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CONTENTS 5

Motivations
The traditional description of phase transitions, developed by Landau, relies on the concept

of symmetry breaking. Each distinct phase is associated with a particular symmetry group, and
a phase transition is accompanied by a symmetry breaking, in which the symmetry group of
one phase is the subset of the symmetry group of the other phase. In this way, concepts like
order parameters—quantities that vanish above the critical temperature but acquire a finite value
below it—emerged as the universal hallmark of both classical and quantum phase transitions.
In Landau’s theory, all classical and quantum phase transitions arise from a form of symmetry
breaking.

This well-established paradigm was challenged with the discovery of the fractional Quantum
Hall effect [1], where multiple distinct phases share the same conventional symmetries. Realizing
that such states of matter could not be understood within the symmetry-breaking framework,
physicists began searching for “hidden” quantum orders that could distinguish these phases.

Quantum spin liquids (QSLs) represent a typical setting for these novel ideas in Mott in-
sulators. A QSL is the ground state of a quantum spin system that remains fully symmet-
ric—concerning the symmetries of the underlying lattice and of the Hamiltonian. Consequently,
QSLs exhibit no conventional magnetic order of any kind (e.g. ferromagnetic or antiferromag-
netic). While magnetically ordered ground states usually have bosonic excitations, like the spin-1
magnon, QSLs have fractionalized fermionic excitations, as the spin-1/2 spinons. The splitting of
the bosonic excitation to a pair of fermionic quasiparticles is called fractionalization. Therefore,
the existence of the QSL ground state and the fractionalized excitations is directly measurable
through the dynamical spin structure factor, if at the lowest excitation energies we observe a
continuum (implicating a pair of quasiparticles) instead of a single branch.

A promising approach to characterizing hidden quantum orders at the mean-field level in-
volves the concept of the projective symmetry group (PSG). When the fluctuations beyond
mean-field theory are weak, the mean-field quantum order (protected by the PSG) becomes the
quantum order of the real ground state [2, Sec. 9.9.1]. If the mean-field one-particle energy
spectrum is gapped, the quantum order is called topological order, and is characterized by the
ground state degeneracy [2, Sec. 8.] [3]. If the one-particle energy spectrum is gapless, then
the quantum order is characterized by the existence and location (in reciprocal space) of gapless
excitation towers in the dynamical spin structure factor [2, Sec. 9.10.2]. Analogous to symmetry
breaking protecting gapless excitations following Goldstone’s theorem [4, Sec. 6.1], certain PSGs
can protect gapless fermionic excitations and their reciprocal-space locations [2, Sec. 9.10.2]. Ex-
perimentally, the dynamical spin structure factor provides a tool to identify a gapless quantum
spin liquid ground state [2, Sec. 9]. Quantum phase transitions can occur without conventional
symmetry breaking, driven instead by changes in the PSG itself.

One-dimensional spin systems are archetypal examples of quantum spin liquids, where strong
quantum fluctuations suppress all forms of magnetic order. In contrast, stabilizing a quantum
spin liquid in two-dimensional systems is far more challenging and often requires enhanced fluc-
tuations. Such enhancements can be achieved by geometric frustration (e.g., on the triangular
or kagome lattice) or by introducing further-neighbor interactions. Another route is to enlarge
the spin symmetry group, considering SU(N) or Sp(N) models with N > 2 [5], which increases
quantum fluctuations and thereby helps to stabilize quantum spin liquids.

In this thesis, we seek new avenues to stabilize and characterize two-dimensional quantum
spin liquids by considering models with higher symmetries. We implement a variational method
to characterize excitations in one and two-dimensional SU(3), SU(4), and SU(6) symmetric
Heisenberg models. We will calculate the experimentally relevant dynamical spin structure factor
to facilitate their potential identification. We also show that the SU(6) symmetric Heisenberg
model on the kagome lattice is a likely candidate for a gapless Dirac spin liquid.



Thesis statements
1. I computed the dynamical spin structure factor S(k, ω) of the SU(3) Heisenberg chain

variationally using Gutzwiller projected particle-hole excitations of the Fermi sea. I showed
that the low energy spectrum and the distribution of the spectral weights of the SU(3)
Heisenberg chain can be well reproduced by this method, by comparing the S(k, ω) to
exact diagonalization results for 18 sites, the two-soliton continuum of the Bethe Ansatz,
and the DMRG results for 72 sites. Detailed analysis of the finite-size effects shows that
the method captures the critical Wess-Zumino-Witten SU(3)1 behavior and reproduces the
correct exponent, except for the size dependence of the spectral weight in the bottom of
the conformal tower. The extracted velocity of excitations and the central charge are very
close to the exact results. These results are published in Ref. [I.].

2. I computed the dynamical spin structure factor S(k, ω) of the SU(4) Heisenberg model on
the honeycomb lattice variationally, approximating the ground state by the Gutziller pro-
jected π-flux Fermi sea (motivated by Ref. [6]), called a Dirac spin liquid. I compared these
results with non-interacting mean-field calculations. The two approaches produce qualita-
tively similar results, suggesting that the energy spectrum of the Gutzwiller projected ex-
citations may also be a gapless continuum of fractionalized excitations. Quantitatively, the
Gutzwiller projection shifts the spectral weight from higher to lower energies, thus empha-
sizing the lower edge of the continuum. The ratio of the sums

(∑
k∈eBZ S

33
MF(k)

)
/
(∑

k∈eBZ S
33(k)

)
=

1 − 1/N shows that the correlations are reduced in the mean-field case, since the charge
fluctuations reduce the value of the quadratic Casimir operator, appearing in the sum rules.
These results are published in Ref. [II.].

3. I proposed the Gutzwiller projected π-flux Fermi sea (another Dirac spin liquid) as the
ground state of the SU(6) Heisenberg model on the Kagome lattice. To reach this conclu-
sion, I investigated the energetical stability of the Dirac spin liquid (DSL) against pertur-
bations of the mean-field ansatz and confirmed that the DSL remained the lowest energy
singlet state. Furthermore, I found that finite values of the second-neighbor (J2) and ring
(K) exchange are necessary to destabilize the DSL, highlighting its resilience to further
interactions. These results are published in Ref. [III.].

4. To characterize the DSL on the SU(6) kagome lattice, I calculated the dynamical spin
structure factor S(k, ω) variationally using Gutzwiller projected particle-hole excitations
of the π-flux Fermi sea, and compared these results with the non-interacting mean-field
calculations. In the SU(6) case, the distribution of the spectral weights in the S(k, ω) shows
a much better agreement between the variational and the mean-field calculations than in
the SU(4) or SU(2) cases. I attribute the decreasing difference between the two approaches
to the weakening of the fluctuations beyond the mean-field approximation as the SU(N)
symmetry increases. Based on this similarity, I have studied the S(k, ω) in the mean-field
approach for an extensive system with 3888 sites and found that the spectrum is a gapless
continuum, where the gapless towers are centered at the Γ, Γ′, M and M′ points in the
extended Brillouin zone. The static spin structure factor S(k) shows increased spectral
weights in the form of triangular-shaped plateaus around the K′ points in the extended
Brillouin zone. The static mean-field and the variational results differ in the sum rules and
in the form of barely noticeable humps appearing in the variational calculations around
the M′ points. The real space spin-spin correlations seem to decay algebraically with the
distance, with a power between 3 and 4, similarly as in the SU(4) case (see Ref. [6]). These
results are published in Ref. [III.].
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Chapter 1

Models and their experimental realiza-
tions
1.1 SU(N) Hubbard model

1.1.1 SU(2) Hubbard model

In metals and band insulators the interaction between the electrons is negligible, so their
energy spectra consist of bands. In both cases, the conduction electrons (if there are any)
are completely delocalized in the material, so their wave functions are Bloch states. If the
Fermi energy is inside a band, the material behaves as a metal, while if it is between two
bands, the material is an insulator (since the conduction band is empty at T = 0). However, in
certain materials, such as V2O3, Ti2O3, Sr2IrO4, (BEDT-TTF)2X, the Fermi energy should be
inside a band, yet they are strongly insulating. In these materials, called Mott insulators, the
Coulomb repulsion between the electrons is strong enough to make them localized, destroying the
metallic behavior. The Hubbard model (introduced in Refs. [7, 8, 9])) is the simplest many-body
Hamiltonian describing these materials, encompassing two opposing tendencies:

1. the kinetic energy term (parametrized by the hopping amplitude t) tends to delocalize the
electrons into Bloch states, causing a metallic behavior

2. the on-site repulsion term (approximating the Coulomb repulsion) with coupling U ≥ 0
tends to localize the electrons to the lattice sites, leading to a Mott insulator.

Thus, increasing the on-site repulsion from U = 0, at some critical ratio U/t the ground state of
the Hubbard model changes from a metallic state to a Mott insulator [4, Sec. 4]. This quantum
phase transition is called the Mott transition. In the Hubbard model the screened Coulomb
interaction between the electrons is simplified to the shortest possible range, on-site repulsion.

The SU(2) symmetric single-orbital Fermi Hubbard model is defined by the Hamiltonian

HSU(2)
Hub = −t

∑
⟨i,j⟩

∑
σ∈{↑,↓}

(c†i,σcj,σ + H.c.) + U
∑
i

ni,↑ni,↓ +
∑
i

∑
σ∈{↑,↓}

εini,σ, (1.1)

where c†i,σ creates a fermion with spin σ ∈ {↑, ↓} in the Wanier state localized at site i, ni,σ =

c†i,σci,σ is the fermion number operator (with eigenvalues 0, 1), and εi is the external field at
site i. Due to the Pauli exclusion principle, the occupation of a site (the eigenvalue of the total
number operator ni =

∑
σ∈{↑,↓} c

†
i,σci,σ) can be at most two.

1.1.2 Generalization to SU(N)

The SU(N) generalization allows for N different "spins" σ ∈ {1, . . . , N} of the particles c†i,σ|0⟩
(|0⟩ being the vacuum), which will be called flavors. The SU(N) single-orbital Fermi-Hubbard
model is defined by the Hamiltonian

HHub = −t
∑
⟨i,j⟩,σ

(c†i,σcj,σ + H.c.) + U
∑

i,σ′>σ

ni,σni,σ′ +
∑
i,σ

εini,σ, (1.2)

7



8 CHAPTER 1. MODELS AND THEIR EXPERIMENTAL REALIZATIONS

which mainly differs from the SU(2) case in the interaction term, since here a site can be occupied
at most by N particles. The fermion number operator ni,σ = c†i,σci,σ still has only two eigenvalues
0,1, but the eigenvalues of the total number operator ni =

∑N
σ=1 c

†
i,σci,σ can go from 0 to N .

The Hubbard Hamiltonian HHub has SU(N) spin rotation symmetry (see Appendix A.2),
because permuting the flavors among each other does not change the Hamiltonian. The SU(N)
spin rotation symmetry can be broken by introducing flavor-dependent hoppings tσ or flavor-
dependent on-site interactions Uσ,σ′ .

In the large U/t → ∞ limit, the leading order perturbation theory of the half-filled (one
fermion per site on average) repulsive SU(2) symmetric Hubbard model gives rise to the anti-
ferromagnetic SU(2) symmetric Heisenberg model in the spin 1/2 irreducible representation (see
section 1.4.1. Similarly, in the large U/t→ ∞ limit, the leading order perturbation theory in t/U
of the SU(N) Hubbard model with m/N < 1 filling (m fermions per site on average, where m is
an integer) results in the SU(N) symmetric antiferromagnetic Heisenberg model. The m/N frac-
tional filling of the Hubbard model determines the irreducible representation of the Heisenberg
model on every site (see section 1.4.2, and appendix A.6).

The SU(N) symmetrical Hubbard model can describe fermionic cold atoms in optical lattices.

1.1.3 Experimental realization with optical lattices

Two counterpropagating interfering laser beams can create a standing wave, and more inter-
fering laser beams can create a standing wave of almost any desired spatial periodicity. Such
standing waves can trap neutral atoms, since the oscillating electric field of the lasers creates
dipole momenta in the atoms, which interact with the electric field. In time average, the atoms
are attracted either toward the high-intensity (antinode) or low-intensity (node) regions of the
standing wave, depending on the applied frequency and the energy levels of the atoms. Thus,
the neutral atoms feel a time-independent periodic potential that follows the spatial pattern of
the laser field intensity, called an optical lattice [10, Sec. 3.1], where the atoms are localized
in the potential wells, separated with potential barriers. Adjusting the frequency, polarization,
and angle of the counterpropagating lasers, one can create almost any lattice geometry. A three-
dimensional cubic optical lattice can be created by three pairs of counterpropagating laser beams
in pairwise orthogonal directions, forming three orthogonal standing waves with orthogonal po-
larizations.

The atoms can tunnel through the potential barriers, corresponding to the hoppings t in
Eq. (1.2). The repulsion between the atoms inside the same potential well corresponds to the
on-site repulsion U . Both U and t depend on the intensity of the laser beams. Increasing the
intensity we increase the potential barriers, therefore we simultaneously decrease t and increase
U [11, 12, 13, 14]. The εi describes an additional external potential, which describes the energy
offset of each lattice site [11].

If the intensity of the laser beams is the same in every direction, then the hoppings are equal
in all directions. However, increasing the intensity of the pair of laser beams in one direction
decreases the hopping along this direction, so for large enough intensity, we get almost decoupled
two-dimensional layers [10, 11], simulating the two-dimensional Hubbard model on the square
lattice.

Optical lattices of ultracold alkaline earth metal atoms, achieve near-perfect SU(N = 2I+1)
symmetry originating from the nuclear degrees of freedom. [15]. Here, I represents the nuclear
spin, andN can be as high as 10, as demonstrated with 87Sr isotopes exhibiting SU(10) symmetry
[16, 17]. SU(6) symmetry can be realized by 173Yb isotopes with I = 5/2 [18, 19, 20, 21, 22, 23,
24, 25, 26, 27]. SU(4) symmetry can be realized by atoms with I = 3/2 [28, 29]. Furthermore, it
is possible to create a Mott insulator using 173Yb isotopes [21], described by the physics of the
SU(6) Heisenberg model.
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A remaining issue is the temperature range achieved in experiments, which might be too high
to compare the measurements with zero temperature calculations.

1.2 Orbital degeneracy, and the Kugel Khomskii model

The Hubbard model can be extended to allow for multiple orbitals at a given lattice site,
giving an extra orbital index α to the fermionic operators c†j,α,σ. In this case, the hopping ampli-
tudes acquire a dependence on the orbital indices as tα,α′ , and the Coulomb repulsion can also be
different depending on whether two electrons occupy the same orbital (with antiparallel spins),
or are placed on different orbitals (see [4, Sec. 5.4] and Refs. [30, 31, 32]). In the strong repulsion
limit with one electron per site, the low energy effective theory will incorporate exchanges not
only between the same orbitals on nearest neighbors, but also between different orbitals. In the
case of two-fold orbital degeneracy, the low energy effective Hamiltonian can be reformulated in
terms of the Pauli matrices τx, τy, and τ z acting on the orbital degrees of freedom. Thus, the two
orbitals |1⟩ and |2⟩ (called pseudospins) are the eigenstates of the τ z operator with eigenvalues
±1. An example of such a low energy Hamiltonian is

HKK =
∑
⟨i,j⟩

(u+ Si · Sj)×
(
v + α[τ+i τ

−
j + τ−i τ

+
j ] + J ′

zτ
z
i τ

z
j

)
, (1.3)

where the coefficients u, v, α, and J
′
z are given in Refs. [31, 32]. The spin part is isotropic due

to the SU(2) spin-rotational symmetry of the underlying two-orbital Hubbard model, but the
orbital part is usually anisotropic because it depends on the relative orientation of the orbital
wavefunctions on nearest neighbor sites. Bilinear terms of S and τ like Sxτx, Syτy, and Szτ z are
absent in the low energy theory, due to the absence of the spin-orbit interactions in the underlying
two-orbital Hubbard model. Since these models were first studied by Kugel and Khomskii in
Ref. [30], these low-energy models are called Kugel Khomskii models.

For the special values of α = J ′
z/2, the orbital part also becomes SU(2) pseudo spin rotational

symmetric. Furthermore, for the fine tuned parameters u = v = 1/4 and 2α = J ′
z = 1 the Kugel

Khomskii model becomes

HKK =
∑
⟨i,j⟩

(
1

4
+ Si · Sj

)
×
(
1

4
+ τ · τ

)
, (1.4)

which is equivalent to the SU(4) Heisenberg model (discussed in section 1.4.2), since the four
SU(4) spins (in the fundamental representation) are constructed as | ↑⟩⊗ |1⟩, | ↓⟩⊗ |1⟩, | ↑⟩⊗ |2⟩,
and | ↓⟩ ⊗ |2⟩, and the N2 − 1 = 15 SU(4) spin operators are constructed as {Sa, τ b, Saτ b|a, b ∈
{x, y, z}}.

Unfortunately, the SU(4) symmetric point is never realized in real materials, since the relative
orientation of the orbital wavefunctions on nearest neighbor sites is never optimal. However, in
certain experiments, the Kugel Khomskii model describing the material is close to the SU(4)
symmetric point, for example in magic-angle twisted graphene [33, 34] and metal dichalcogenide
bilayers [35, 36, 37].

1.3 SU(4) Heisenberg model from spin-orbit coupled materials

The Kugel Khomskii model does not involve spin-orbit interactions. However, as argued in
Refs. [38, 39] the strong spin-orbit interaction can give rise to the Kugel Khomskii model exactly
at the SU(4) symmetric point. These arguments hold for a class of materials α −MX3, with
M ∈ {Zr, Hf, Rf} and X ∈ {F, Cl, Br, I, At} where the M atoms form well-separated layers of
almost ideal honeycomb lattices (based on Refs. [40, 41]). In particular, they focused on α−ZrCl3,
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Figure 1.1: The left panel shows a single layer of α−ZrCl3, where the Zr atoms form a honeycomb
lattice [38]. The right panel (b) shows the octahedral (cubic) environment of the Zr atoms (big
spheres) formed by the Cl atoms (small spheres). The hexagon connecting the Zr atoms is one
of the hexagons shown in the left panel [38]. The middle panel (a) shows the superexchange
pathways, along which the Zr atoms can exchange electrons via the mediation of the Cl atoms
[38]. Depending on the yz, zx, or xy planes of the superexchange, the nearest neighbor bonds
in the Zr hexagons are colored by red, light green, or blue, which will be denoted by a, b, and c,
respectively. All these figures were taken from Ref. [38].

though the arguments also work for the other possibilities. As shown in the left panel of Fig. 1.1
the Zr atoms form layers of honeycomb lattices, while the Cl atoms create an octahedral (cubic)
environment for the Zr atoms (see the right panel (b) of Fig. 1.1). Consequently, the five-fold
degenerate d orbitals of the Zr atoms are split by the octahedral crystal field to the two-fold
degenerate eg (the x2 − y2 and 3z2 − r2 orbitals) and the three-fold degenerate t2g orbitals
(the dxy, dyz, and dzx orbitals) [4, Sec. 3.5]. The Zr atoms have one electron in the d shells,
which remains in the t2g orbitals after the crystal field splitting. Thus, on every lattice site, the
electron can be in two spin states σ ∈ {↑, ↓} and three orbitals A ≡ dxy, B ≡ dyz, C ≡ dzx. To
simplify the notations used in Refs. [38, 39] we denote the creation operators of these six states
at site j as c†j,α,σ, where α ∈ {A,B,C}, and σ ∈ {↑, ↓}. The direct hopping of the electrons
between the dxy, dyz, and dzx orbitals of nearest Zr atoms is unlikely, the electrons are exchanged
between Zr atoms via the mediation of the surrounding Cl atoms, as shown in Fig. 1.1(a), called
superexchange [4, Sec. 5.2]. Consequently, the electrons can only hop between orbitals that are
perpendicular to the plane of the superexchange, and have a large probability to find the electron
around the Cl atoms. In the example shown in Fig. 1.1(a), the superexchange takes place in
the xy plane, therefore the electrons of the Zr atoms can hop between the dyz and dzx orbitals
only. Depending on the planes yz, zx, and xy of the superexchange, the nearest neighbor bonds
of the Zr atoms are denoted as a, b, and c, respectively, as shown in Fig. 1.1(b). Therefore,
the starting point of Refs. [38, 39] is the six-component Hubbard model with bond-dependent
hoppings, which in our simplified notation reads,

Hα−ZrCl3 = −t
∑
σ

∑
⟨i,j⟩a

c†i,B,σcj,C,σ +
∑
⟨i,j⟩b

c†i,C,σcj,A,σ +
∑
⟨i,j⟩c

c†i,A,σcj,B,σ +H.c.


