operation must only be taken on terms which are complex
regardless of the complex scaling of the coordinates! Once this operation is
taken care of properly, the complex scaled bound states remain orthonormal
with respect to the standard scalar product N. Moiseyev, 2011 :

⟨ 𝑓 |𝑔⟩ = 1 (A.11)

⟨ 𝑓 |𝑔⟩𝜃 = 1. (A.12)

These considerations are meticulously explicated in the referred monograph
of Moiseyev N. Moiseyev, 2011 , throughout my work I do not deal with stationary
bound states, only decaying quasi-stationary states. Deducing from the above
arguments, one can simply define the effect of the complex-scaled Hamiltonian
on the complex-scaled resonance eigenfunctions by the use of the standard
norm:

⟨Φ(𝑞)∗ |𝐻̂𝜃 |Φ(𝑞)⟩ =
∫
𝑎𝑙𝑙𝑠𝑝𝑎𝑐𝑒

𝑑𝑉Φ(𝑞)𝐻̂𝜃Φ(𝑞) =
(
Φ(𝑞)|𝐻̂𝜃 |Φ(𝑞)

)
, (A.13)
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⟨Φ(𝑞)∗ | 𝐻̂+
𝜃 |𝜙(𝑞)⟩ = ⟨𝜙(𝑞)∗ | 𝐻̂∗

𝜃 |Φ(𝑞)⟩ , (A.14)

recall that since the unscaled Hamiltonian - in our case - is Hermitian, the
following 𝐻̂∗

𝜃 = 𝐻̂−𝜃 equality applies, for 𝜃 →−𝜃:

⟨Φ(𝑞)∗ | 𝐻̂𝜃 |𝜙(𝑞)⟩ = ⟨𝜙(𝑞)∗ | 𝐻̂𝜃 |Φ(𝑞)⟩ . (A.15)



B

Appendix B: Brief explanation of
the stationary solutions of the

Floquet-type equation

The statement:
𝜒(𝑡; 𝑞, 𝑡′)|𝑡≡𝑡′ = Ψ(𝑞, 𝑡′), (B.1)

where 𝜒(𝑡; 𝑞, 𝑡′) is the solution of the following Schrödinger-like equation:

𝑖ℏ
𝜕

𝜕𝑡
𝜒(𝑡; 𝑞, 𝑡′) = 𝐻̂𝐹𝜒(𝑡; 𝑞, 𝑡′), (B.2)

the operator 𝐻̂𝐹 is a Floquet-type operator, and is the generator of the (B.2) 𝑡
time evolution in the extended Hilbert space:

𝐻̂𝐹(𝑞, 𝑡′) = 𝐻̂(𝑞, 𝑡′) − 𝑖ℏ 𝜕

𝜕𝑡′
. (B.3)

Projection (B.1) is a many-to-one projection, many solutions of equation
(B.2) yield the same Ψ upon projecting. But the general 𝑡-dependent solution
of equation (B.2) for a t’-dependent Hamiltonian can be written as the below
𝑡-evolution:

𝜒(𝑡; 𝑞, 𝑡′) = 𝒯 𝑒𝑥𝑝
©­­«−

𝑖

ℏ

𝑡′∫
𝑡′−𝑡

𝐻̂(𝑞, 𝜏)d𝜏
ª®®¬ 𝜒(0; 𝑞, 𝑡′ − 𝑡), (B.4)

where 𝒯 is the time-ordering operator. This reduces to the simple form for
t’-independent Hamiltonians:

𝜒(𝑡; 𝑞, 𝑡′) = 𝑒𝑥𝑝

(
− 𝑖
ℏ
𝐻̂(𝑞, 𝑡′)𝑡

)
𝜒(0; 𝑞, 𝑡′−𝑡) = 𝑒𝑥𝑝

(
− 𝑖
ℏ
𝐻̂(𝑞, 𝑡′)𝑡 − 𝑡 𝜕

𝜕𝑡′

)
𝜒(0; 𝑞, 𝑡′),

(B.5)
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which shows that upon projecting 𝜒(𝑡; 𝑞, 𝑡′)|𝑡≡𝑡′ is generated from the state
𝜒(0; 𝑞, 0) by a time evolution driven by the original Hamiltonian 𝐻̂, and that this
solution is actually t-independent! Thus 𝜒(0; 𝑞, 𝑡′), the stationary solution of the
t-progress equation with 𝐻̂𝐹 must satisfy the original Schrödinger equation with
𝑡′ and 𝐻̂ in order for 𝑖𝑡 to give the required Ψ(𝑞, 𝑡′), which is what we wanted!



C

Appendix C: The validation of the
WKB approximation for Γ 𝑙 𝑎 𝑠0

One of the possible methods to calculate the imaginary part of the complex
energy of the quasi-stationary state is the WKB approximation, which assumes
purely central potential. For example the problem of alpha-decay is solved
with complex energy method in WKB approximation in Kalbermann, 2008 .
The derived Hamiltonian (5.16) which describes the laser modified barrier has
non-central potential also, but basically it cannot be a problem, because the WKB
approximation method in three dimensions was discussed by Horn and Salpeter
Horn et al., 1966 for problems with an axis of symmetry, but the potentials
need to be separable functions of the coordinates.

Naturally the derived formula for Γ𝑙𝑎𝑠0 is only valid if the WKB approximation
is valid, respectively. To check this validity let us consider the following
inequality Messiah, 1966

|𝑚ℏ𝑉′|
|2𝑚 (𝑉 − 𝐸) |3/2 << 1. (C.1)

where 𝑉′ is derived from 𝑉 . In our case the potential is the laser-modified
potential 𝑉 = 𝑉00, which has a transformed argument: r → r − S(𝑡). It can be
seen that the argument is shifted by the space-dependent vector S, that means
the derived 𝑉′(r − S(𝑡)) is the same as the original (laser-free) derived potential,
𝑉′(r − S(𝑡)) = 𝑉′(r). Because 𝑉00 is defined by the equation (5.17) the validity
of the inequality requires numerical computations which show that |𝑉00 − 𝐸 | is
smaller than that of the laser-free case, furthermore 𝑉00 is less sharp than the
laser-free potential 𝑉 around the location of maximum (see Fig. 2), so 𝑉′

00 < 𝑉′.
Both actions overall lead to the inequality (C.1) remaining also valid in the
presence of the laser field.
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