
Response to Prof. László Oroszlány

May 29, 2025

1 Question

"The discussion of the properties of Dirac spin liquids plays a central role in the thesis.
In electron systems, Dirac cones often appear simultaneously at non-equivalent points in the
Brillouin zone. In these systems, scattering between cones can strengthen mechanisms suitable
for gap opening. Is there a Dirac spin liquid where Dirac cones are located at different points in
the Brillouin zone? In such cases, what phenomena can be attributed to the scattering between
cones? Could these processes open a gap in the excitation spectrum of spin liquids?"

I asked Prof. Oroszlány for clarification. He replied: "I was thinking about something like
this: for example, in graphene, if we distort the hoppings in a way that corresponds to a Kekulé
distortion, then this is equivalent to adding a perturbation to the system that corresponds to the
wavevector connecting two Dirac cones. This may open a gap, but not necessarily. My question
would be something like this: in similar effective lattice models formulated in terms of Abrikosov
fermions, if there are multiple Dirac cones, does this phenomenon also appear?"

Answer

Yes, there are similar phenomena. The nearest neighbor spin 1/2 antiferromagnetic Heisen-
berg model has a magnetically order ground state with 120◦ long-range antiferromagnetic order,
shown in Fig. 2(a). However, as argued in Refs. [2, 3] using DMRG, introducing second nearest
neighbor antiferromagnetic interaction

HJ1−J2 = J1
∑
⟨i,j⟩

Si · Sj + J2
∑
⟨⟨i,j⟩⟩

Si · Sj (1)

will favor a magnetically disordered, quantum spin liquid ground state for J2/J1 > 0.06. As
claimed in Refs. [4, 5], the variational ansatz with the lowest variational energy is a Dirac spin
liquid with staggered π-0 fluxes in the triangles, so that every unit cell has π fluxes, as shown
in Fig. 2(b). This ansatz requires a doubled mean-field unit cell, with two Dirac cones in the
mean-field Brillouin zone, connected by the reciprocal lattice vectors at the Γ and M points, as
shown in Fig. 2(d).

Remarkably, the nearest neighbor XXZ model

HXXZ = J⊥
∑
⟨i,j⟩

(Sx
i S

x
j + Sy

i S
y
j ) + Jz

∑
⟨i,j⟩

Sz
i S

z
j −B

∑
i

Sz
i (2)

has a 120◦ antiferromagnetically ordered ground state, which has Dirac spin liquid like features
(fractionalized gapless excitations), called precursory Dirac spin liquid [6]. This state can be
constructed as the Gutzwiller projected ground state of the same staggered π−0 flux mean-field
ansatz as in the J1 − J2 model, with the addition of an auxilary external magnetic field creating
the 120◦ antiferromagnetic ordering. The magnetic ordering is shown to open gaps in the Dirac
cones.
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2 1 QUESTION

Figure 1: In the first row I show the modulations of the hopping amplitudes corresponding to
the Kekulé distortion of the graphene lattice. All these modulations are periodic in the cyan
primitive vectors. The reciprocal lattice vectors of the cyan primitive vectors are the K− and
K+ vectors shown in the left figure of the second row. The difference G = K+ −K− connects
the two Dirac cones located at the K points. As shown in the right figure of the second row, the
Kek-O modulation opens a gap in the energy spectrum, while the Kek-Y modulations do not.
All these figures were taken from Ref. [1] (Figs. [1.] and [2.]).



2 QUESTION 3

Figure 2: (a) 120◦ antiferromagnetic ordering, (b) staggered π−0 flux ansatz, the blue hoppings
are negative, (c) precursory Dirac spin liquid with 120◦ order, (d) the original, and six times
smaller mean-field Brillouin zone, the blue circles are the locations of the Dirac cones for the
ansatz shown in panel (b), while the green circles are additional Dirac cones (with small gapes)
emerging in the ansatz of panel(c).

Figure 3: Lattice deformations creating Valence bond solid like patterns, which open gap in the
Dirac cones of the Dirac spin liquids on the triangular and kagome lattices. Both figures were
taken from Ref. [7] (b and c panels of Fig. 1.).