+
U

2

∑
j

∑
σ ̸=σ′∈{↑,↓}

∑
δ ̸=δ′∈{A,B,C}

nj,δ,σnj,δ′,σ′ (1.5)

where t is a real-valued hopping parameter, U is the on-site Hubbard interaction, and
∑

⟨i,j⟩a
sums over nearest bonds of type a in Fig. 1.1(b). This Hamiltonian is not SU(4) symmetric, as it
has 6 "flavors", and the hoppings from one orbital to another are bond dependent. However, due
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to the spin independence of t and U , the Hamiltonian has an SU(2) spin rotational invariance.
The six flavors create a six-dimensional on-site Hilbert space, which arises from the product of
the two spins σ ∈ {↑, ↓} and the three orbitals α ∈ {A,B,C}. The strong spin-orbit interaction
∝ L · S, splits this six-dimensional Hilbert space to a two- and a four-dimensional subspace,
corresponding to the s = 1

2 and the s = 3
2 irreducible representations, respectively (see Sec. 1.4.1).

Furthermore, the spin-orbit interaction lowers the energy of the s = 3
2 four-dimensional subspace,

which is occupied by a single electron (quarter filling) in the case of α − ZrCl3. Therefore,
the low energy effective Hamiltonian can be reformulated using the quartet spinor fermionic
creation operator ψ†

j (in the s = 3
2 subspace) with components ψ†

j,τ,ρ, where τ ∈ {⇑,⇓} is the
pseudo orbital index (not the α ∈ {A,B,C}), and ρ ∈ {⇑,⇓} is the pseudospin index, so that
ψ†
j = (ψ†

j,⇑,⇑, ψ
†
j,⇑,⇓, ψ

†
j,⇓,⇑, ψ

†
j,⇓,⇓)

T , where the components ψ†
j,τ,ρ are defined through the relations

c†j,A,σ =
σ√
6

(
ψ†
j,⇑,σ̄ −

√
3ψ†

j,⇓,σ

)
c†j,B,σ =

i√
6

(
ψ†
j,⇑,σ̄ +

√
3ψ†

j,⇓,σ

)
c†j,C,σ =

√
2

3
ψ†
j,⇑,σ, (1.6)

where the mixing of ρ = σ and ρ = σ̄ (σ̄ ̸= σ) shows that the spin index σ is not the same as
the pseudospin index ρ. Inserting Eqs. (1.6) into the Hamiltonian (1.5) we get

Hα−ZrCl3 = − t√
3

∑
⟨i,j⟩

ψ†
iUi,jψj +

U

2

∑
j

ψ†
jψj(ψ

†
jψj − 1), (1.7)

where Ui,j is a 4× 4 matrix defined as

Ui,j =


Ua = τ y ⊗ I2, ⟨i, j⟩a
U b = −τ x ⊗ ρz ⟨i, j⟩b
U c = −τ x ⊗ ρy ⟨i, j⟩c

, (1.8)

where I2 is a 2×2 identity matrix, τα and ρα (with α ∈ {x, y, z}) are the Pauli matrices acting on
the pseudoorbital (τ) and pseudospin (ρ) indices of ψ†

i,τ,ρ, respectively. More precisely, the τ and
the ρ indices determine the eigenvalues of τ z and ρz for their simulatneous eigenstate ψ†

i,τ,ρ. For
example the ψ†

i,⇑,⇓|0⟩ is an eigenstate of both τ z and ρz with eigenvalues +1 and −1, respectively.
The Ua,b,c are unitary and Hermitian, therefore Uj,i = U †

i,j = Ui,j . Interestingly, the flux of any
elementary hexagonal plaquette p is

∏
⟨i,j⟩∈p Ui,j = UaU bU cUaU bU c = (UaU bU c)2 = −I4, where

I4 is a 4× 4 identity matrix, corresponding to an Abelian phase π.
The Hamiltonian (1.7) is still not SU(4) symmetric, as Ui,j is asymmetric in the quartet

spinor space. However, a local SU(4) gauge transformation ψj → gjψj , Ui,j → giUi,jg
†
j leaving

the flux of every hexagonal plaquette invariant, can change the Hamiltonian (1.7) to the form

Hα−ZrCl3 = − t√
3

∑
⟨i,j⟩

ηi,jψ
†
iψj + H.c. +

U

2

∑
j

ψ†
jψj(ψ

†
jψj − 1), (1.9)

= − t√
3

∑
⟨i,j⟩

τ∈{⇑,⇓}
ρ∈{⇑,⇓}

ηi,jψ
†
i,τ,ρψj,τ,ρ + H.c. +

U

2

∑
j

τ,τ ′∈{⇑,⇓}
ρ,ρ′∈{⇑,⇓}

ψ†
j,τ,ρψj,τ,ρ(ψ

†
j,τ ′,ρ′ψj,τ ′,ρ′ − 1),

which is already invariant under global SU(4) rotations in the quartet spinor space. The ηi,j±1 are
arranged in a way to give a π flux for every elementary hexagonal plaquette p as

∏
⟨i,j⟩∈p ηi,j = −1.
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The specific form of these local gauge transformations gj and the signs ηi,j are detailed in the
supplementary material of Ref. [38].

The Hamiltonian in Eq. (1.9) is equivalent to a Hubbard model with two-fold orbital degen-
eracy, leading to the Kugel-Khomskii model (1.4) right at the SU(4) symmetric point, which is
equivalent to the antiferromagnetic SU(4) Heisenberg model.

The starting model in Eq. (1.5) assumed that α − ZrCl3 is formed by well-separated layers
of ideal honeycomb lattices, based on Refs. [40, 41]. However, as pointed out in Ref. [42] the
crystal structure in Refs. [40, 41] may be based on a misassigned powder pattern, so the hon-
eycomb lattices may not be ideal. Furthermore, a recent density-functional theory calculation
suggests that this material might be susceptible to dimerization of the honeycomb layers [43].
Consequently, it is possible that α − ZrCl3 is not a perfect realization of the SU(4) Heisenberg
model.

Another possibility to realize the SU(4) Heisenberg model was suggested by Kugel and Khom-
skii, in materials having face-sharing MO6 octahedra (M is a transition-metal ion) also using
spin-orbital interactions in Ref. [44].

1.4 SU(N) Heisenberg model as a low energy effective model

We introduce the SU(N) symmetric Heisenberg model by comparing it to the well-known
SU(2) Heisenberg model. Therefore, let us first briefly recapitulate the main features of the
SU(2) case, where we also introduce the notion of an irreducible representation.

1.4.1 The SU(2) symmetric Heisenberg model

The Heisenberg model always emerges as an effective theory of an underlying model. For
example, the SU(2) symmetric half-filled Hubbard model with non-degenerate orbitals leads to
the antiferromagnetic SU(2) symmetric Heisenberg model in the U/t → ∞ limit. Due to the
strong on-site interactions, double occupancy is energetically unfavorable. At half filling, the low
energy on-site Hilbert space reduces to a two-dimensional subspace spanned by the two basis
states | ↑⟩ ≡ c†↑|0⟩ and | ↓⟩ ≡ c†↓|0⟩, which are called spins. The low energy Hamiltonian turns
out to be the SU(2) symmetric Heisenberg model

HSU(2) = J
∑
⟨i,j⟩

Si · Sj = J
∑
⟨i,j⟩

(
Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j

)
, (1.10)

where summation is over the ⟨i, j⟩ nearest neighbor sites, and depending on the sign of J , the
interaction is either antiferromagnetic (J > 0), or ferromagnetic (J < 0). If the Heisenberg
model emerges from the SU(2) Hubbard model, then the spin operators are defined as

Sx
j =

1

2

(
f †j,↑fj,↓ + f †j,↓fj,↑

)
,

Sy
j =

i

2

(
−f †j,↑fj,↓ + f †j,↓fj,↑

)
,

Sz
j =

1

2

(
f †j,↑fj,↑ − f †j,↓fj,↓

)
(1.11)

which can be abbreviated as

Sa
j =

1

2

∑
ρ,ρ′∈{↑,↓}

c†j,ρσ
a
ρ,ρ′cj,ρ′ , (1.12)
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where the σa with a ∈ {x, y, z} are the Pauli matrices. This construction ensures that the spin
operators satisfy the same commutation relations as the 1

2σ
a matrices, namely

[Sa
j , S

b
j ] = iℏ

3∑
c=1

εa,b,cS
c
j . (1.13)

They are the generators of the su(2) Lie algebra at site j (we write the algebra with small letters
and the group with big letters), and also the infinitesimal generators of SU(2) spin rotations
(see Appendix A.2). The εa,b,c are the Levi Civita symbols ε123 = ε231 = ε312 = +1 and
ε321 = ε213 = ε132 = −1 (the rest are zeros). The spin operators on different sites commute,
therefore they are bosonic operators. From now on, we will set ℏ = 1 for convenience.

In the above-mentioned example, the local Hilbert space of the Heisenberg model was two-
dimensional, spanned by the two basis states | ↑⟩ ≡ c†↑|0⟩ and | ↓⟩ ≡ c†↓|0⟩, called the spin 1/2
representation [4, Sec. 5.1.5]. However, the on-site Hilbert space of the Heisenberg Hamiltonian
(1.10) can be higher-dimensional, if it emerges from a different underlying model. The on-site
Hilbert space of the Heisenberg model determines the matrices representing the spin operators
and the representation of the Lie algebra.

A representation of the Lie algebra means that we exchange the spin operators for matrices,
which obey the same commutation relations (1.13) as the spin operators (for the connection with
the representations of the spin rotation group, see Appendix A.2). A representation is reducible,
if all the matrices representing the spin operators can be simultaneously block diagonalized
with a basis transformation. If they can not be simultaneously block diagonalized, then the
representation is irreducible. In other words, in a reducible representation, the Hilbert space in
which the matrices of the spin operators act, contains further closed subspaces (closed under the
action of the spin operators). For example, in a six-dimensional reducible representation of the
su(2) Lie algebra, we can simultaneously block diagonalize the 6 × 6 matrices representing the
Sx, Sy, and Sz generators, to 2× 2 (s = 1/2) and 4× 4 block matrices (s = 3/2), which can not
be further block diagonalized, so that there is a two- and a four-dimensional closed subspace,
corresponding to a two- and a four-dimensional irreducible representation, respectively. In an
irreducible representation, there are no further closed subspaces. One way to find all possible
irreducible representations (all the smallest closed subspaces) is to find all operators Ĉ that
simultaneously commute with all the spin operators because the eigensubspaces of these Ĉ are
closed under the action of the spin operators. The Ĉ are called Casimir operators. In the SU(2)
case, the only operator (except for 0 and the identity) commuting with all three spin operators
at site j is

Ĉ
SU(2)
j = Sj · Sj ≡ (Sx

j )
2 + (Sy

j )
2 + (Sz

j )
2, (1.14)

which can be interpreted as the length of the spin. The irreducible representations of the su(2)
Lie algebra on a given site are the eigensubspaces of the Casimir operator ĈSU(2)

j , as these
irreps emerge from the underlying model, the irrep is the same on every site. The eigenvalues of
the ĈSU(2)

j are s(s+ 1) where s ∈ {0, 12 , 1,
3
2 . . . } is either an integer, or a non-negative half-odd

integer. s determines the dimension d = 2s+1 of the local Hilbert space of a single spin operator,
and the size d × d = (2s + 1) × (2s + 1) of the matrices representing the spin operators in this
irrep. Therefore, s is a label for the irreps of the su(2) Lie algebra. When we talk about the spin
1/2 Heisenberg model, then the spin operators are in the s = 1/2 irrep, represented by the 2× 2
Pauli matrices σa (given in Appendix A.3) as Sa = 1

2σ
a for a ∈ {x, y, z}.

As the spin operators do not commute with each other (see Eq. (1.13)), they can not be
simultaneously diagonalized. The Casimir operator ĈSU(2)

j commutes with all spin operators, so
we can always choose a basis, in which we simultaneously diagonalize one of the spin operators
(let us choose Sz) and the Casimir operator. These common eigenstates in the irrep labeled with
s are the spin states (or simply spins) |s,m⟩, wherem ∈ {−s,−s+1 . . . s}, which form a d = 2s+1
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dimensional basis for this irrep. In the s = 1/2 the spins are the | ↑⟩ ≡ |s = 1/2,m = 1/2⟩ and
the | ↓⟩ ≡ |s = 1/2,m = −1/2⟩. A different irrep would be that of s = 1 (appearing in the spin
1 Heisenberg model), where the dimension of the local Hilbert space is 2s+1 = 3, and the spins
are |s = 1,m = 1⟩, |s = 1,m = 0⟩,|s = 1,m = −1⟩.

The SU(2) symmetry of the Hamiltonian (1.10) means that it is invariant under the simul-
taneous rotation of all spins around the same axis by the same angle ϕ, by the SU(2) operator
U =

∏
j e

iϕn·Sj (see Appendix A.2). Classically, one could argue that the Si · Sj depends only
on the relative orientation of two neighboring spins, which is not affected by a rotation that
rotates every spin the same way. Quantum mechanically, we can argue that the SU(2) symmetry
of HSU(2) (1.10) means UHSU(2)U−1 = HSU(2), which follows from the commutation of HSU(2)

with the total spin operators (proven in Appendix A.4)

Sx
T ≡

Ns∑
j=1

Sx
j , Sy

T ≡
Ns∑
j=1

Sy
j , Sz

T ≡
Ns∑
j=1

Sz
j , (1.15)

where Ns is the number of lattice sites. These total spin operators also satisfy the commutations
relations (1.13) as [Sa

T, S
b
T] = iℏ

∑3
c=1 εa,b,cS

c
T, so they are the generators of the Lie algebra of

the total system.
The Casimir operator can also be evaluated on the total system containing multiple spins as

C
SU(2)
T ≡ S · S = (Sx

T)
2 + (Sy

T)
2 + (Sz

T)
2, (1.16)

where the eigensubspaces labeled with S (having eigenvalue S(S + 1)) define the irreducible
representations of the su(2) Lie algebra generated by the total spin operators (1.15). This is
useful, because the Hamiltonian HSU(2) (1.10) commutes with all three components of the total
spin operator in Eq. (1.15) (as shown in Appendix. A.4), therefore it also commutes with CSU(2)

T .
Consequently, we can search for the eigenstates of the Hamiltonian HSU(2) in the irreps (invariant
eigensubspaces) of CSU(2)

T .
The connection of the irreducible representations of the Lie algebra on a single lattice site

(labeled by s) to the irreducible representations of the Lie algebra on the total system (labeled
by S) is given by the addition of angular momenta (and the Clebsch Gordon coefficients). In
the simplest case of a two-site system, with the single spins s1 = s2 = 1/2, the possible irreps of
the total system are S ∈ {|s1 − s2|, . . . s1 + s2} = {0, 1}, which are the S = 0 singlet (completely
antisymmetric), and the S = 1 triplet (completely symmetric) irreps.

A quantum spin liquid ground state is expected not to break any symmetry of the Heisenberg
Hamiltonian, meaning that it should be invariant under all transformations that leave invariant
the Hamiltonian. In particular, the global spin rotational invariance means

∏
j e

iϕn·Sj |GS⟩ =
|GS⟩ for any ϕ and any n. As explained in Appendix A.4, the infinitesimal global spin rotations
will leave the |GS⟩ invariant, only if

∑
j S

a
j |GS⟩ = 0 for all a ∈ {x, y, z}. In other words, the |GS⟩

serves as a basis for an irreducible representation of the total spin operators, where the 1 × 1
matrices representing the total spin operators are all zeros (zeros clearly satisfy the commutation
relations (1.13)). Therefore, the total Casimir operator of this irrep is also 0, defining the singlet
irreducible representation of the Lie algebra of the total system. The claim that the |GS⟩ serves
as a basis for the singlet representation is sometimes rephrased as the |GS⟩ transforms under the
action of the spin operators as a singlet. The |GS⟩ also serves as a basis for the singlet irrep of
the SU(2) spin rotation group, where every spin rotation is represented by ones, as follows from∏

j e
iϕn·Sj |GS⟩ = |GS⟩. If a wavefunction transforming as a singlet is formed by two spins, then

it must be antisymmetric under the exchange of any two spins (its Young tableau is a column of
two boxes, as explained in Appendix. A.5). In general, a wavefunction transforming as a singlet
must be formed by 2 × L spins (L being a positive integer) since it must be composed of the
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product of completely antisymmetric two-spin wavefunctions (its Young tableau is a rectangle of
two rows and L number of columns, as explained in Appendix. A.5).

The interaction Si ·Sj in the Hamiltonian (1.10) can be rewritten with the exchange operator
Pij as

Si · Sj =
1

2
Pij −

1

4
I, (1.17)

where I is the identity, and the Pij simply exchanges the spins on sites i and j. The expres-
sion (1.17) can be verified by matching the action of the two sides on the four possible spin
configurations | ↑⟩i ⊗ | ↑⟩j , | ↑⟩i ⊗ | ↓⟩j , | ↓⟩i ⊗ | ↑⟩j , | ↓⟩i ⊗ | ↓⟩j .

1.4.2 Generalization to SU(N)

The SU(N) symmetric Heisenberg model is defined as

H = J
∑
⟨i,j⟩

Ti ·Tj = J
∑
⟨i,j⟩

N2−1∑
a=1

T a
i T

a
j , (1.18)

where J > 0 (J < 0) describes antiferromagnetic (ferromagnetic) interaction, the ⟨i, j⟩ are
nearest neighbor sites. The T a

j (with a ∈ {1, 2, . . . N2 − 1}) are the generalizations of the SU(2)
spin operators (which we will call SU(N) spin operators) satisfying the commutation relations

[T a
j , T

b
j ] = i

N2−1∑
c=1

fabcT
c
j . (1.19)

The fabc are the structure constants of the algebra [45] (the analogs of the εa,b,c), which can be
determined in the way explained in Appendix A.3. The SU(N) spin operators are the generators
of the su(N) Lie algebra on site j, and also the infinitesimal generators of SU(N) spin rotations
(see Appendix A.2). The SU(N) spin operators on different sites commute, therefore they are
bosonic operators.

The SU(N) Heisenberg model can emerge from the SU(N) Hubbard model at 1/N filling
(one fermion per site) at the limit of U/t→ ∞. In this case, the low energy on-site Hilbert space
reduces to an N -dimensional subspace spanned by the SU(N) spins c†i,σ|0⟩ with σ ∈ {1 . . . N},
since multiple occupancy is energetically unfavorable, called the fundamental representation. The
spin 1/2 representation of the su(2) Lie algebra is also its fundamental representation, where the
two SU(2) spins are | ↑⟩ ≡ c†↑|0⟩ and | ↓⟩ ≡ c†↓|0⟩. In the case of the SU(N) Hubbard model, the
spin operators are constructed as

T a
j =

1

2

N∑
σ,σ′=1

c†j,σλ
a
σ,σ′cj,σ′ , (1.20)

where the 1
2λ

a are the generalizations of the Pauli matrices having sizes N ×N , which represent
the spin operators in the fundamental representation. In the SU(3) case, the eight λa matrices
are called the Gell-Mann matrices [46], known from particle physics. The construction of the
λa matrices for any N is explained in Appendix A.3, where we also list the eight Gell-Mann
matrices. Just as in the case of SU(2), the SU(N) Heisenberg Hamiltonian can emerge in different
irreducible representations, not only the fundamental one.

For N > 2, there are multiple operators commuting with all the SU(N) spin operators, called
Casimir operators. These are functions of the spin operators, and their eigenvalues label the irrep
together. However, there is an equivalent, simpler pictorial way to label the irreps (and calculate
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their dimensions) by Young-tableaux (explained in Appendix A.5), therefore we will not specify
the Casimir operators here. We mention only the quadratic Casimir operator

Ĉ2j = T2
j = Tj ·Tj =

N2−1∑
a=1

T a
j T

a
j , (1.21)

with its eigenvalues given in Appendix A.3. The Casimir operators can be simultaneously diag-
onalized together with N − 1 SU(N) spin operators (for SU(2) it is only the Sz). Their common
eigenstates provide a basis for a given irrep and will be called SU(N) spins (the analogs of spins).
The number of these SU(N) spins equals the dimension of the local Hilbert space of a single
SU(N) spin operator T a

j on a given site, which is determined by the irrep (there is no simple
formula as 2s + 1, but the dimension can be calculated from the Young tableau explained in
Appendix A.5).

The SU(N) symmetry of the Hamiltonian (1.18) means that it is invariant under the simul-
taneous rotation of all SU(N) spins around the same axis (given by the unit vector n) with the

same angle ϕ, done with the SU(N) spin rotation operator U =
∏

j e
iϕ

∑N2−1
a=1 naTa

j (see Appendix
A.2), as UHU−1 = H. The proof is presented in Appendix A.4, relying on the commutation of
H with the N2 − 1 components of the total SU(N) spin operator

∑
j T

a
j (a ∈ {1 . . . N2 − 1}).

The Hamiltonian (1.18) commutes with all N2 − 1 components of the total SU(N) spin
operator T a

T ≡
∑

j T
a
j with a ∈ {1 . . . N2 − 1}, therefore it also commutes with all Casimir

operators of the total system. Consequently, we can search for the eigenstates of the Hamiltonian
(1.18) in the irreps of the Lie algebra of the total system (generated by the total spin operators),
which are the common eigensubspaces of the Casimir operators of the total system. The relation
between the irreps of the Lie algebra on a single site and the irreps of the Lie algebra of the
whole system is given by the Young tableaux; the simplest cases are explained in Appendix A.5.

As already mentioned in the SU(2) case, a quantum spin liquid ground state must be in-
variant under any global spin rotation as

∏
j e

iϕn·Tj |GS⟩ = |GS⟩ for any ϕ and any n, implying∑
j T

a
j |GS⟩ = 0 for all a ∈ {1 . . . N2 − 1} (explained in Appendix A.4). In other words, the

|GS⟩ serves as a one-dimensional basis for an irreducible representation of the Lie algebra of the
total system, where every total spin operator is trivially represented with 1 × 1 matrices which
are all zeros, (and every SU(N) spin rotation is represented with ones). Consequently, the total
quadratic Casimir operator

Ĉ2T = TT ·TT =
N2−1∑
a=1

∑
j

T a
j

∑
j′

T a
j′

 (1.22)

will have eigenvalue zero, which uniquely identifies the SU(N) singlet irrep (unlike other irreps)
without the need to specify the eigenvalues of the other Casimir operators. We will abbreviate
the above statements by saying that the |GS⟩ transforms (under the action of the SU(N) spin
operators) as an SU(N) singlet. In general, a wavefunction transforming as an SU(N) singlet
must be formed by N × L SU(N) spins since it must be a linear combination of L completely
antisymmetrized wavefunctions composed of N SU(N) spins (its Young tableau is a rectangle of
N rows and L columns, as explained in Appendix. A.5).

The Ti · Tj in the fundamental representation can be expressed by the exchange operator
Pi,j as

Ti ·Tj =
1

2
Pi,j −

1

2N
I, (1.23)

similarly as in the SU(2) case (1.17). The I is the identity operator and the effect of the Pij is
simply to exchange the SU(N) spins on sites i and j. The Pi,j also has SU(N) spin rotational
symmetry, which can be understood even without knowing about the SU(N) spin rotational
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invariance of the Ti · Tj term, since the Pi,j makes no difference between the SU(N) spins (so
rotating them has no effect). Therefore, the SU(N) symmetric Heisenberg model can also be
formulated as

H =
J

2

∑
⟨i,j⟩

Pi,j , (1.24)

up to a constant.



Chapter 2

Quantum spin liquids
In this section, we will first introduce the mean-field theory for quantum spin liquid ground

states [2, Sec. 9.] arising from the SU(N > 2) symmetric antiferromagnetic Heisenberg model
(1.18) in the fundamental representation, then discuss how can we incorporate certain fluctua-
tions beyond the mean-field approximation with Gutzwiller projection, and finally explain the
notion of quantum order differentiating between different quantum spin liquids.

In the case of the SU(2) Heisenberg model, mean-field theory is done by rewriting the spin
operators as Si = ⟨Si⟩ + (Si − ⟨Si⟩), and hope that the fluctuation δSi ≡ (Si − ⟨Si⟩) is small.
Thus, writing them back to the Hamiltonian H = J

∑
⟨i,j⟩ Si · Sj we can neglect the square

of the fluctuations δSiδSj , arriving at the mean-field Hamiltonian H = −J
∑

⟨i,j⟩⟨Si⟩⟨Sj⟩ +
2J
∑

⟨i,j⟩⟨Si⟩ · Sj . The expectation values ⟨. . . ⟩ are taken self-consistently in the mean-field
ground state.

However, a quantum spin liquid ground state neither breaks the SU(N) symmetry of the
Hamiltonian (1.18), nor the symmetries of the underlying lattice, implying ⟨Sj⟩ = 0 ∀j, which
makes the usual mean-field approximation impossible. The magnetic disorder of a quantum
spin liquid ground state means, that the correlation functions of the spin operators in this state
vanish for large distances. In contrast, in a magnetically ordered state, the correlation function
approaches a finite value determined by the ordering pattern.

The way to do a mean-field approximation for a quantum spin liquid is through the projective
construction (also known as the fermionic parton construction). Another type of projective
construction is the bosonic parton construction (or Schwinger boson approach). We will use the
former one because the latter always leads to gapped quantum spin liquids [2, Sec. 9.1].

2.1 Projective construction and mean-field theory

In the SU(2) fermionic projective construction (see [2, Sec. 9.1] and Refs. [47, 48, 49, 50, 51,
52, 53, 54]) the bosonic spin operators are decomposed into a pair of fermionic operators the
same way as we defined them in section 1.4.1

Sa
j =

1

2

∑
ρ,ρ′∈{↑,↓}

f †j,ρσ
a
ρ,ρ′fj,ρ′ , (2.1)

where the σa with a ∈ {x, y, z} are the Pauli matrices. In the fundamental representation of
su(N), the three Pauli matrices are replaced by the N2 − 1 λa matrices having sizes N ×N as

T a
j =

1

2

N∑
σ,σ′=1

f †j,σλ
a
σ,σ′fj,σ′ . (2.2)

However, the fermionic operators f †j,σ - usually referred to as Abrikosov fermions - are not the
same as the fermionic operators c†j,σ appearing in the SU(N) Hubbard model, since writing the
spin operators with both, 1

2

∑N
σ,σ′=1 c

†
j,σλ

a
σ,σ′cj,σ′ = T a

j = 1
2

∑N
σ,σ′=1 f

†
j,σλ

a
σ,σ′fj,σ′ , shows that

there is a gauge redundancy in the definition of f †j,σ. Namely, the fermionic operators can differ
in a site-dependent, but flavor-independent phase f †j,σ = eiϕjc†j,σ, since they yield the same spin
operators. More complicated relations between the fermionic operators are also possible (like

18
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flavor mixing gauge transformations shown in Eq. (2.35), the only requirement is that they have
to yield the same spin operators.

In the basis {f †j,σ|0⟩} with σ ∈ {1 . . . N}, the expectation values

⟨0|fj,σT
a
j f

†
j,σ′ |0⟩ =

1

2

∑
ρ,ρ′

⟨0| fj,σf
†
j,ρ︸ ︷︷ ︸

δσ,ρ−f†
j,ρfj,σ

λaρ,ρ′ fj,ρ′f
†
j,σ′︸ ︷︷ ︸

δρ′,σ′−f†
j,σ′fj,ρ′

|0⟩ = 1

2
λaσ,σ′ , (2.3)

where we used that both fj,ρ′ |0⟩ = 0 and ⟨0|f †j,ρ = 0. Therefore, the states {f †j,σ|0⟩} form an
N -dimensional basis for the fundamental representation. Equivalently, we can write

T a
j f

†
j,σ|0⟩ =

N∑
σ′=1

1

2
λaσ′,σf

†
j,σ′ |0⟩, (2.4)

which shows that the action of the spin operator T a
j on the states {f †j,σ|0⟩} is equivalent to the

multiplication with the matrix 1
2λ

a. In the literature, people abbreviate this by saying that the
states {f †j,σ|0⟩} transform under the fundamental representation.

When we map the bosonic SU(N) spin operators (in the fundamental irrep) to fermions,
the local Hilbert spaces should map to each other in a one-to-one correspondence, so their
dimensions must be equal. However, the dimension of the former is simply N (the number of
SU(N) spins), while the dimension of the latter is bigger because we can have r ∈ {0, 1, . . . N}
number of fermions on the same lattice site, giving a dimension

∑N
r=0

(
N
r

)
. Just as in the case of

the Hubbard model, one fermion per site corresponds to the fundamental representation of the
Heisenberg model, and different fillings lead to different irreducible representations (see Appendix
A.6). To achieve a one-to-one correspondence with the Hilbert space of the Heisenberg model
in the fundamental representation, we have to impose on the fermions the single occupancy
constraint

nj ≡
N∑

σ=1

f †j,σfj,σ = 1, (2.5)

on every site j, where nj is the total fermion number operator. Requiring nj = 1 ∀j excludes the
possibility of empty or multiply occupied sites, reducing the dimension of the fermionic Hilbert
space to N . This constraint accounts for the strong on-site repulsion 1 ≪ U/t of the Hubbard
model (1.2), which is also the reason why the Heisenberg Hamiltonian (1.18) appears as an
effective model in the fundamental representation.

Substituting Eq. (2.2) into the Heisenberg Hamiltonian H = J
∑

⟨i,j⟩Ti ·Tj (1.18) we get an
interacting fermionic Hamiltonian (B.4) with terms like f †f f †f , as explained in Appendix B.

In the mean-field approximation, we replace a pair of fermionic operators with their expec-
tation values (for details see Appendix B),

HMF =
∑
⟨i,j⟩

N∑
σ=1

ti,jf
†
i,σfj,σ, (2.6)

where the hoppings ti,j can either be determined by the self-consistency equation

ti,j = −J
N∑

σ=1

⟨FS|f †i,σfj,σ|FS⟩, (2.7)

or by minimizing the mean-field variational energy ⟨FS|HMF|FS⟩/⟨FS|FS⟩, where |FS⟩ is the
Fermi sea ground state of the mean-field Hamiltonian HMF (2.6). We will determine the ti,j by
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minimizing the variational energy given in Eq. (2.14) in the next section. We will call the HMF

and its hopping structure ti,j an ansatz.
Just like the Hubbard Hamiltonian (1.2), the HMF is also invariant under SU(N) spin rota-

tions, because the hoppings ti,j are independent of σ, and the terms f †i,σfj,σ do not change the
σ as f †i,σfj,σ̄.

In the mean-field approximation, we could take the expectation value of any pair of fermionic
operators, which allows for pairing terms like f †i,σf

†
j,σ′ . In the context of the SU(2) symmetric

Heisenberg model, these pairing terms f †i,↑f
†
j,↓ transform as a singlet and they appear in the

mean-field Hamiltonians of Z2 spin liquids [2, Secs. 9.2.1.1, 9.2.1.2]. However, in the fundamental
representation of SU(N), we would have to take the product of N creation operators to form an
operator transforming as an SU(N) singlet, which is beyond the mean-field description.

2.1.1 The Fermi sea

The Fermi sea is constructed by filling the lowest energy one-particle eigenstates |ξq,b⟩ ≡
f †q,b,σ|0⟩ (which are independent of σ, see Eq. (2.27)) of HMF up to the Fermi energy εb(q) < εF
as

|FS⟩ =
N∏

σ=1

∏
q,b

εb(q)<εF

f †q,b,σ|0⟩, (2.8)

where the εF is determined by the 1/N filling. In principle, the number of particles of different
flavors Nσ might all differ, satisfying

∑
σNσ = Ns, where Ns is the number of lattice sites.

IfNσ = Ns/N for all σ, and the Fermi sea is non-degenerate (achieved by antiperiod boundary
conditions), then the single-particle eigenstates |ξq,b⟩ with εb(q) < εF are filled with fermions of
every flavor σ as

∏N
σ=1 f

†
q,b,σ|0⟩, which is antisymmetric under the exchange of any two flavors.

Consequently, the Fermi sea transforms as an SU(N) singlet, represented with a Young tableau of
N rows and Ns/N columns. The eigenvalue of the total quadratic Casimir operator of Eq. (1.22)
is zero for an SU(N) singlet.

We can rewrite the Fermi sea to real space using the basis

|x⟩ =

(
N∏

σ=1

f †jσ1 ,σ
f †jσ2 ,σ

. . . f †jσNσ
,σ

)
|0⟩ = f †

j11 ,1
f †
j12 ,1

. . . f †
j1N1

,1
. . . f †

jN1 ,N
f †
jN2 ,N

. . . f †
jNNN

,N
|0⟩, (2.9)

where jσl is the site of the l-th fermion of flavor σ, and l ∈ {1 . . . Nσ}. In this basis, the coefficients
of the Fermi sea are Slater determinants [4, Sec. 9.2.1]

|FS⟩ =
∑

{{jσ}}

(
N∏

σ=1

slat{jσ}f
†
jσ1 ,σ

f †jσ2 ,σ
. . . f †jσNσ

,σ

)
|0⟩ =

∑
x

(
N∏

σ=1

slat{jσ}

)
|x⟩, (2.10)

where {jσ} is the set of sites jσl occupied by fermions of flavor σ (the number of sites in such a
set is Nσ), and the

∑
{{jσ}} goes through all possible such sets. As multiply occupied sites are

allowed in |FS⟩ the sets of sites {jσ} may overlap (e.g. j1l = j2l′ = 5 means that at site 5 there are
two fermions, one with flavor 1 and another with flavor 2). The ordering of fermionic operators
with the same flavor is arbitrary, but must match the order of indices in the Slater determinant

slat{jσ} =

∣∣∣∣∣∣∣∣∣∣
ξ1(j

σ
1 ) ξ1(j

σ
2 ) . . . ξ1(j

σ
Ns/N

)

ξ2(j
σ
1 ) ξ2(j

σ
2 ) . . . ξ2(j

σ
Ns/N

)
...

...
. . .

...
ξNs/N (jσ1 ) ξNs/N (jσ2 ) . . . ξNs/N (jσNs/N

)

∣∣∣∣∣∣∣∣∣∣
, (2.11)
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where ξn(j) = ⟨0|fj,σ|ξn⟩, and |ξn⟩ are the one-particle eigenstates of HMF sorted in energy εb(q),
so that the sets of states {|ξn⟩} and {|ξq,b⟩} are the same, and the smaller n index corresponds
to smaller or equal eigen energy εn of |ξn⟩.

If the hoppings ti,j are real, then the HMF is time-reversal symmetric, implying that its eigen-
states |ξk⟩ and |ξ−k⟩ are degenerate. Consequently, we can construct real one-particle eigenstates
|ξn⟩ as linear combinations of |ξk⟩ and |ξ−k⟩. This choice makes the Slater determinants (2.11)
real, making calculations faster.

2.2 Gutzwiller projection

The mean-field ground state |FS⟩ of Eq. (2.8) does not satisfy the single occupancy constraint
of Eq. (2.5), as can be seen in Eq. (2.10) from the possible overlap of the sets of sites {jσ} occupied
by flavor σ. Consequently, the Hilbert space of fermions does not represent correctly the Hilbert
space of the original Heisenberg model (1.18). The single occupancy constraint (2.5) can be
enforced by the Gutzwiller projector [55], defined as the hermitian operator

PG =

Ns∏
j=1

1

(N − 1)!
nj

N∏
m=2

(m− nj) , (2.12)

where nj ≡
∑N

σ=1 f
†
j,σfj,σ is the total fermion number operator. The term

∏N
m=2(m− nj) gives

zero if the number of fermions on site j is larger than 1, while nj gives zero when there is no
fermion. The factor 1

(N−1)! is to get 1 when nj gives an eigenvalue 1, so that PG really acts as a
projector. As we have a product for each lattice site, the Gutzwiller projector projects to zero
all configuration states |x⟩ defined in Eq. (2.9) where any of the sites is not singly occupied.
Applying the Gutzwiller projector on the mean-field ground state of Eq. (2.10) eliminates all
configurations |x⟩ (2.9) violating the single occupancy constraint (2.5), so that we can write it
similarly as in Eq. (2.10)

PG|FS⟩ =
∑

{{jσ}PG}

(
N∏

σ=1

slat{jσ}PG
f †jσ1 ,σ

f †jσ2 ,σ
. . . f †jσNσ

,σ

)
|0⟩ =

∑
xPG

(
N∏

σ=1

slat{jσ}PG

)
|xPG⟩,

(2.13)
where |xPG⟩ are of the same form as in Eq. (2.9) with the difference that the sets of sites
{jσ}PG occupied by different flavors do not overlap. This equation shows us that any geometrical
transformation commutes with the Gutzwiller projector since it does not matter whether we
first eliminate configurations |x⟩ (2.9) with multiply occupied sites and then apply a geometrical
transformation or do it in the opposite order. Here, we showed it only for the Gutzwiller projected
Fermi sea, but any Gutzwiller projected state can be written in the basis |xPG⟩, so we can repeat
the same argument.