The 120◦ order requires a different magnetic unit cell than the doubled unit cell of the
staggered π − 0 flux ansatz. Therefore, to accommodate both the staggered π − 0 fluxes, and
the 120◦ antiferromagnetic order, the unit cell has to be six times bigger, than the original one,
shown in Fig. 2(c). Therefore, the mean-field Brillouin zone is six times smaller than the original
one, shown with the orange rectangle in Fig. 2(d). Remarkably, the reciprocal primitive vectors
of this mean-field Brillouin zone can connect the Dirac cones at the Γ and M points, which is
a similar feature as in the Kek-O perturbation. Moreover, due to the six times smaller mean-
field Brillouin zone, the additional Dirac cones with small gapes appear, which were not present
without the additional magnetic field.

Another way to open a gap in the Dirac cones of the Dirac spin liquids both on the triangular
and on the kagome lattices is via lattice deformations [7] (similar to the Kek-O case), as shown in
Fig. 3. Unlike in the previous example, I don’t see how the reciprocal vectors characterizing the
periodicity of the lattice deformation on the triangular lattice connects the Dirac cones. On the
other hand, on the kagome lattice, the lattice deformation is periodic in the same quadrupled unit
cell as our Dirac spin liquid ansatz, so the corresponding reciprocal lattice vectors can connect
two Dirac cones in neighbouring Brillouin zones.

2 Question

In the case of electron systems, the possible three-dimensional generalizations of Dirac exci-
tations are nodal loop semimetals. In these systems, the zero energy energy excitations are not
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isolated points in the Brillouin zone, but continuous nodal lines. Are there higher-dimensional
generalizations of the Dirac spin liquids discussed in the thesis, which also have nodal lines?

Answer

Yes, nodal lines appear in the mean-field spectra of the Hamiltonians discussed in Refs. [8,
9, 10] and [11]. In the last one, semimetal and quantum spin liquid phases appear next to each
other in the phase diagram, differentiated by the on-site repulsion U of the Hubbard model. For
small U < Uc the material is a semimetal, for an intermediate Uc < U < Ucm the material is
a quantum spin liquid, while for Ucm < U there is a transition to an antiferromagnetic phase.
The reason why the on-site repulsion changes a semimetal to a quantum spin liquid is that for
U > Uc the electronic quasiparticles c†i,σ of the semimetal (carrying both charge and spin 1/2)
are fractionalized into spinons f †

i,σ (fermionic quasiparticles with spin 1/2 and no charge) and
rotons eiθi (bosonic charged quasiparticles with no spin) as c†i,σ = f †

i,σe
iθi [12]. The spinons

remain gapless and inherits the nodal lines from the nearby semimetallic phase, while the rotons
are gapped [11]. This is very similar to the fractionalization in the Abrikosov fermion approach,
where we split the spin operators into pairs of charge neutral fermionic quasiparticles as Sa

j =
1
2

∑
ρ,ρ′∈{↑,↓} f

†
j,ρσ

a
ρ,ρ′fj,ρ′ . In spin models, we don’t have rotons, since a spin model emerges in

the U/t → ∞ limit, where the charge degrees of freedom are completely frozen.
It is important to note that these nodal lines will appear in the dynamical spin structure

factor only if the discussed quantum spin liquid states are stable.
Experimentally, nodal lines were observed in materials having spin liquid ground states in

Refs. [13, 14].

3 Question

The author of the dissertation mentions in Sec. 3.1. that he studied the stability of the Dirac
spin liquid only against real-valued perturbations, that fit the quadrupled unit cell of the DSL.
What methods are available to step out of these constraints, and investigate the effect of more
general perturbations?

Answer

Indeed, in my dissertation, I have included only real ansatze in the quadrupled unit cell.
However, in our third article about the SU(6) model, my supervisor has studied complex (chi-
ral) ansatze both in the doubled, tripled, and quadrupled unit cells, with a total of π, 2π/3
and π/2 fluxes in the enlarged unit cells. Furthermore, he also determined the boundary of
the ferromagnetic region in the phase diagram, from the gap closing of one- and two-magnon
excitations.

Other types of valance bond solid like perturbations can be constructed numerically, using
the numerical self-consistent minimization algorithm [15, 16, 17]. In this method, the mean-
field approximation is enriched with site-dependent chemical potentials, which are optimized
stochastically together with the parameters of the mean-field ansatz, until a convergence of the
variational energy is reached. The site-dependent chemical potentials are necessary to reach the
uniform occupation of every lattice site on average. Even though this is not as efficient as the
Gutzwiller projection, the method can produce valence bond solid like patterns, which can be
used to construct Gutzwiller projected variational wavefunctions.