We could have introduced a chemical potential in the mean-field Hamiltonian (equivalent to
fixing the filling), which would have ensured the single occupancy only in average ⟨FS|nj |FS⟩ = 1
(even if the chemical potential is site dependent) instead of nj = 1 as in Eq. (2.5). The nj = 1
single occupancy constraint could be achieved by a time-dependent chemical potential (see [2,
Sec. 9.1.1] Eq. (9.1.8)), so that the effect of the Gutzwiller projector is to incorporate the temporal
fluctuations of the chemical potential. Therefore, PG|FS⟩ is a better approximation for the real
ground state of the Heisenberg Hamiltonian (1.18) than the mean-field ground state |FS⟩, and
the ti,j hoppings of the mean-field Hamiltonian HMF (2.6) are determined by minimizing the
variational energy

EPG|FS⟩ ≡
⟨FS|PGHPG|FS⟩
⟨FS|PGPG|FS⟩

(2.14)
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(where H is the original Heisenberg Hamiltonian (1.18)), instead of the mean-field variational
energy ⟨FS|HMF|FS⟩/⟨FS|FS⟩. When optimizing the ti,j we do not have to care about the overall
magnitude of the hoppings

∑
⟨i,j⟩ |ti,j |, because these do not affect the wavefunction PG|FS⟩, only

the relative ratios ti,j/tm,n matter.
As the analytic evaluation of the Gutzwiller projection is too difficult, all expectation values

as Eq. (2.14) in the Gutzwiller projected state are evaluated numerically, within a Monte Carlo
calculation [56, 57]. In a Monte Carlo calculation, we visit configurations |x⟩ of Eq. (2.9) with
certain probabilities, and evaluate the expectation values as (2.14) in these configurations. The
effect of the Gutzwiller projector is to visit only those configurations |x⟩, where the sets of sites
{jσ}PG occupied by different flavors σ do not overlap, as explained in Appendix J.

In the following, we are going to make frequent citations of sections of the book [2] for easy
comparison with the SU(2) case, where an ansatz is described by the Ui,j containing both the
ti,j and the SU(2) singlet pairing terms f †i,↑, f

†
j,↓ [2, Secs. 9.2.1.1, 9.2.1.2]

The Gutzwiller projector (2.12) is a function of the total fermion number operator nj =∑N
σ=1 f

†
j,σfj,σ, so it commutes with the SU(N) spin operators of Eq. (2.2)

[PG, T
a
j ] = 0 (2.15)

, since the T a
j have one f † and one f that does not change the eigenvalue of nj . Similarly,

PG also commutes with the total spin operators T a
T =

∑Ns
j=1 T

a
j . Therefore, it also commutes

with all the Casimir operators on any site and also with the total Casimir operators since these
are functions of the T a

j and T a
T, respectively. Consequently, applying the PG on a wavefunction

does not change the eigenvalues of the Casimir operators for that wavefunction. For example,
if the Fermi sea transforms as an SU(N) singlet, identified with the zero eigenvalue of the total
quadratic Casimir operator (1.22), then the PG|FS⟩ also transforms as an SU(N) singlet. If we
have a set of states that serves as a basis for other irreducible representations, then the set of
these Gutzwiller projected states will also serve as a basis for the same irreducible representation
(see Appendix A.6.3).

2.3 Variational states

One would think that if we want to end up with a variational wavefunction PG|FS⟩, which
is invariant under all symmetries of the Hamiltonian (1.18) and the underlying lattice, then the
only way to achieve this is by starting from a mean-field Hamiltonian HMF with uniform equal
hoppings ti,j .

However, the decomposition of the SU(N) spin operators to fermions (2.2) does not unam-
biguously define the fermionic operators f †i,σ, because a site-dependent, but flavor independent
unitary gauge transformation [2, Eq. (9.1.11)]

Gf †j,σG
−1 = eiϕ(j)f †j,σ (2.16)

leaves the SU(N) spin operators in Eq. (2.2) unchanged, since

GT a
j G

−1 =
1

2

N∑
σ,σ′=1

eiϕ(j)f †j,σλ
a
σ,σ′e−iϕ(j)fj,σ′ =

1

2

N∑
σ,σ′=1

f †i,σλ
a
σ,σ′fi,σ′ = T a

j . (2.17)

These gauge transformations do not affect the Gutzwiller projected wavefunctions, so we can
use them to construct completely symmetric variational wavefunctions PG|FS⟩, even if the HMF

breaks the symmetries of the lattice (this is the projective symmetry explained in section 2.4).
Different mean-field Hamiltonians yield different completely symmetric variational wavefunctions
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PG|FS⟩. The optimal wavefunction is then selected by minimizing the variational energy defined
in Eq. (2.14).

In the following two subsections, we present the mean-field Hamiltonians HMF
DSL (2.6) of the

Dirac spin liquid (DSL) variational states, which give a good approximation of the ground states
of the SU(4) and SU(6) Heisenberg models on the honeycomb and kagome lattices, respectively.
Both of these states share similar features, namely the hoppings ti,j of HMF are all real, their
absolute values are equal, but their signs are such, that their product around any elementary
plaquette is negative [49, 50]. We can associate a phase ti,j = |ti,j |eiϕi,j to every hopping
( ϕi,j = π for negative hoppings), so that the product of the hoppings involves the sum of
these phases ei

∑
⟨i,j⟩ ϕi,j around an elementary plaquette modulo 2π. The sum

∑
⟨i,j⟩ ϕi,j can

be interpreted as the integral of an imaginary vector potential around an elementary plaquette
which is equal to the imaginary magnetic flux ϕ through the elementary plaquette. In general,
the flux ϕ of a plaquette can be calculated as

eiϕ =
∏

⟨i,j⟩∈plaquette

ti,j
|ti,j |

, (2.18)

In the case of complex hopping, the product should be taken with some orientation, e.g., clock-
wise. For real hoppings the orientation is irrelevant, and one can have only two inequivalent
possibilities, 0-flux and π-flux, corresponding to positive and negative products, respectively.
Therefore, both Dirac spin liquid ansätze have π fluxes in every elementary plaquette of their
lattices, see Fig. 2.1 (a) and (c).

The π-flux hopping structure of the mean-field Hamiltonian HMF
DSL (shown in Figs. 2.1 (a)

and (c)) requires at least a doubled unit cell to accommodate the hoppings ti,j for both the
honeycomb and the kagome lattices [6, 58]. Therefore in both cases the HMF

DSL breaks (among
others) the discrete translational symmetry of the underlying lattice in some direction, yet as
explained in the next section 2.4 the Gutzwiller projected variational wave function PG|πFS⟩
have all the symmetries of the lattice, justifying the name spin liquid.

Even though the hoppings of the π-flux HMF
DSL could be accommodated in doubled unit cells,

here we choose different hopping patterns requiring quadrupled unit cells, because these have
more beautiful symmetries. The gauge equivalence of these choices is discussed in Appendix F.

2.3.1 The SU(4) π-flux Dirac Spin liquid on the Honeycomb lattice

The SU(4) Heisenberg model on the honeycomb lattice is an example where the π-flux HMF
DSL

(shown in Fig. 2.1 (a)), breaking the symmetries of the lattice, gives a variational wavefunction
with better variational energy (2.14) than the 0-flux HMF, which has all the symmetries of the
honeycomb lattice. Based on Refs. [6, 59, 60, 61, 62, 63] the π-flux variational wavefunction is a
good approximation of the ground state of the SU(4) Heisenberg model on the honeycomb lattice,
though there are doubts about a possible gap opening [64, 65]. Although these articles discussed
the π-flux HMF

DSL with a doubled unit cell, here we will use the HMF
DSL with the quadrupled unit

cell shown in Fig. 2.1 (a). The equivalence of the two Hamiltonians is discussed in Appendix F.
The honeycomb lattice has two basis sites per unit cell, with basis vectors δA = (0, 0)

and δB = (0, 1√
3
), and is periodic under translations by the primitive vectors a1 = (1, 0) and

a2 = (−1/2,
√
3/2), which span the triangular Bravais lattice R = R1a1 + R2a2 with R1, R2

integers. The number of Bravais lattice vectors is equal to the number of unit cells NC , which
equals the number of wave vectors in the reciprocal unit cell (Brillouin zone). The lattice vector
of any site j can be written as rj = Rj + δsj , where sj ∈ {A,B} is the sublattice index. The
product of the number of basis sites NB = 2 and the number of Bravais-lattice vectors NC is
always equal to the number of lattice sites Ns = NC ×NB.
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Figure 2.1: (a) and (c) shows the hopping structures of the π-flux mean-field Hamiltonians
with quadrupled unit cells on the honeycomb and kagome lattices, respectively. The magenta
dashed hexagons denote the quadrupled Wigner-Seitz unit cells. Every white bond is a positive
hopping, and every black bond a negative one, so that the product of the hoppigs around every
elementary plaquette is negative (hence the name π-flux, see Eq. (2.18)). All hoppings have the
same absolute value |t|. (b) and (d) shows the one-particle energy spectrum given by Eqs. (2.26)
and (2.31) on the honeycomb and kagome lattices, respectively. Every band is doubly degenerate,
except the flat band with ε = 2t in (d), which is four-fold degenerate. The single occupancy
constraint (2.5) of the SU(N) mean-field Hamiltonian requires 1/N filling, which fills both band
structures up to the tip of the lowest energy Dirac cones, resulting in Dirac Fermi points (hence
the name Dirac spin liquid).

The quadrupled unit cell of the π-flux HMF shown in Figs. 2.1 (a) breaks the discrete trans-
lational symmetry of the honeycomb lattice, with a remaining symmetry for translations by the
doubled primitive vectors 2a1 and 2a2, which span the mean-field Bravais lattice

RMF = RMF
1 (2a1) +RMF

2 (2a2), (2.19)

with RMF
1 , RMF

2 integers. Consequently, the number of basis sites in the mean-field quadrupled
unit cell is NMF

B = 4 × NB = 8. Again, the number of lattice sites Ns = NMF
C × NMF

B , so that
NMF

C = NC/4, implying that the number of wave vectors in the mean-field Brillouin zone is a
quarter of the number of wave vectors in the original Brillouin zone (for details see Appendix
H). Thus we will call the mean-field Brillouin zone the reduced Brillouin zone (rBZ).

The lattice vector of any site j can be expressed using the mean-field vectors as

rMF
j = RMF

j + δMF
sMF
j
, (2.20)

where sMF
j ∈ {A,B . . .H} is the sublattice index of the quadrupled unit cell, with the mean-

field basis vectors δMF
A = δA, δMF

B = δB, δMF
C = δA + a1, δMF

D = δB + a1, δMF
E = δA + a2,

δMF
F = δB + a2, δMF

G = δA + a1 + a2, δMF
H = δB + a1 + a2.

Using the remaining discrete translational invariance of the π-flux HMF
DSL, we can Fourier

transform the fermionic operators as

f †j,σ = f †
RMF

j ,sMF
j ,σ

=
1√
NMF

C

∑
q∈rBZ

e−iq·RMF
j f †

q,sMF
j ,σ

, (2.21)

where we have relabeled site j to RMF
j , sMF

j based on Eq. (2.20), and the wave vectors q are in
the reduced Brilloun-zone (rBZ). This allows us to rewrite the HMF in reciprocal space as

HMF =
∑

q∈rBZ

N∑
σ=1

∑
sMF,s̄MF

HMF
sMF,s̄MF(q)f

†
q,sMF,σ

f
q,s̄MF,σ

, (2.22)
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where the HMF
sMF,s̄MF(q) is the NMF

B ×NMF
B matrix

t



0 1 0 0 0 −1 0 e−i2q·a1

1 0 0 0 −1 0 −1 0
0 0 0 −1 0 1 0 1
0 0 −1 0 −ei2q·a1 0 1 0
0 −1 0 −e−i2q·a1 0 −ei2q·a2 0 0
−1 0 1 0 −e−i2q·a2 0 0 0
0 −1 0 1 0 0 0 ei2q·a2

ei2q·a1 0 1 0 0 0 e−i2q·a2 0



|A⟩
|B⟩
|C⟩
|D⟩
|E⟩
|F⟩
|G⟩
|H⟩

, (2.23)

where the basis states mean |A⟩ ≡ f †q,A,σ|0⟩. The effect of the antiperiodic boundary condition
can be thought of as shifting the wave vectors q.

The characteristic polynomial 0 = det
(
HMF

sMF,s̄MF(q)− εqIsMF,s̄MF

)
providing the one-particle

energies εq simplifies to

0 =
(
ε4q − 6t2ε2q + t4γq

)2
, (2.24)

where
γq = 3 + 2 cos 2q · a1 + 2 cos 2q · a2 + 2 cos 2q · [a1 + a2]. (2.25)

The squared form of the characteristic polynomial implies that every eigenvalue is doubly degen-
erate. The quartic polynomial in εq implies that we will get four energy eigenvalues for every
q, which span four energy bands in reciprocal space, shown in the reduced Brillouin zone of the
quadrupled unit cell (see Appendix H) in Fig. 2.1 (b). The energy eigenvalues can be written as

εb(q) = ±|t|
√

3±
√

6− 2 cos(2q · a1)− 2 cos(2q · a2)− 2 cos (2q · (a1 + a2)) (2.26)

where b ∈ {1 . . . 8} is the band index, such that b ∈ {1, 2} are in the first band, b ∈ {3, 4} in the
second, b ∈ {5, 6} in the third, and b ∈ {7, 8} in the fourth band, due to the double degeneracy
of the eigenvalues.

The one-particle eigenstates of the matrix HMF
sMF,s̄MF(q) (2.23) can be written as

|ξq,b⟩ ≡ f †q,b,σ|0⟩ =
∑
s

vq,b,sf
†
q,s,σ|0⟩ =

1√
NMF

C

∑
s

vq,b,s
∑
RMF

eiqR
MF
f †R,s,σ|0⟩, (2.27)

where b ∈ {1 . . . 8} is the band index, s ∈ {A . . .H} is the sublattice index, and the complex
numbers vq,b,s are the coefficients of the eigenstate in the site basis {f †q,s,σ|0⟩}, which are nor-
malized as

∑
s |vq,b,s|2 = 1. The one-particle eigenstates |ξq,b⟩ are independent of σ (so that the

σ index of f †q,b,σ can be anything), since the matrix HMF
sMF,s̄MF(q) of Eq. (2.23) is independent of

σ.
When we construct the |πFS⟩ of Eq. (2.8), we create a product state of the lowest energy

one-particle eigenstates of the HMF
DSL which have the energies Eq. (2.26) smaller than the Fermi

energy εF . Due to the 1/N filling corresponding to the single occupancy constraint of Eq. (2.5),
only the lowest energy band is filled, so that the Fermi energy is εF = −

√
3|t|, where the Dirac

cones touch at q = 0. This is the reason why the PG|πFS⟩ variational state is called a Dirac
spin liquid (DSL), and it will be the reason for the existence of gapless excitations having linear
dispersion at small energies (see Sec. 6). Since at the Fermi energy εF the cross-section of the
bands is only a point, the tip of the Dirac cones, we will call the Fermi energy the Dirac Fermi
point.
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2.3.2 The SU(6) π-flux Dirac Spin liquid on the Kagome lattice

In Sec. 3 we will argue that the Dirac spin liquid state might also be a good approximation
of the ground state of the SU(6) Heisenberg model in the fundamental representation on the
kagome lattice.

In the kagome lattice we haveNB = 3 basis sites, with basis vectors δA = (0, 0), δB = (1/2, 0),
and δC = (1/4,

√
3/4). The periodicity of the kagome lattice is given by the primitive vectors

a1 = (1, 0) and a2 =
(
1
2 ,

√
3
2

)
. The mean-field Hamiltonian HMF

DSL with a quadrupled unit cell
(shown in Fig. 2.1) (c) breaks (among others) the discrete translational symmetry of the kagome
lattice in both directions, with a remaining periodicity in 2a1 and 2a2. In this quadrupled unit
cell, the number of basis sites is NMF

B = 4NB = 12, therefore the reduced Brillouin zone is
again the quarter of the original Brillouin zone. Using this remaining periodicity we can Fourier
transform the fermionic operators just as in Eq. (2.21), and rewrite the HMF to reciprocal space
just as in Eq. (2.22). We end up with the 12× 12 matrix

HMF
b,b̄ (q) = t



0 −1 −1 0 0 −r̄1 0 −r̄2 0 0 0 0
−1 0 −1 0 0 0 1 0 0 0 0 r̄1
−1 −1 0 1 0 0 0 0 0 0 −r̄2 0
0 0 1 0 −1 −1 0 0 0 0 r̄2 0
0 0 0 −1 0 −1 0 0 1 −1 0 0

−r1 0 0 −1 −1 0 0 −r1r̄2 0 0 0 0
0 1 0 0 0 0 0 −1 −1 0 0 −r̄1

−r2 0 0 0 0 −r2r̄1 −1 0 −1 0 0 0
0 0 0 0 1 0 −1 −1 0 1 0 0
0 0 0 0 −1 0 0 0 1 0 −1 −1
0 0 −r2 r2 0 0 0 0 0 −1 0 −1
0 r1 0 0 0 0 −r1 0 0 −1 −1 0



,

(2.28)
where r1 = eiq·2a1 or r2 = eiq·2a2 (the r̄1 = e−ik·2a1 and r̄2 = e−ik·2a2 are the complex conjugates).

The characteristic polynomial 0 = det
(
HMF

sMF,s̄MF(q)− εqIsMF,s̄MF

)
providing the one-particle

energies εq, simplifies to

0 =
(
ε4q + 4tε3q − 8t3εq + 2t4γq

)2
(εq − 2t)4 , (2.29)

where
γq = cos 2q · a1 + cos 2q · a2 + cos 2q · [a1 − a2]− 1. (2.30)

The squared form of the quartic polynomial in εq again implies 4 doubly degenerate bands, while
the (εq − 2t)4 term gives a four-fold degenerate flat band at εq = 2t, shown in Fig. 2.1(d). Unlike
in the zero-flux case, the dispersive bands are separated by a gap from the flat bands (implying
that the flat band is not topological, unlike in the 0-flux case [66]), and the dispersive bands touch
at Dirac points. Interestingly, the characteristic polynomial of the honeycomb lattice (2.24) can
be mapped exactly to the first term of Eq. (2.29) not containing the flat bands, if we shift the
εq → εq + t of the honeycomb lattice, and we change the primitive vector a2 → a1 + a2 of the
kagome lattice. Therefore, the 4 doubly degenerate energy eigenvalues of the HMF

b,b̄
(q) on the

kagome lattice will be simply shifted by t relative to those on the honeycomb lattice (2.26)

2× degen: εb(q) = −t± |t|
√

3±
√

6− 2 cos 2q · a1 − 2 cos 2q · a2 − 2 cos 2q · [a1 − a2]

4× degen: εb(q) = 2t, (2.31)

where in the first row, the band index b ∈ {1 . . . 8}, such that b ∈ {1, 2} are in the first band,
b ∈ {3, 4} in the second, b ∈ {5, 6} in the third, and b ∈ {7, 8} in the fourth band, while in the
second row b ∈ {9 . . . 12}.
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Consequently, this band structure inherits the Dirac cone touchings of the honeycomb lattice.
We call the PG|πFS⟩ a Dirac spin liquid (DSL) because due to the 1/6 filling, the Fermi energy
is at εF = −t −

√
3|t|, where the Dirac cones touch. The equivalent of this DSL ansatz with

a doubled unit cell was proposed as a candidate for the ground state of the SU(2) Heisenberg
model on the kagome lattice [58], which differs only in the filling of the band structure. In
the SU(2) case the 1/2 filling requires filling the one-particle eigenstates in the lowest 3 bands
up to the Fermi energy ε

SU(2)
F = −t +

√
3|t|, where the highest lying 2 Dirac cones touch (see

Fig. 2.1(d)). Actually, the idea of trying this DSL state as a candidate for the SU(6) case came
from the possibility of changing the filling so that the Fermi energy is lowered to the touching
point of the lowest two Dirac cones, which required 1/6 filling.

It is important to note, that although in the case of the honeycomb lattice the change t→ −t
does not influence anything, here it changes a lot, since it changes the fluxes of the triangles from
π to 0, keeping the π fluxes of the hexagons. It also changes the sign of t in the characteristic
polynomial (2.29), which contains t contrary to the characteristic polynomial of the honeycomb
lattice (2.24) containing only |t|. The effect of the t → −t is to turn the band structure of the
DSL (Fig. 2.1 (d)) upside down, leaving the four-fold degenerate flat band at the bottom. The
1/6 filling fills only half of the flat band, therefore the Fermi energy is inside the flat band, and
the Fermi sea of this ansatz is highly degenerate, making any calculation impossible. In the case
of SU(2), the filling is 1/2 instead of 1/6, so that the Fermi energy is outside the flat band at
the touching of two Dirac cones. Furthermore, in the SU(2) case the ansatz with 0 fluxes in the
triangles and π fluxes in the hexagons is equivalent to the DSL ansatz with π-fluxes everywhere
due to a symmetry under a combination of a spin-rotation and a time-reversal transformation
[2, Sec. 9.2.7] [3]), but they are inequivalent in the case of SU(6).

2.4 Projective symmetry and Quantum orders

As mentioned in Sec.2.3 the π-flux hopping structure of HMF shown in Figs. 2.1 (a) and
(c) break the discrete translational symmetry of the underlying lattice for translations T1 and
T2 with primitive vectors a1 and a2, respectively, meaning that HMF ̸= TiHMFT−1

i for i ∈
{1, 2}. HMF has a remaining translational symmetry for translations with 2a1 and 2a2, so that
HMF = (Ti)

2HMF(T−1
i )2 for i ∈ {1, 2}. The HMF also breaks the symmetries under the C6

sixfold rotation and the σ reflection, which generate the D6 point group of both the honeycomb
and kagome lattices. Yet, the expectation values ⟨T a

i ⟩ of the SU(N) spin operators (2.2) and
their correlation functions ⟨T a

i T
a
j ⟩ will possess all the symmetries of the underlying lattice in

both states |πFS⟩ and PG|πFS⟩, due to the projective symmetry of HMF for the geometric
transformations (assuming periodic boundary conditions, for APBC see E.2).

As discussed in section 2.3, a site-dependent, but flavor-independent gauge transformation
Gf †j,σG

−1 = eiϕ(j)f †j,σ, defined in Eq. (2.16), leaves the spin operators invariant, as shown in
Eq. (2.17). One can use this gauge redundancy of the projective construction to restore the
symmetries of HMF under the geometrical transformations g ∈ {C6, σ,T1,T2}, by applying suit-
able gauge transformations Gg ∈ {GC6 , Gσ, GT1 , GT2

} which undo the effects of the geometrical
transformations gHMFg−1 as

HMF = GggHMFg−1G−1
g = g̃HMFg̃−1, (2.32)

so that HMF is invariant under the combined operation g̃ ≡ Ggg, called projective symmetry (see
[2, Sec. 9.4.2] and Refs. [67, 68, 69, 3]). For example, the π-flux HMF on the honeycomb lattice
has a hopping structure (shown in Fig. 2.2(a)) which is not invariant under the translation T1

by the primitive vector a1. However, we can change the signs of some f †j,σ on certain lattice
sites j (shown in Fig. 2.2 (b)), to reverse the effect of T1 on the hoppings, since changing the
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Figure 2.2: (a) The hopping structure of the π-flux HMF on the honeycomb lattice, white and
black bonds correspond to positive and negative hoppings, respectively. (b) The hopping struc-
ture of HMF after the translation T1HMFT−1

1 by the primitive vector a1. Since the hopping
structures are different, HMF is not invariant under T1. However, we can change the signs of
some f †j,σ on certain lattice sites j (shown with the white circles in (b)), to reverse the effect
of T1 on the hoppings, since changing the sign of a f †j,σ is equivalent to changing the signs of
the hoppings connected to site j. These sign changes correspond to the gauge transformation
GT1 , so that the π-flux HMF is invariant under the combined transformation GT1T1, since GT1

reverses the effect of T1.

sign of a f †j,σ is equivalent to changing the signs of the hoppings connected to site j. These sign
changes correspond to the gauge transformation GT1 , so that the π-flux HMF is invariant under
the combined transformation GT1T1, since GT1 reverses the effect of T1 (for more details see
Appendix E).

The set of all g̃ satisfying Eq. (2.32) form a group, called the projective symmetry group
(PSG) (see [2, Sec. 9.4.2] and Refs. [69, 3]). The gauge transformations GC6 , Gσ, GT1 , GT2

for
both the honeycomb and the kagome lattices are listed in Appendix E

We can use the gauge transformations of Eq. (2.16) to create an equivalence relation, as the
following. Two Hamiltonians HMF

1 and HMF
2 are gauge equivalent, if there exists a G such that

HMF
2 = GHMF

1 G−1, (2.33)

so HMF
1 and HMF

2 are in the same equivalence class. Rephrasing Eq. (2.32), HMF is invariant
under the combined transformation Ggg, if HMF and gHMFg−1 are gauge equivalent. It is
important to emphasize that not all mean-field Hamiltonians are gauge equivalent, for example,
the 0-flux and the π-flux Hamiltonians can not be connected by gauge transformations, they are
in different equivalence classes. Furthermore, one can construct ansätze of staggered 0 and π-
fluxes, which again form separate equivalence classes. These equivalence classes are what define
the hidden quantum order of the quantum spin liquid state at the mean-field level [3, 69]. On a
given lattice, all the ansätze having π-fluxes in every plaquette are gauge equivalent, so that the
quantum order at the mean-field level is the π-flux structure of the ti,j in Eq. (2.6).

One could ask, how can we exclude the possibility that there exists a gauge transformation
connecting the 0-flux, and π-flux cases, just because we could not find any? There are simple
ways to exclude this possibility, for example, to compare the one-particle energy spectra, which
are the same for two gauge equivalent mean-field Hamiltonians HMF

2 = GHMF
1 G−1, since

HMF
1 |ξ1q,b⟩ = EMF

q,b |ξ1q,b⟩
GHMF

1 G−1G|ξ1q,b⟩ = EMF
q,b G|ξ1q,b⟩

HMF
2 |ξ2q,b⟩ = EMF

q,b |ξ2q,b⟩, (2.34)



CHAPTER 2. QUANTUM SPIN LIQUIDS 29

where |ξ1q,b⟩ and |ξ2q,b⟩ = G|ξ1q,b⟩ are one-particle eigenstates of HMF
1 and HMF

2 , respectively, with
the same energy EMF

q,b .
An equivalence class can be characterized by the PSGs of its ansätze, which are slightly

different for every ansatz within one equivalence class, but they can be connected via gauge
transformations [2, Sec. 9.4.2]. If the mean-field ansatz is stable and the fluctuations are weak
(as explained in the next section 2.5), then the quantum order of the mean-field ansatz might
survive the fluctuations and become the quantum order of the real ground state [2, Sec. 9.9.1],
which is then measurable. In the case of a Dirac spin liquid, the quantum order is measurable
through the gapless excitations of the dynamical spin structure factor at certain wave vectors [2,
Sec. 9.7].

Every element of the PSG is of the form Gg, but these also include pure geometrical trans-
formations like (T1)

2 and (T2)
2 (for which the corresponding gauge transformations G(T1)2 and

G(T2)2 are identity), and pure gauge transformations as I and −I, which multiply every fermionic
operator by +1 and −1, respectively (the geometrical transformations g for all these are identity).
The pure gauge transformations form a normal subgroup of the PSG called an invariant gauge
group (IGG) [2, Sec. 9.4.2], meaning that the quotient group PSG/IGG = SG contains only the
geometric transformations g. For a quantum spin liquid ansatz, SG is the symmetry group of the
Heisenberg Hamiltonian of Eq. (1.18), containing all symmetries of the lattice. In the literature,
people refer to the quantum spin liquid ansätze through their IGG (in the SU(2) case these are
typically Z2, U(1), and SU(2)), because it turns out that the IGG characterizes the low energy
gauge fluctuations, and determine whether the ansatz is stable against fluctuations, or not (see
[2, Sec. 9.2.2], and Sec. 2.5). Here we will not determine the IGG of any ansatz (so we will not
construct the full PSGs either), because that would require knowing all pure gauge transforma-
tions leaving HMF invariant. However, there might be gauge transformations mixing different
flavors of fermions (in Eq. (2.16) we used only flavor independent U(1) gauge transformations),
which leave the spin operators of Eq. (2.2) invariant, and may also be elements of the IGG (if
they leave invariant the mean-field Hamiltonian as well). In the SU(2) case, the most general
such gauge transformation G ∈ SU(2), which leaves the Sx, Sy, Sz spin operators of Eq. (2.2)
invariant, is

fj,↑ → ajfj,↑ + bjf
†
j,↓ fj,↓ → ajfj,↓ − bjf

†
j,↑

f †j,↑ → a∗jf
†
j,↑ + b∗jfj,↓ f †j,↓ → a∗jf

†
j,↓ − b∗jfj,↑,

↔ G

(
fj,↑
f †j,↓

)
=

(
aj bj
−b∗j a∗j

)(
fj,↑
f †j,↓

)
, (2.35)

where |aj |2 + |bj |2 = 1 [50, 52] (see the SU(2) projective construction in [2, Sec. 9.2]).
In the SU(2) case, all possible different equivalence classes can be listed by the projective

symmetry group classification [3, 70, 71]. We can not do such a classification for the SU(N > 2)
case here, because that would require constructing the full PSGs (including the full IGGs) of
the ansätze. However, at least certain equivalence classes can be distinguished, for example by
different one-particle energy spectra (see Eq. (2.34)).

2.4.1 Invariance of the Gutzwiller projected state under the symmetries of
the lattice

Here we will show that Gutzwiller projecting the Fermi sea ground states of two gauge equiv-
alent mean-field Hamiltonians results in variational wavefunctions that differ only in a global
phase, and are therefore physically equivalent [2, Eq. (9.1.14))]. In other words, each ansatz in
the same equivalence class results in the same Gutzwiller projected wavefunction, while differ-
ent equivalence classes are believed to give rise to different Gutzwiller projected wavefunctions.
Furthermore, even if a mean-field Hamiltonian is not invariant under some geometrical trans-
formation g, if there exists a combined transformation Ggg leaving HMF invariant, then its
Gutzwiller projected Fermi seas will be invariant under g (up to a global phase).
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If the mean-field ground states |FS1⟩ and |FS2⟩ of the gauge equivalent Hamiltonians HMF
1

and HMF
2 are non-degenerate, we can show (see Appendix D) that they are related as

|FS2⟩ = G|FS1⟩. (2.36)

Our purpose is to prove that

PG|FS2⟩ = PGG|FS1⟩ = eiφPG|FS1⟩, (2.37)

where eiφ is a global (site and configuration independent) phase, which cancels in every expec-
tation value

⟨FS2|PGT
a
i PG|FS2⟩ = ⟨FS1|PGe

−iφT a
i e

iφPG|FS1⟩ = ⟨FS1|PGT
a
i PG|FS1⟩, (2.38)

and is thus unphysical. To see how Eq. (2.37) follows let us write the Fermi sea in real space as
in Eq. (2.13)

PGG|FS1⟩ =
∑
{j}PG

(
N∏

σ=1

slat{jσ}PG
Gf †jσ1 ,σ

G−1Gf †jσ2 ,σ
G−1 . . . Gf †jσ

Ns/N
,σG

−1

)
G|0⟩, (2.39)

where the sets of sites {jσ}PG occupied by different colors do not overlap. Due to the single
occupancy constraint of Eq. (2.5) the number of fermions is equal to the number of lattice
sites Ns, therefore the sets {jσ}PG are disjoint subsets of the set {1, 2 . . . Ns}. Since the gauge
transformation G of Eq. (2.16) is flavor independent, every fermionic operator will bring in
a phase Gf †j,σG

−1 = eiϕ(j)f †j,σ, and the product of the Ns fermionic operators will bring in
the product of phases eiϕ(1)eiϕ(2) . . . eiϕ(Ns), which is independent of the subsets of sites {jσ}
occupied by different flavors. Therefore, these phases can be factored out as the global phase
eiφ = eiϕ(1)eiϕ(2) . . . eiϕ(Ns) [2, Eq. 9.1.14]. This is unlike in the unprojected case, where the
subsets of sites {jσ} might overlap, therefore the product of the phases depends on the {jσ} (in
case of the m > 1 times occupied site j the phase eiϕ(j) will appear as eiϕ(j)m, and the phases
of empty sites will be missing). Furthermore, any Gutzwiller projected state (not just the Fermi
sea) can be written in the real space basis with singly occupied configurations as in Eq. (2.10),
therefore the above arguments can be repeated for any state, implying that PG eliminates any
gauge transformation of the form (2.16) (in the sense that it converts it to an unimportant
global phase). The claim that the gauge equivalent ansätze give rise to physically equivalent
Gutzwiller projected wavefunctions can also be proven in the case of flavor mixing SU(2) gauge
transformations of Eq. (2.35) [2, Sec. 9.2.1.3].

Now that we have proven that all gauge equivalent Hamiltonians result in physically equiva-
lent Gutzwiller projected wavefunctions, we can prove that the Gutzwiller projected Fermi seas
are invariant under the geometric transformations g. If HMF

1 is gauge equivalent to HMF
2 =

gHMF
1 g−1 (meaning that HMF

1 is invairant under Ggg), then their ground states are related as
|FS2⟩ = g|FS1⟩ (as argued in Appendix D). However, as the HMF

1 and HMF
2 are gauge equivalent,

we can also use Eq. (2.37) as

eiφPG|FS1⟩ = PG|FS2⟩ = PGg|FS1⟩ = gPG|FS1⟩ (2.40)

where in the last step we used that the Gutzwiller projector commutes with any geometrical
transformation g (as argued after Eq. (2.13)). The meaning of Eq. (2.40) is that PG|FS1⟩ is
invariant under the action of the geometrical transformation g (up to an unimportant global
phase), therefore every expectation value taken in this state will also be invariant under g. To
see this, let us rewrite Eq. (2.40) as PG|FS1⟩ = eiφg−1PG|FS1⟩, so that
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⟨FS1|PGT
a
i PG|FS1⟩ = ⟨FS1|PGge

−iφT a
i e

iφg−1PG|FS1⟩ = ⟨FS1|PGT
a
g(i)PG|FS1⟩, (2.41)

and similarly for the equal time correlation function

⟨FS1|PGT
a
i T

a
j PG|FS1⟩ = ⟨FS1|PGge

−iφT a
i g

−1gT a
j e

iφg−1PG|FS1⟩ = ⟨FS1|PGT
a
g(i)T

a
g(j)PG|FS1⟩.

(2.42)
Eq. (2.40) is surprising, because the |FS⟩ (without Gutzwiller projection) inherits the sym-

metries of HMF, therefore it is not invariant under the geometric transformations C6, σ,T1,T2.
In fact, just like HMF, |FS⟩ is invariant only under the combined transformations
g̃ ∈ {GC6C6, Gσσ,GT1T1, GT2T2}. However, as we show in Appendix G, the invariance of HMF

under Ggg implies that

⟨FS|T a
i |FS⟩ = ⟨FS|T a

g(i)|FS⟩, ⟨FS|T a
i T

a
j |FS⟩ = ⟨FS|T a

g(i)T
a
g(j)|FS⟩, (2.43)

just like for the Gutzwiller projected state.
Antiperiodic boundary condition can spoil projective symmetries for some g, therefore the

Gutzwiller projected expectation values will not be invariant under these g (see Appendix E.2).
However, as it is only a boundary condition, the asymmetries disappear in the thermodynamic
limit.

2.5 What about the fluctuations?

The excited eigenstates of the mean-field Hamiltonian (2.6), which preserve the total particle
number, can be constructed by removing a fermion of flavor σ from the Fermi sea, and adding
a fermion of flavor σ′ on a higher energy band as f †k+q,b′,σ′fq,b,σ|FS⟩, with εb(q) ≤ εF and
εb′(q) > εF. These excited states are called particle-hole excitations. The states f †k+q,b′,σ′ |FS⟩
and fq,b,σ|FS⟩ are also eigenstates of the mean-field Hamiltonian (2.6), but these do not preserve
the total particle number. In the SU(2) case, both the f †k+q,b′,σ′ |FS⟩ and the fq,b,σ|FS⟩ are called
spinons, so that the particle-hole excitation could be called a two-spinon excitation. In the
SU(N) case, the f †k+q,b′,σ′ |FS⟩ and the fq,b,σ|FS⟩ could be called a flavoron, and an antiflavoron,
respectively. At the mean-field level, these are true eigenstates of HMF, so we can call them
quasiparticles.