Regarding more general approaches, neural network wavefunctions or tensor network methods
as DMRG and PEPS can be used without any assumption of the ground state, but these methods
have their own bias, just like variational Monte Carlo methods (e.g. DMRG prefers gapped
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ground states). Quantum Monte Carlo methods work very well if there is no sign problem, but
even in these cases, they can not calculate the dynamical spin structure factor exactly, because
that requires analytical continuation from Matsubara frequencies to real energies, which is not
a well-controlled procedure.

4 Question

The first thesis point is about the study of the SU(3) symmetric spin chain. In the S = 1
Heisenberg model, the basis of the local Hilbert space is also three-dimensional. What are the
similarities and the differences between the S = 1, and the SU(3) symmetric models? Are the
methods applied in the dissertation also applicable in the case of these lower symmetry models,
or is there some qualitative difference between the models that requires fundamentally different
methods?

Answer

The methods applied in my thesis are also applicable to any model with lower symmetry,
provided that the Hamiltonian in question has a quantum spin liquid ground state.

To see the connection between the spin 1 irreducible representation of SU(2) symmetric
models and the fundamental representation of the SU(3) Heisenberg model (both models have
three-dimensional local Hilbert spaces on every lattice site), let me consider the SU(2) symmetric
bilinear biquadratic model in the s = 1 irrep

H = cos θ

Ns∑
i=1

Si · Si+1 + sin θ

Ns∑
i=1

(Si · Si+1)
2. (3)

As discussed in Ref. [18], the model (3) has eight independent local Hermitian operators, three
spin vector operators T 1 = Sx, T 2 = Sy, T 3 = Sz, and five quadrupolar operators:

T 4 ≡ Qxy = SxSy + SySx (4)

T 5 ≡ Qyz = SySz + SzSy (5)

T 6 ≡ Qzx = SzSx + SxSz (6)

T 7 ≡ Qx2−y2 = (Sx)2 − (Sy)2 (7)

T 8 ≡ Q3z2−r2 =
1√
3
[2(Sz)2 − (Sx)2 − (Sy)2]. (8)

As discussed in the Supplementary material of Ref. [19], the biquadratic term of the Hamiltonian
(3) can be rewritten as

(Si · Si+1)
2 =

4

3
− 1

2

3∑
a=1

T a
i T

a
i+1 +

1

2

8∑
a=4

T a
i T

a
i+1. (9)

Therefore, the Hamiltonian (3) can be rewritten as

H = cos θ

Ns∑
i=1

Si · Si+1 + sin θ

Ns∑
i=1

(Si · Si+1)
2 (10)

=
4

3
sin θ +

(
cos θ − 1

2
sin θ

) 3∑
a=1

T a
i T

a
i+1 +

1

2
sin θ

8∑
a=4

T a
i T

a
i+1, (11)



6 REFERENCES

so at θ = π/4 it becomes

H(θ = π/4) =

Ns∑
i=1

Si · Si+1 +

Ns∑
i=1

(Si · Si+1)
2 =

4

3
+

1

2

Ns∑
i=1

8∑
a=1

T a
i T

a
i+1, (12)

which is equivalent to the antiferromagnetic SU(3) Heisenberg chain. At θ = 5π/4 the model
becomes SU(3) symmetric again, with a highly degenerate ground state (as discussed in Ref. [20]).
The two SU(3) symmetric Hamiltonians are connected as H(θ = 5π/4) = −H(θ = π/4). In these
cases, the three s = 1 basis states on every site become the three SU(3) spin states.

For all other θ /∈ {π/4, 5π/4}, the model has no SU(3) symmetry, and the quadrupolar
operators of Eqs. (8) have different weights is the Hamiltonian (3) as the spin operators Sx,
Sy, and Sz. Consequently, the correlation functions of the spin and quadrupolar operators are
different ⟨GS|Sa

i S
a
j |GS⟩ ≠ ⟨GS|Qb

iQ
b
j |GS⟩ in the ground state |GS⟩ of the Hamiltonian (3), unlike

in the SU(3) model.
According to Ref. [21], for −π/4 < θ < π/4 the model becomes gapped, we enter the

Haldane phase, where the ground state is a quantum spin liquid with topological order [22, 23].
For π/4 ≤ θ ≤ π/2 the model remains gapless, with dominant k = ±2π/3 spin quadrupolar
correlations. Around the other SU(3) symmetric point (at θ = 5π/4), for π < θ < 5π/4 the
model becomes ferromagnetic, and for 5π/4 < θ < 7π/4 the ground state is dimerized.
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