The SU(N) spin operators are bosonic operators, so when the ground state is magnetically
ordered (e.g. ferromagnetic or antiferromagnetic), the quasiparticles are also bosonic, like the
already mentioned s = 1 magnon in the SU(2) case. The decomposition of the bosonic SU(N)
spin operators into fermionic operators in Eq. (2.2) is a mathematical formalism, but it allows for
the existence of such fermionic quasiparticles. In the mean-field approximation we neglected the
fluctuations that mediate interactions between the flavorons and the antiflavorons (see Appendix
B). If the interaction between these fermionic mean-field quasiparticles is short-ranged and weak,
then the quasiparticles (excited eigenstates) of the SU(N) Heisenberg model are similar to the
fermionic mean-field quasiparticles. In other words, the bosonic excited states of the ordered state
are split into a pair of fermionic quasiparticles, which is called fractionalization. In this case,
the existence of fermionic quasiparticles is directly measurable in the dynamical spin structure
factor, since at the lowest excitation energies we will see a continuum (implicating a pair of
quasiparticles) instead of a single branch. On the other hand, if the interactions between the
flavorons and the antiflavorons are strong, then the real quasiparticles of the Heisenberg model
will be their bosonic bound states, so the decomposition of Eq. (2.2) remains a mere mathematical
formalism without any physical content. As an example from the SU(2) case, the s = 1 bosonic
magnon can be thought of as a bound state of two s = 1/2 fermionic spinons.
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The interactions are called short-ranged, when the ratio of the interaction energy and the
kinetic energy goes to zero for large distances (low energy), as explained in the book [2, Sec. 9.1.4].
In this case, the interaction is an irrelevant perturbation in the RG sense, and the mean-field
ansatz is said to be stable. If the ratio of the interaction energy and the kinetic energy goes
to a constant, then the interaction is a marginal perturbation (stability is questionable), and
if it diverges it is a relevant perturbation (the mean-field ansatz is unstable). However, not
even a stable mean-field ansatz is guaranteed to give a good approximation of the real ground
state, because even the short-range interactions might be strong enough to change the ground
state and the excitations. In the SU(2) case, it is argued, that Z2 spin liquids (having an IGG
forming a Z2 group [2, Secs. 9.2.6, 9.9.2, 9.9.4], and chiral spin liquids (having fluxes different
from 0 and π, achieved by complex hoppings ti,j [2, Sec. 9.1.6]) are stable, but even these
have typically short-range interactions which are not weak [2, Sec. 9.8]. However, the interaction
between the fermions can be weakened by enhancing the symmetry of the Heisenberg model from
SU(2) to Sp(2N) [5], which means introducing N copies of both the ↑ and ↓ spins [2, Sec. 9.8].
Consequently, in the large-N limit of the Sp(2N) symmetric model, the stable and marginal
mean-field ansätze can become the real ground states of the Sp(2N) Heisenberg model. However,
our large-N limit is different, since we are interested in the SU(N) symmetric Heisenberg model
in the fundamental representation. In the self-conjugate representation of the SU(N) Heisenberg
model, some fluctuations were already argued to become weaker with an increasing N [49, 50],
but this is again not the large-N limit we need. Here we hope that the fluctuations are also
weakened in the SU(N) symmetric large-N limit in the fundamental representation. This is in
agreement with the decreasing difference between the mean-field and the Gutzwiller projected
results presented in the following sections, although the Gutzwiller projection takes into account
only the temporal fluctuations of the chemical potential, and not the interactions between the
fermions [2, Sec. 9.1.1, Eq. (9.1.8)].

Furthermore, in 2+1 dimensions, field-theoretical arguments involving N species of Dirac
fermions suggest that for N > Nc, the Dirac fermions become deconfined, stabilizing the Dirac
spin liquid [72, 73, 74, 75]. However, the precise value of Nc is debated, and the connection with
our models is not fully understood.

As already mentioned in section 2.4, if the mean-field ansatz is stable (and weakly interacting),
the mean-field quantum order protected by the PSG survives the fluctuations, and becomes the
quantum order of the real ground state [2, Sec. 9.9.1]. If the mean-field one-particle energy
spectrum is gapped, the quantum order is called topological order, and is characterized by the
ground state degeneracy [2, Sec. 8.] [3]. If the one-particle energy spectrum is gapless, then
the quantum order is characterized by the existence and location (in reciprocal space) of gapless
excitation towers in the dynamical spin structure factor [2, Sec. 9.10.2]. In Dirac spin liquids,
the measurement of the dynamical spin structure factor serves as an experimental verification of
the quantum order and of the stability of the mean-field ansatz [2, Sec. 9.7]. However, we have
not proven that the π-flux quantum order and its PSG protects gapless fermionic excitations at
certain wave vectors. Yet, the dynamical spin structure factors of the ansätze presented in section
2.3 do have gapless excitations at certain wave vectors. Every ansatz in the same equivalence
class should give the same dynamical spin structure factor, since the SU(N) spin operators are
insensitive to the gauge transformations connecting different ansätze (2.17). It is reasonable to
believe that the PSG should indeed require the existence of gapless excitation towers at certain
wave vectors. Thus, instead of analyzing the fluctuations and the stability of the ansätze, we
present the dynamical spin structure factors of these ansätze in sections 5, 6 and 6, and the
possible ways to experimentally measure them in real systems in section 4.1.
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2.6 Symmetry breaking quantum phase transitions

Before turning to quantum phase transitions without symmetry breaking, let us first reca-
pitulate Landau’s symmetry-breaking theory. A quantum phase transition happens, when while
tuning some parameter of a Hamiltonian (for example the transverse field h in Eq. (2.44)), the
ground state changes from one state |GS1⟩ to another |GS2⟩, where the first state is invariant
under the transformations g ∈ SG1, while the second is invariant under g ∈ SG2. A symmetry
breaking quantum phase transition means that either SG1 ⊂ SG2, or SG2 ⊂ SG1. If SG1 ⊂ SG2,
then |GS1⟩ is not invariant under some of the transformations g ∈ SG2 missing from g /∈ SG1.
The simplest example of such a quantum phase transition is perhaps of the transverse field
ferromagnetic Ising model [76, Sec. 1.4.1]

HI = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j − Jh

∑
i

σ̂xi , (2.44)

where σ̂a are the Pauli matrices. HI has a discrete Z2 symmetry, it is invariant under the
unitary operator U =

∏
i σ̂

x
i , meaning HI = UHIU

−1, where U rotates with π around the x
axis, since σ̂xi σ̂

z
i σ̂

x
i = −σ̂zi and σ̂xi σ̂

x
i σ̂

x
i = σ̂xi . There are two phases, separated by a quantum

phase transition. For large h > hc (paramagnetic phase) there is one non-degenerate ground
state |GS1⟩ =

∏
i | →⟩i = 1√

2

∏
i(| ↑⟩i + | ↓⟩i), which is invariant under U as U |GS1⟩ = |GS1⟩,

so U ∈ SG1. |GS1⟩ is also invariant under all other transformations leaving HI invariant,
like translations, complex conjugation (time reversal), and so on, therefore this phase is called
paramagnetic. Therefore, the symmetry group SG1 of |GS1⟩ is just the symmetry group of HI ,
SG1 = SGHI

. For small h < hc (ferromagnetic phase) HI has two degenerate ground states,
| ↑⟩ =

∏
i | ↑⟩i and | ↓⟩ =

∏
i | ↓⟩i, where | ↑⟩i and | ↓⟩i are the two eigenstates of σ̂zi . Neither

| ↑⟩, nor | ↓⟩ are invariant under U , meaning that the ground states have lower symmetries
than the Hamiltonian, called symmetry breaking. In this case, it is a Z2 symmetry breaking,
so SG2 ⊂ SG1. Symmetry breaking necessarily brings about ground state degeneracy in the
thermodynamic limit, because the eigenvalue equation H| ↑⟩ = E↑| ↑⟩ can be multiplied with U
as UH| ↑⟩ = UE↑| ↑⟩, and the symmetry of H under U ([H, U ] = 0) implies HU | ↑⟩ = E↑U | ↑⟩.
However, if there is a symmetry breaking, | ↑⟩ is not invariant under U , so U | ↑⟩ is a linearly
independent state with the same energy eigenvalue E↑. In the case of the Ising model, U | ↑⟩ = | ↓⟩
and U | ↓⟩ = | ↑⟩. The local order parameter distinguishing the two phases is ⟨GS|σ̂zi |GS⟩ taken
on any site i, which is finite in the ferromagnetic phase (where |GS⟩ is either | ↑⟩ or | ↓⟩) and
zero in the paramagnetic phase.

In HI (2.44) the broken symmetry was a discrete Z2 symmetry, so we got two degenerate
ground states connected with the transformation U . However, if the broken symmetry is con-
tinuous, as the SU(N) spin rotation symmetry of the SU(N) Heisenberg model (1.18), then
the number of degenerate states is larger. If the Hamiltonian has only short-range interactions,
then the Goldstone theorem implies that the spectrum has to be gapless (see page 273 in [4,
Sec. 6.1.2]), which can be understood as an infinitesimal excitation turning one ground state to
another. The simplest example is the SU(2) ferromagnetic Heisenberg model, where the degen-
erate ground states are fully polarized, just as for the Ising model, but a small rotation of the
polarization of all spins gives another ground state. Such a small rotation can be achieved with
a magnon having zero wave vector, so there will be gapless excitations at q = 0.

2.7 Quantum phase transitions without symmetry breaking

A quantum phase transition can also happen without symmetry breaking, meaning that
both |GS1⟩ and |GS2⟩ are invariant under the same transformations g ∈ SG, where in case of
quantum spin liquids SG is the symmetry group of the Hamiltonian. What changes from one
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state (phase) to another is some hidden quantum order, which influences measurable quantities,
like the dynamical spin structure factor.

Some of these quantum phase transitions can be described by projective symmetry groups,
provided that both |GS1⟩ and |GS2⟩ are well approximated with the stable mean-field ansätze
|GS1⟩ ≈ PG|FS1⟩ and |GS2⟩ ≈ PG|FS2⟩ with mean-field Hamiltonians HMF

1 and HMF
2 , respec-

tively. HMF
1 and HMF

2 can not be gauge equivalent, since then |GS1⟩ and |GS2⟩ would be the
same, so there would not be any quantum phase transition. The mean-field Hamiltonians should
not be confused with the original Hamiltonian H having some coupling, which can be tuned
to change the ground state from |GS1⟩ to |GS2⟩. For example, H can be the J1 − J2 SU(2)
Heisenberg model

HJ1−J2 = J1
∑
⟨i,j⟩

Si · Sj + J2
∑
⟨⟨i,j⟩⟩

Si · Sj , (2.45)

where we can fix J2
1 + J2

2 = 1. The mean-field Hamiltonians HMF
1 and HMF

2 are only used
to construct the variational wavefunctions approximating the two lowest energy eigenstates of
HJ1−J2 , namely |GS1⟩ ≈ PG|FS1⟩ and |GS2⟩ ≈ PG|FS2⟩. For example, let us suppose that HMF

1

and HMF
2 are the 0-flux, and π-flux hopping Hamiltonians (2.6), respectively. The variational

energy E(J2/J1) = ⟨FS|PGHPG|FS⟩/⟨FS|PGPG|FS⟩ of every ansatz is a smooth function of
J2/J1. Thus, we can compare the variational energies E0−flux(J2/J1) and Eπ−flux(J2/J1) for
different values of J2/J1. The simplest example of a quantum phase transition is when the
variational energy of the 0-flux ansatz is smaller E0−flux(J2/J1) < Eπ−flux(J2/J1) for J2 < J2C ,
but it becomes bigger E0−flux(J2/J1) > Eπ−flux(J2/J1) for J2 > J2C . Thus, J2C is a critical
coupling, where E0−flux(J2C/J1) = Eπ−flux(J2C/J1). Therefore, for J2 < J2C the ground state is
approximated by the 0-flux ansatz, while for J2 > J2C by the π-flux ansatz. If these mean-field
ansätze are stable, then their quantum orders become the quantum orders of the eigenstates
|GS1⟩ and |GS2⟩ of HJ1−J2 , so the quantum order is changed at the transition point J2C .

A quantum phase transition is of first order, if the slopes of the variational energies ∂E/∂J2
are unequal at the transition point J2C , and second order, if the slopes are equal (continuous
transition) [5]. In a second order transition the mean-field ansätze HMF

1 and HMF
2 can be con-

nected with a small perturbation as HMF
2 = HMF

1 + δHMF, which transfers to the hoppings as
t2i,j = t1i,j + δti,j . The transition between the 0-flux and the π-flux ansätze is not second-order,
since the mean-field Hamiltonians can not be connected with a small perturbation. Let us de-
note the projective symmetry groups of HMF

1 and HMF
2 by PSG1 and PSG2, respectively. In

a second-order transition either PSG2 ⊂ PSG1, or PSG1 ⊂ PSG2 [5] [2, Sec. 9.5]. Since both
states |GS1⟩ and |GS2⟩ must be invariant under all elements of the symmetry group SG of the
original Hamiltonian, both PSG1 and PSG2 must contain a combined transformation Ggg for
every element g ∈ SG (otherwise it would be a symmetry breaking quantum phase transition).
Let us denote the invariant gauge groups of the two ansätze with IGG1 and IGG2, which satisfy
PSG1/IGG1 = SG = PSG2/IGG2. Thus, the condition PSG2 ⊂ PSG1 implies IGG2 ⊂ IGG1.
Consequently, the δH breaks some pure gauge transformations GIGG1 ∈ IGG1, and the combi-
nations GIGG1Ggg (in every coset of IGG1), where g is not the identity. The possible ways of
lowering the IGG1 of an ansatz to IGG2 ⊂ IGG1 determines all possible second-order quantum
phase transitions at the mean-field level [5].

Finally, we would like to note that there are quantum phase transitions that are not accom-
panied by any symmetry breaking, yet they can not be described by projective symmetry groups
because GS1 and GS2 may not be described by stable mean-field ansätze. One such example is
the Mott transition, introduced in section 1.1.1.



Chapter 3

The stability of the SU(6) Dirac spin liq-
uid on the kagome lattice

The SU(2) Heisenberg model on the kagome lattice was argued to be magnetically disordered
[77], therefore we expect the SU(6) Heisenberg model to also exhibit disorder due to increased
quantum fluctuations.

We propose that the ground state of this model may be well described by the Dirac spin-liquid
(DSL) ansatz introduced in Sec. 2.3.2, previously suggested for the SU(2) case [58]. To support
our claim, we search for possible perturbations of the Dirac spin liquid ansatz, meaning that we
modify the hoppings tDSL

i,j of the DSL mean-field Hamiltonian, HDSL(k) in Eqs. (2.6) and (2.28),
as

ti,j = tDSL
i,j (1 + δt̃i,j), (3.1)

where 0 < δ ≪ 1, |t̃i,j | = O(1). The Gutzwiller projected ground state of such a perturbed
mean-field Hamiltonian yields a modified wavefunction |ψt̃i,j

⟩. We then compute the variational
energy ⟨ψt̃i,j

|H|ψt̃i,j
⟩/⟨ψt̃i,j

|ψt̃i,j
⟩ for the perturbed wavefunctions. If the variational energy of

any perturbed ansatz is lower than that of the DSL, this indicates that the DSL is no longer the
ground state, and we say that the DSL is locally unstable against the perturbations in Eq. (3.1).
If the DSL has the lowest variational energy, then we say that the DSL is energetically stable
against the perturbations considered here.

We note that two forms of stability can be distinguished for a fermionic mean-field ansatz:
energetic stability and quantum field-theoretical stability. The latter requires that interactions
between fermions become irrelevant in the renormalization group sense, leading to deconfined
fermions, as discussed in Sec. 2.5. While we have not explicitly checked quantum field-theoretical
stability for the SU(6) case, the large-N value is certainly beneficial. For the remainder of this
chapter, ’stability’ will refer exclusively to energetic stability.

3.1 Real-valued t̃i,j perturbations of the DSL

There are many ways to perturb the DSL ansatz. Here, we consider only real-valued pertur-
bations periodic in the quadrupled unit cell of 12-sites. These include some valence bond like
patterns discussed in Refs. [78, 79, 75, 80]. As shown in in ref. [III.], the symmetry group of
the 12-site unit cell is isomorphic to the Oh group, so the irreducible representations of the t̃i,j
can be classified using the character table of the Oh group. We show the hopping structures of
some perturbed ansätze transforming under the irreps of the Oh group in the first row of Fig. 3.1
and the first column of Fig. 3.2. These real perturbations modify the absolute values of the
hoppings, but leave their signs identical to those of the DSL, keeping the π7π△π▽ flux structure
unchanged.

We also take advantage of the fact that the center of the Oh group is the identity and the
inversion that constitute a normal subgroup. Consequently, the irreducible representations of
the Oh are either even (gerade) or odd (ungerade) under the inversion. The inversion in the Oh

group corresponds to the twofold rotation C2 around the center of a hexagon in the wallpaper
group, so t̃C2(i,j) = +t̃i,j in an even (gerade, g) irreducible representation, and t̃C2(i,j) = −t̃i,j in
an odd (ungerade, u) one. For each irreducible representation, there is a gerade and an ungerade
one.
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In Fig. 3.1 we show the single-parameter ansätze T 1
2g − T 2

2g − T 3
2g, T 1

2g, T 1
2u − T 2

2u − T 3
2u, T 1

2u,
and A1u with the parameter δ (here we allow negative δ, which is like multiplying the t̃i,j by
−1). The T 1

2g − T 2
2g − T 3

2g (first column in figure) coincides with the famous "pinwheel" pattern
in deformed kagome material Rb2Cu3SnF12 [81]. We do not plot the A1g since it changes the
hoppings uniformly, leaving the wave function equivalent to the DSL.

Figure 3.1: In the first row, we show the hopping structure of the real perturbations of the Dirac
spin liquid having a single free parameter δ. Different shades represent different absolute values
of the hoppings. The empty bonds stand for positive hoppings, while the solid bonds for negative
hoppings (each ansatz has a π7π△π▽ flux structure, just as the DSL). The black bonds have
absolute value 1, the dark red hoppings 1+ δ, and the light reds 1− δ. In the midle row, the red
points show the ∆⟨P△+P−1

△ ⟩, the blue points ∆⟨P1st⟩, and the green points ∆⟨P2nd⟩ defined in
Eq. (3.5), while the solid lines are the fitted parabolas. The bottom row shows the local stability
of these ansätze (as explained in sec. 3.2.1), as a function of K and J2, fixing J1 = 1. The DSL
is the lowest energy state in the red region, and the perturbation wins in the blue region. All
these results were calculated for a cluster of 192 sites with APBC.

In Fig. 3.2 we show the two-parameter ansätze −T 1
1g +T 2

1g +T 3
1g, T 3

1g, −T 1
1u+T 2

1u+T 3
1u, T 3

1u,
v1E

1
g + v2E

2
g , and v1E

1
u + v2E

2
u. To make the comparison of the different ansätze in Fig. 3.2

unambiguous, we have collected the different hopping amplitudes in Tab. 3.1.

We can identify the −T 1
1g + T 2

1g + T 3
1g ansatz with the David star ansatz studied in [78] for

the SU(2) case. There, it had a single parameter δ, which is identical to α = 1 and β = 0 in our
notation, so that each bond on the edge of a David star is strengthened as ti,j = tDSL

i,j (1+δ), while
all other hoppings are weakened as ti,j = tDSL

i,j (1 − δ) (see Tab. 3.1). Some linear combinations
are equivalent, for example, T 1

1g − T 2
1g + T 3

1g is a David star shifted in a2 direction. Allowing for
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Figure 3.2: In the first column, we show the hopping structure of the real perturbations of
the Dirac spin liquid having two free parameters. Different colors represent different absolute
values of the hoppings listed in Tab. 3.1 for the denoted irreducible representation. The empty
bonds stand for positive hoppings, while the solid bonds for negative hoppings (each ansatz has
a π7π△π▽ flux structure, just as the DSL). The second column shows the ∆⟨P1st⟩, the third
∆⟨P2nd⟩, and the fourth ∆⟨P△ + P−1

△ ⟩ defined in Eq. (3.5), calculated by VMC for a cluster of
192 sites with APBC, the δ = 0 is the DSL. The effect of the APBC is visible only in the ∆⟨P2nd⟩
of αE1

g + βE2
g (which becomes flat after averaging over all APBC orientations). The contours

of the fitted ellipsoids are shown in light green, while the contours of the data are orange. The
fifth column shows the local stability of these ansätze (see Sec. 3.2.1), as a function of K and
J2, keeping J1 = 1. The DSL has the lowest energy in the red region and the perturbed ansatz
of the given row in the blue region.
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ansatz color relative hoppings ti,j/tDSL
i,j

−T 1
1g + T 2

1g + T 3
1g

red t ≈ 1
green t7 ≈ 1 + 2(β − α)δ
blue t△ ≈ 1− 2(β + α)δ

T 3
1g

dark green 1 + αδ
light green 1− αδ
dark red 1 + βδ
light red 1− βδ

−T 1
1u + T 2

1u + T 3
1u

dark green 1 + (2β − α)δ
light green 1− (2β − α)δ
dark red 1 + αδ
light red 1− αδ
light blue 1 + (2β + α)δ
dark blue 1− (2β + α)δ

T 3
1u

dark green 1 + αδ
light green 1− αδ
dark red 1 + βδ
light red 1− αδ

α|E1
g ⟩+ β|E2

g ⟩
green 1 + (α− β)δ
red 1 + 2βδ
blue 1− (α+ β)δ

α|E1
u⟩+ β|E2

u⟩

dark red 1 + 2βδ
light red 1− 2βδ
dark blue 1 + (α+ β)δ
light blue 1− (α+ β)δ
light green 1 + (α− β)δ
dark green 1− (α− β)δ

Table 3.1: The hopping amplitudes for all two-parameter ansätze in Fig. 3.2 are listed in the third
column, with their colors in the second column. The first column is the label of the irreducible
representation of the Oh group, identifying the perturbed ansatz.
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β ̸= 0, we consider a more general David star ansatz,

ti,j = tDSL
i,j (1 + αδ) (3.2a)

t△i,j = tDSL
i,j [1− (2β + α)δ] (3.2b)

t7i,j = tDSL
i,j [1 + (2β − α)δ] , (3.2c)

shown in the first row of Fig. 3.2. The ti,j denotes the hoppings amplitudes on the edge of
the David star (red bonds in Fig. 3.2), the t△i,j on the interstar triangles (blue) and t7i,j on the
hexagon within the star (shown by green). After Gutzwiller projecting the ground state of
the David star mean-field Hamiltonian (2.6), only the ratios of the hopping amplitudes remain
essential. Therefore, using the notations ti,j = tDSL

i,j t , t△i,j = tDSL
i,j t△, and t7i,j = tDSL

i,j t7, we can
divide with 1+αδ, getting t = 1, and use t△ ≈ 1−2(β+α)δ and t7 ≈ 1+2(β−α)δ as the two
free parameters (also listed in Tab. 3.1), instead of αδ and βδ. The David star is special because,
for weak t△ hoppings, the nearly decoupled 12 sites tend to transform as an SU(6) singlet, with a
Young tableau of two columns and six rows (see Appendix A.5). This can be contrasted with the
A1u configuration, which results in almost decoupled triangles - an ideal starting point for the
trimerized phase of the SU(3) Heisenberg model [82, 83]. Another interesting case is |t | < |t△|
and |t | < |t7| when the six spins in the hexagon tend to transform as an SU(6) singlet (with
a Young tableau of a single column of 6 boxes) and the spins in the decoupled triangles as the
20-dimensional self-conjugate irreducible representation (with a Young tableau of a single column
of 3 boxes).

In the T 3
1g ansatz, the hopping amplitudes alternate along parallel lines while the rest of the

bonds remain unchanged (shown in the second row of Fig. 3.2). Refs. [78, 79, 79] also considered
this dimerized ansatz for the SU(2) case, setting α = 1 and β = 0. Allowing for β ̸= 0 we
consider a more general pattern, for which the hoppings are given in Tab. 3.1.

Both the ungerade David star ansatz −T 1
1u + T 2

1u + T 3
1u and T 3

1u are shown in the third and
fourth rows of Fig. 3.2. They have only two free parameters αδ and βδ, despite parametrizing
six and four different hoppings, respectively, which are given in Tab. 3.1.

The ansatz v1E1
g +v2E

2
g is shown in the fifth row of Fig. 3.2, for which the hoppings are given

in Tab. 3.1. For v1 = 0 and v2 = 1 it describes anisotropic chains with hoppings ti,j = tDSL
i,j (1+2δ)

along one direction and ti,j = tDSL
i,j (1 − δ) along the other two. The linear combinations with

v1 = ±
√
3v2 rotate the chains with different hoppings. For v1 = 1 and v2 = 0, the lines in the

three different directions have three different strengths ti,j = tDSL
i,j (1 + ξδ), with ξ ∈ {−1, 0, 1}.

Here again, the v2 = ±
√
3v1 rotates the unequivalent chains.

For the ungerade Eu we show the ansatz v1E1
u+v2E

2
u in the sixth row of Fig. 3.2 and Tab. 3.1.

The A1g, A1u, Eg, Eu ansätze are gapless and have a two-fold degenerate Dirac Fermi point
at k = 0, similarly to the DSL. Among the real perturbations, only the T1g and T2g open a
gap. However, for the T1g the gap closes along a curve going through the tH = tT = t and the
(tT = 0, tH = −t/

√
2) point (shown with the dashed green line in Fig. 3.2), and a Dirac cone

appears. The T1u and T2u have two Dirac Fermi points at non-zero kD and −kD values, each
non-degenerate. In the projective sense, the translational symmetry is restored for the A1 and
E ansätze, but they break the point group symmetries. The T1g and T2g keep some of the point
group projective symmetries but break translation symmetries, while the T1u and T2u break both
the translations and point group symmetries.

As we will show in Figs. 3.1 and 3.2, all of these real perturbations increase the variational
energy, so the Dirac spin liquid remains the lowest energy state.
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3.2 Stability of the DSL

The Heisenberg Hamiltonian of Eq. (1.18) is a result of the leading order perturbation theory
of the repulsive Hubbard Hamiltonian of Eq. (1.2) for U/t → ∞. However, we can incorporate
further terms so that the effective Hamiltonian reads

H = J1
∑
⟨i,j⟩

Pi,j + J2
∑
⟨⟨i,j⟩⟩

Pi,j +K
∑
⟨i,j,k⟩

(Pi,j,k + P−1
i,j,k), (3.3)

where the ⟨⟨i, j⟩⟩ denotes second nearest neighbor sites and the Pi,j,k is the ring exchange
operator acting on elementary triangles ⟨i, j, k⟩. The J1 is of the order t2

U and usually posi-
tive (antiferromagnetic), K ∝ t3

U2 , and J2 ∝ t4

U3 in case it arises from nearest neighbor hop-
pings. Written explicitly, Pij and Pijk are defined through their action on the local basis states,
Pij |σ1⟩i⊗|σ2⟩j = |σ2⟩i⊗|σ1⟩j and Pijk|σ1⟩i⊗|σ2⟩j ⊗|σ3⟩k = |σ3⟩i⊗|σ1⟩j ⊗|σ2⟩k, for a fixed ori-
entation of the triangle i, j, k. The variational energy per lattice site of the effective Hamiltonian
(3.3) can be written as

E

Ns
=

1

Ns

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

= 2J1⟨P1st⟩+ 2J2⟨P2nd⟩+
2

3
K⟨P△ + P−1

△ ⟩, (3.4)

where the ⟨P1st⟩ is the averaged expectation value of the permutation operator between the
nearest neighbor sites, the ⟨P2nd⟩ between the second neighbor sites, and ⟨P△ + P−1

△ ⟩ of the
ring exchange on the triangles. The coefficients consider that there are twice as many first- and
second-neighbor bonds than sites and two triangles for every three sites. The expectation values
of these exchange operators were evaluated by Monte Carlo sampling the wavefunctions |ψ⟩ of
the ansätze discussed in section 3.1, for details see Appendix J. Figures 3.1 and 3.2 show the
expectation values relative to the DSL, i.e.,

∆⟨P1st⟩ = ⟨P1st⟩ − ⟨P1st⟩DSL (3.5a)
∆⟨P2nd⟩ = ⟨P2nd⟩ − ⟨P2nd⟩DSL (3.5b)

∆⟨P△ + P−1
△ ⟩ = ⟨P△ + P−1

△ ⟩ − ⟨P△ + P−1
△ ⟩DSL (3.5c)

for all ansätze as a function of the perturbation strength. On the one hand, we will see that the
⟨P1st⟩ is minimal for the DSL for small perturbations for all the ansätze we considered. We call
this the local stability of the DSL. On the other hand, comparing with the expectation values
⟨P2nd⟩ and ⟨P△+P−1

△ ⟩ we find that the values of J2/J1 and K/J1 needed to destabilize the DSL
are not small, as explained in the next section.

3.2.1 Calculation of the threshold values of J2 and K

To assess the stability of the DSL, we calculated the minimum values of J2 and K (fixing
J1 = 1) needed to locally destabilize the DSL in favor of the real perturbations discussed in
Sec. 3.1. Specifically, we determined the threshold values of J2 and K in the Hamiltonian (3.3)
where the variational energy of the DSL becomes indistinguishable from that of a perturbed
ansatz up to the Monte Carlo error. The results, presented in the last row of Fig. 3.1 and
the last column of Fig.3.2, indicate that the DSL remains locally stable over a relatively large
parameter region.

First, we considered the ansätze with two free parameters. We fitted a quadratic surface
(ellipsoid) to the expectation values of the exchanges X = ⟨P1st⟩, ⟨P2nd⟩, and ⟨P△ + P−1

△ ⟩ for
small δ values around the DSL point,

f(αδ, βδ)X = aX(αδ)2 + bX(βδ)2 + 2cXαβδ
2 . (3.6)
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The data sets consisted of 11 × 11 points in the αδ, βδ plane, all having a Monte Carlo error,
which we considered in the fitting procedure and transferred to the parameters aX , bX , and cX .
Fig. 3.2 shows the results of this analysis. To facilitate the comparison between the calculated
and fitted values, the contours of the Monte Carlo data are shown in orange, and the contours
of the fitted surface in green (we use the same quadratic contour level spacing for every figure,
both for the contours of the fitted ellipsoids and the contours of the Monte Carlo data). For
the nearest neighbor exchange ⟨P1st⟩, the expectation value is the smallest for δ = 0, thus
providing numerical evidence for the local stability of DSL. However, the expectation values of
the second neighbor and ring exchanges show a different picture: the ⟨P2nd⟩ can lose or gain
energy depending on the perturbed ansatz, but the ⟨P△ + P−1

△ ⟩ will always gain energy with
perturbations (assuming K > 0).

To calculate the threshold values J2 and K, we calculated the curvatures of the ellipsoid

f(αδ, βδ)E =

(
a1 + a2 +

1

3
a△

)
(αδ)2 +

(
b1 + b2 +

1

3
b△

)
(βδ)2 + 2

(
c1 + c2 +

1

3
c△

)
αβδ2 .

(3.7)
which fits on the variational energy per site E/(2Ns) = ⟨P1st⟩ + J2⟨P2nd⟩ + 1

3K⟨P△ + P−1
△ ⟩ of

Eq. 3.4. The curvatures are the eigenvalues of the matrix(
J1a1 + J2a2 +

K
3 a△ J1c1 + J2c2 +

K
3 c△

J1c1 + J2c2 +
K
3 c△ J1b1 + J2b2 +

K
3 b△

)
. (3.8)

If both of these curvatures are positive, then the DSL has the lowest variational energy for these
J2 and K values (red region). If at least one of the curvatures becomes negative, the DSL is
certainly unstable (blue region), since some perturbed ansätze have lower variational energies.
If the curvatures can not be distinguished from 0 up to the Monte Carlo error, then we can not
conclude (white region).

For the ansätze with a single free parameter δ, shown in Fig. 3.1, we fit a simple parabola
to ∆E/Ns instead of a quadratic surface, and the coefficient of the δ2 takes the role of the
eigenvalues discussed above. We repeat the same procedure to get the regions of stability.

For the David star shown in the first row of Fig. 3.2, we used t7, and t△ (given in Tab. 3.1)
instead of αδ and βδ. For this ansatz, there are sizeable contributions in δ3, so we considered
only a tiny neighborhood around the t7 = t△ = 1 DSL point to fit the quadratic surface. The
energy differences were also tiny, with large relative errors, explaining the large white region.
However, we expect the same local stability figure as we obtained for the T 3

1g, where the δ3 are
absent. Indeed, the calculations give a smaller relative error in that case and a smaller white
region.

Summary

In this chapter, we showed that the Dirac spin liquid ansatz is energetical stable against its
real-valued perturbations in the quadrupled 12-site unit cell. Furthermore, we found that the
values of the second-neighbor (J2) and ring (K) exchanges necessary to destabilize the DSL are
not small relative to J1, highlighting its resilience to further interactions. However, our study
cannot exclude an SU(6) symmetry-breaking ground state of some form.

These results were published in Ref. [III.], where we have also shown that the Dirac spin
liquid is globally stabile against every possible David star ansatz, chiral ansätze in the 12-site
unit cell, and also chiral ansätze in larger unit cells.



Chapter 4

Dynamical spin structure factor
The dynamical spin structure factor gives precious information about the magnetic excitations

and the nature of the ground state of a material. It is always associated with a Hamiltonian,
describing the system of interest. The dynamical spin structure factor at T = 0 K is the Fourier
transform of the dynamic spin correlation function

Sab(k, ω) ≡ 1

NB

∑
s,s̄

e−ik·(δs−δs̄) 1

NC

∑
R,R̄

e−ik·(R−R̄) 1

2π

∫ ∞

−∞
eiωt⟨GS|T a

R,s(0)T
b
R̄,s̄(t)|GS⟩dt, (4.1)

where |GS⟩ is the ground state of the Hamiltonian H, T b
R̄,s̄

(t) ≡ e−iHtT b
R̄,s̄
eiHt, a, b ∈ {1 . . . N2−

1}, the SU(N) spin operators are taken on sites with lattice vectors R+δs and R̄+δs̄, R and R̄
are the Bravais lattice vectors of the unit cells, δs and δs̄ are basis vectors, s and s̄ are sublattice
indices, NC is the number of unit cells and NB is the number of basis sites in a unit cell (the
number of possible sublattice indices), so that NB × NC = Ns is the number of lattice sites.
Defining the Fourier transform of an SU(N) spin operator as

T a
k ≡ 1√

Ns

∑
R,s

eik·(R+δs)T a
R,s, (4.2)

we can rewrite Sab(k, ω) as

Sab(k, ω) =
1

2π

∫ ∞

−∞
eiωt⟨GS|T a

−k(0)T
b
k(t)|GS⟩dt =

∑
f

1

2π

∫ ∞

−∞
eiωt⟨GS|T a

−k(0)|f⟩⟨f |T b
k(t)|GS⟩dt

(4.3)
where we inserted the identity as I =

∑
f |f⟩⟨f | with the sum going through the eigenstates

|f⟩ of the Hamiltonian, so that eiHt|f⟩ = eiEf t|f⟩. Using ⟨f |T b
k(t)|GS⟩ = ⟨f |e−iHtT b

ke
iHt|GS⟩

= ei(EGS−Ef )t⟨f |T b
k|GS⟩ and

∫∞
−∞ eiωtei(EGS−Ef )tdt = 2πδ(ω + EGS − Ef ), we get

Sab(k, ω) =
∑
f

⟨GS|T a
−k|f⟩⟨f |T b

k|GS⟩δ(ω − (Ef − EGS)) , (4.4)

or for the a = b case

Saa(k, ω) =
∑
f

|⟨f |T a
k |GS⟩|2 δ(ω − (Ef − EGS)) , (4.5)

where the matrix elements |⟨f |T a
k |GS⟩|2 are called the spectral weights.

In case of the SU(N) symmetric Heisenberg Hamiltonian (1.18), Sab(k, ω) = δa,bS
ab(k, ω).

Due to the SU(N) spin rotational symmetry of the Heisenberg Hamiltonian (1.18) and its mean-
field hopping Hamiltonian (2.6), the Saa(k, ω) is the same for all a ∈ {1 . . . N2 − 1} in both
cases. It is convenient to calculate the Saa(k, ω) only for the diagonal SU(N) spin operators.
Using the convention of the SU(N) spin operators in the fundamental representation presented
in Appendix A.3, the

T 3
k =

1√
Ns

∑
R,s

eik·(R+δs) 1

2

(
f †R,s,1fR,s,1 − f †R,s,2fR,s,2

)
(4.6)

will always be diagonal (the generalization of Sz) so that we will calculate S33(k, ω).

42
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Figure 4.1: The original, extended, and reduced Brillouin zones of the honeycomb (a) and kagome
lattices (b), with the color codes shown at the bottom. The dynamical structure factor is periodic
only in the extended Brillouin zone, because neither the honeycomb, nor the kagome lattices are
Bravais lattices.

If the underlying lattice of the Hamiltonian is a Bravais lattice (having one basis site in its
unit cell NB = 1), then the Saa(k, ω) will be periodic in the original Brillouin zone. However, if
the underlying lattice is not a Bravais lattice (meaning that NB > 1), which is the case of the
honeycomb (NB = 2) and the kagome (NB = 3) lattices, then the Saa(k, ω) will not be periodic
in the original Brillouin zone, due to the term eik·δs in Eq. (4.2). Instead, the Saa(k, ω) will be
periodic only in the extended Brillouin zone shown in Fig. 4.1 (for an explanation see Appendix
H). Therefore, to have all the information about the Saa(k, ω), we have to calculate it in the
extended Brillouin zone k ∈ eBZ instead of the original Brillouin zone.

4.1 Measurement of the dynamical spin structure factor in real
materials

The Saa(k, ω) can be measured, among others, in inelastic neutron scattering, Bragg spec-
troscopy, resonant inelastic X-ray scattering, electron spin resonance, and light absorption ex-
periments.

4.1.1 Inelastic neutron scattering experiments

In inelastic neutron scattering experiments, a small (a few mm3) sample is irradiated with
a beam of unpolarised neutrons of incident wave vectors ki, which are scattered on the sample
and acquire final wave vectors kf [84, Chap. 3.]. The momentum of a neutron is p = ℏk and its
kinetic energy is E = ℏ2k2/(2m), where m is the neutron mass. The conservation of momentum
and energy implies, that the neutron has transferred momentum ∆p = ℏ(ki − kf ) and energy
∆E = ℏ2(ki

2 − kf
2)/(2m) = ℏω to the sample, where k ≡ ki − kf is called the scattering

vector and ∆E = ℏω the energy transfer, these are the arguments of Sab(k, ω). For |ki| = |kf |
the ∆E = 0, this is called elastic neutron scattering. The scattering is inelastic, if the energy
transferred is finite. Such experiments measure the partial differential cross section d2σ/(dΩdE),
which is the number of neutrons scattered per second per unit incident flux, into a range of solid
angle dΩ and with a range of energies between E and E+dE. Neutrons are scattered by atomic
nuclei and the total magnetic moments of the electrons (including spin and orbital angular
momentum). The contribution of the atomic nuclei can be separated, and the d2σ/(dΩdE)
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originating from the total magnetic moments of the electrons turns out to be directly related to
the dynamical spin structure factor Sab(k, ω). At a sufficiently low temperature, the Sab(k, ω)
extracted from the experimental data should coincide with the zero temperature expression of
Eq. (4.5).

4.1.2 Bragg spectroscopy for ultracold atoms

Regarding optically trapped ultracold atomic experiments, inelastic neutron scattering is not
possible, but for atoms with spin 1/2, the dynamical spin structure factor can be measured with
Bragg spectroscopy (see Ref. [85, 86], and for a general description of Bragg spectroscopy [10,
Sec. 14.4]).

In such an experiment, the sample is illuminated with two phase-locked laser beams with
wave vectors k1 and k2, and frequencies ω1 and ω2, enclosing an angle θ. The atoms absorb
photons from one beam and emit photons into the second beam. Meanwhile, their momenta
change as ∆pBragg = ℏ(k1−k2) and their energy change as ∆EBragg = ℏ(ω2−ω1). The transfer
of momentum can be tuned independently of the energy transfer by changing the angle θ between
the two beams.

In the coherent momentum transfer method (CMTM, [87], [10, Sec. 14.4]) the confining
potential is turned off immediately after the application of the Bragg pulses, followed by the
free expansion of the atoms. Using light absorption images at different times after the release of
the atoms (called time-of-flight absorption imaging), it is possible to determine the momentum
∆pBragg transferred to a fraction of the atoms, as a function of the ∆EBragg [10, Sec. 14.2].
However, this method was initially applied only for the measurement of the dynamical density
structure factor. It was generalized to measure the dynamical spin structure factor of 6Li atoms
in the experiment of Ref. [85] (and later used in Ref. [86]), where the two Bragg lasers were
detuned close to resonance. Every 6Li atom has two degenerate ground states, labeled as |F =
1/2,mf = 1/2⟩ and |F = 1/2,mf = −1/2⟩. In this experiment, the CMTM method was applied
so that t↑ time after turning off the confinement potential a light absorption image was taken
of the atoms in state |F = 1/2,mf = 1/2⟩. The imaging laser frequency was then rapidly
switched and a second image was taken of atoms in state |F = 1/2,mf = −1/2⟩, time t↓ after
the first. Taking separate images of each spin state at different times allowed them to measure
the differential center of mass cloud displacement (from which ∆pBragg can be calculated), which
is insensitive to fluctuations in the trap position, and the order of the images.

Unfortunately, such measurements were not yet performed for atoms with SU(N) spins (e.g.
the 173Yb isotopes with SU(6) symmetric nuclear spins mentioned in Sec. 1.1.3).

4.2 S33(k, ω) of the mean-field hopping Hamiltonian

The Saa(k, ω) of Eq. (4.5) can be calculated exactly for the mean-field hopping Hamiltonian
HMF of Eq. (2.6), for any hoppings ti,j , which will serve as comparison with the Gutzwiller
projected case (allowing us to interpret the Gutzwiller projected results), and also as a guide for
building the Gutzwiller projected particle-hole excitations in section 4.3.

The exact ground state of the noninteracting HMF is the Fermi sea |GS⟩ = |FS⟩, (see Eqs. (2.8)
and (2.27)), and the exact excited eigenstates |f⟩ are particle-hole excitations

f †k+q,b′,σfq,b,σ|πFS⟩, (4.7)

where a particle of flavor σ and wave vector q is transferred from an occupied band of the Fermi
sea with band index b, to one of the unoccupied bands with band index b′, to wave vector k+q.
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In Appendix I (see also Ref. [II.]) we derive the simple formula

S33
MF(k, ω) =

1

2Ns

∑
q∈rBZ

∑
b,b′

εb′ (k+q)>εF
εb(q)<εF

∣∣∣∣∣∣
∑

s∈{A,B... }

eik·δsv∗k+q,b′,svq,b,s

∣∣∣∣∣∣
2

× δ (ω − εb′(k+ q) + εb(q)) ,

(4.8)
where the complex numbers vq,b,s are the coefficients of the band eigenstates {f †q,b,σ|0⟩} in the
site basis {f †q,s,σ|0⟩} (see Eq. 2.27), normalized as

∑
s |vq,b,s|2 = 1. The Dirac delta in Eq. 4.5

implies ω = Ef −EGS, where both Ef and EGS are sums of the filled one-particle energies, and
they differ only due to the particle-hole excitation of Eq. (4.7), implying ω = εb′(k+ q)− εb(q).

For the π-flux HMF introduced in sections 2.3.1 and 2.3.2, the exact ground state is the
|πFS⟩, where only the two-fold degenerate lowest band is occupied (see Eqs. (2.26) and (2.31)).
As mentioned in sections 2.3.1 and 2.3.2, the π-flux HMF has a quadrupled unit cell (see Fig. 2.1
(a) and (c)), implying that one-particle spectrum is periodic in the reduced Brillouin zone (rBZ),
which is a quarter of the original Brillouin zone, as shown in Fig. 4.1 (for details see Appendix H).
However, the SU(N) Heisenberg Hamiltonian (1.18) does not break any symmetry of the lattice,
therefore the wave vector k in the associated Saa(k, ω) in Eq. (4.5) has to be in the extended
Brillouin zone of the lattice, as argued in section 4 and Appendix H. To be able to compare the
Saa

MF(k, ω) of the π-flux HMF and the Saa(k, ω) of the SU(N) Heisenberg Hamiltonian (1.18),
the wave vector k has to be in the extended Brillouin zone in both cases. Consequently, even if
q ∈ rBZ, k+q will be in the extended Brillouin zone. Since the one-particle spectrum is periodic
in the rBZ, we can turn back the k + q to the rBZ by adding a reciprocal lattice vector Q as
k+ q+Q ∈ rBZ, as explained in Appendix I.

The S33
MF(k, ω) will be gapless due to the term δ (ω − εb′(k+ q) + εb(q)), since in the ther-

modynamic limit εb′(k+q) = εb(q) when a particle is excited from the top of the Fermi sea (with
b ∈ {1, 2}) to the bottom of the Dirac cone in the second band (b′ ∈ {3, 4}) (see Figs. 2.1(b),
2.1(d), and 6.2(d)). This happens not only at the relative wave vector k = (0, 0) ∈ eBZ (the Γ
point), but also at the M, M’, and Γ′ points of the eBZ, because when turned back to the rBZ,
these are equivalent to k = (0, 0) ∈ rBZ, which we will call the ΓMF point (the centers of the red
hexagons in Figs. 4.1(a) and (b), all of which host Dirac Fermi points).

4.3 Variational method: Gutzwiller projected particle-hole exci-
tations

Let us consider first translationally symmetric mean-field Hamiltonians (0-flux case) and Bra-
vais lattices (with one basis site per unit cell), like a one-dimensional chain, the two-dimensional
square and triangular lattices, so we don’t have to carry the sublattice (or band) indices.

4.3.1 Translationally invariant mean-field ansätze on Bravais lattices

Following Refs. [88, 89, 90], as an analogy of the mean-field particle-hole excitations of
Eq. (4.7), we can define the Gutzwiller projected particle-hole excitations as

|k,q, σ⟩ ≡ PGf
†
k+q,σfq,σ|FS⟩. (4.9)
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We can rewrite these states to real space using Eq. (2.27) (which has only one band now, with
vq,1,1 = 1) as

PGf
†
k+q,σfq,σ|FS⟩ = 1

NC

∑
R,R′

ei(k+q)Re−iqR′
PGf

†
R,σfR′,σ|FS⟩ (4.10)

=
1

NC

∑
R,R′

ei(k+q)Re−iqR′∑
x

(
N∏

σ=1

slat{jσ}

)
PGf

†
R,σfR′,σ|x⟩,

where in the second line we have substituted the real space expression of |FS⟩ from Eq. (2.10).
This expression shows us that the configurations |x⟩ giving non-zero weights are those which
have one hole at R and two fermions at R′, so that |x′⟩ = f †R,σfR′,σ|x⟩ has only singly occupied
sites, otherwise the Gutzwiller projector would kill |x′⟩.

Eq. (4.10) also explains why we can not have excitations like f †k+q,σfq,σPG|FS⟩ since these
would have terms like f †R,σfR′,σPG|x⟩, where PG|x⟩ is a product state of singly occupied sites,
so the f †R,σfR′,σPG|x⟩ have a doubly occupied site at R, and an empty site at R′. Consequently,
the state f †R,σfR′,σPG|x⟩ violates the single occupancy constraint (2.5), implying that the Hilbert
spaces of fermions and SU(N) spins would not be mapped to each other in a one-to-one corre-
spondence.

If the mean-field ansatz is stable (the interactions between the fermions are short-ranged
and weak), then the PG|FS⟩ and the above-defined excitations are expected to give a good
approximation of the low-energy excited eigenstates of the Heisenberg Hamiltonian (1.18). In
other words, the real ground state and its lowest energy excitations are expected to be similar
to the Gutzwiller projected mean-field ground state, and its Gutzwiller projected particle-hole
excitations. However, this qualitative similarity is not expected to give quantitatively perfect
answers, since the fluctuations can cause small changes even if the mean-field ansatz is stable.
Still, the existence and location of the gapless towers in the dynamical spin structure factor
allows the identification of a gapless quantum spin liquid.

Although we call the states in Eq. (4.9) excitations, these states are not eigenstates of the
Heisenberg Hamiltonian (1.18), they are not even all linearly independent. However, in Saa(k, ω)
of Eq. (4.5) the |f⟩ must be eigenstates of the Hamiltonian. We can construct approximating
eigenstates, by projecting the Heisenberg Hamiltonian onto the subspace of these Gutzwiller
projected particle-hole excitations as H̃ ≡ ⟨k,q, σ|H|k′,q′, σ′⟩, and solving the generalized eigen-
value problem H̃|f⟩ = Ef Õ|f⟩, where Õ ≡ ⟨k,q, σ|k′,q′, σ′⟩ is the overlap matrix (it appears
because the states |k,q, σ⟩ are not orthonormal). These |f⟩ are only approximate eigenstates of
H because the subspace of the states |k,q, σ⟩ is not closed under the action of H.

We can project the Hamiltonian on a different set of states without changing the energy
eigenvalues Ef or the spectral weights, provided that the new set of states span the same subspace
as the |k,q, σ⟩. In other words, transforming the Hamiltonian and the overlap matrices by a
unitary operator U does not change the eigenvalues Ef , and the eigenstates |f⟩ are simply rotated
as U |f⟩, since UH̃U−1U |f⟩ = EfUÕU−1U |f⟩. If the H and O matrices are evaluated exactly,
we obtain exactly the same eigenvalues Ef and spectral weights for any set of states spanning
the same subspace. Therefore, instead of projecting the Hamiltonian to the states |k,q, σ⟩, we
can project it to the real-space states

|R,R′, σ⟩ ≡ PGf
†
R,σfR′,σ|FS⟩, (4.11)

as H̃ ≡ ⟨R,R′, σ|H|R̄, R̄′, σ′⟩ with Õ ≡ ⟨R,R′, σ|R̄, R̄′, σ′⟩, and solving the generalized eigen-
value problem H̃|f⟩ = Ef Õ|f⟩ for these matrices. The unitary transformation connecting these
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states with the previous ones can be read off from Eq. (4.10) to be

|k,q, σ⟩ = 1

NC

∑
R,R′

ei(k+q)Re−iqR′ |R,R′, σ⟩. (4.12)

Following Ref. [91], we can project out the eigenstates of the translation operator from the
states |R,R′, σ⟩, using the projector

1√
NC

∑
R′

eik·R
′
TR′ , (4.13)

where TR′ ≡ T
R′

1
1 T

R′
2

2 is the translation operator translating by the Bravais lattice vector R′ =
R′

1a1 + R′
2a2, while T1 and T2 translates by the primitive vectors a1 and a2, respectively. This

projector projects a state to the eigensubspace of the translation operator TR with eigenvalue
e−ik·R, since

TR

∑
R′

eik·R
′
TR′ · · · =

∑
R′

eik·R
′
TR′+R · · · =

∑
R̃′

eik·(R̃
′−R)TR̃′ · · · = e−ik·R

∑
R̃′

eik·R̃
′
TR̃′ . . .

(4.14)
where in the third step we changed the summation variable to R̃′ ≡ R′ + R. Consequently,
applying this projector on the real space state |R,0, σ⟩ of Eq. (4.11) results in an eigenstate of
the translation operator, with the hole and the doubly occupied site being separated by R, as

|k,R, σ⟩ ≡ 1√
NC

∑
R′

eik·R
′
TR′ |R, 0, σ⟩ = 1√

NC

∑
R′

eik·R
′
TR′PGf

†
R,σf0,σ|FS⟩

=
1√
NC

∑
R′

eik·R
′
PGTR′f †R,σT

−1
R′TR′f0,σT

−1
R′TR′ |FS⟩ (4.15)

=
1√
NC

∑
R′

eik·R
′
PGf

†
R+R′,σfR′,σTR′ |FS⟩ = 1√

NC

∑
R′

eik·R
′
PGf

†
R+R′,σfR′,σ|FS⟩,

where in the second row we used that the PG commutes with TR (as argued at Eq. (2.13)), and
in the last step we used that the |FS⟩ inherits the symmetries of HMF, which is supposed to
be translationally invariant in this section. These states are connected to the original ones as
|k,q, σ⟩ = 1√

NC

∑
R e

i(k+q)·R|k,R, σ⟩. This relation does not hold for the π-flux ansatz, because
the π flux Fermi sea is not translationally invariant (the |πFS⟩ is discussed in section 4.3.3).

The Heisenberg Hamiltonian (1.18) does not change the eigenvalue of the translation operator
because it is translationally invariant. Therefore, if the Hamiltonian and the overlap matrices
were calculated exactly (which we will call the exact variational method, see Appendix J), then
they would be exactly block diagonal in k as H̃ = ⟨k,q, σ|H|k′,q′, σ′⟩ = δk,k′⟨k,q, σ|H|k′,q′, σ′⟩
and Õ = ⟨k,q, σ|k′,q′, σ′⟩ = δk,k′⟨k,q, σ|k′,q′, σ′⟩ and similarly for the |k,R, σ⟩ states. The
states |R,R′, σ⟩ would not yield block diagonal H̃ and Õ, but they give the same results. How-
ever, if the H̃ and Õ are evaluated by Monte Carlo sampling (which we will call the Variational
Monte Carlo method, see Appendix J), the Hamiltonian and the overlap matrices will not be
perfectly block diagonal, the matrix elements connecting subspaces with different wave vectors
(which should be zero) will be of the order of the Monte Carlo error. We can significantly reduce
the errors of the Ef and the spectral weights, if instead of solving the generalized eigenvalue
problem for the full Hamiltonian and overlap matrices as H̃|f⟩ = Ef Õ|f⟩, we solve it separately
for the block matrices H̃k ≡ ⟨k,R, σ|H|k,R′, σ′⟩ and Õk ≡ ⟨k,R, σ|k,R′, σ′⟩ as

H̃k|fk⟩ = Ek
f Õk|fk⟩, (4.16)
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since this trick eliminates the Monte Carlo errors connecting subspaces of different wave vectors.
This way, the eigenstates {|f⟩} are separated into the eigensubspaces of the translation operator
exactly, which is useful because the eigenstates giving non-zero overlaps in ⟨f |T a

k |GS⟩ are those
having wave vectors k (as explained in Section 4.3.4). This is why the states |R,R′, σ⟩ are less
useful in the VMC method since they produce much bigger Monte Carlo results.

4.3.2 Translationally invariant mean-field ansätze on non-Bravais lattices

For a non-Bravais lattice (where the number of basis sites in the unit cell is larger than one),
like the honeycomb (NB = 2) or the kagome lattices (NB = 3), the states |k,R, σ⟩ and |R,R′, σ⟩
get additional sublattice indices as

|R,R′, s, s̄, σ⟩ ≡ PGf
†
R,s,σfR′,s̄,σ|FS⟩, (4.17)

and

|k,R, s, s̄, σ⟩ ≡ 1√
NC

∑
R′

eik·R
′
TR′PGf

†
R,s,σfR′,s̄,σ|FS⟩ (4.18)

=
1√
NC

∑
R′

eik·R
′
PGf

†
R+R′,s,σfR′,s̄,σTR′ |FS⟩, (4.19)

where again TR′ |FS⟩ = |FS⟩ for a translationally invariant HMF.
The states |k,q, σ⟩ would in principle acquire band indices as |k,q, b, b̄, σ⟩ although we have

not tried using them.
The way to calculate the spectral weights |⟨f |T 3

kPG|πFS⟩|2 for S33(k, ω) is discussed in Ap-
pendix K.

4.3.3 π-flux mean-field ansätze

If the mean-field Hamiltonian is not invariant under some translations (as the π-flux HMF),
then the TR′ |FS⟩ ≠ |FS⟩ for some R′. In this case, Eq. (4.19) becomes more complicated. The
trick (used in Refs. [92, 93], but explained only in Appendix F.3 of the thesis
https://hdl.handle.net/20.500.11767/103865) is that if the HMF is invariant under the combined
transformation GTR′TR′ for any R′, then |FS⟩ inherits this invariance, meaning GTR′TR′ |FS⟩ =
|FS⟩ for any R′ (the GTR′ is specified in Appendix E). Furthermore, as argued in section 2.4.1
the Gutzwiller projection eliminates any Gauge transformation (in the sense that it converts it to
an unimportant global phase eiφ), so we can insert GTR′ right before applying PG in Eq. (4.19)
as

|k,R, s, s̄, σ⟩ (4.20)

=
1√
NC

∑
R′

eik·R
′
TR′PGf

†
R,s,σf0,s̄,σ|πFS⟩

=
1√
NC

eiφ
∑
R′

eik·R
′
PGGTR′TR′f †R,s,σf0,s̄,σ|πFS⟩

=
eiφ√
NC

∑
R′

eik·R
′
PGGTR′TR′f †R,s,σT

−1
R′G

−1
TR′︸ ︷︷ ︸

e
iϕTR′ (R+R′,s)

f†
R+R′,s,σ

GTR′TR′f0,s̄,σT
−1
R′G

−1
TR′︸ ︷︷ ︸

e
−iϕTR′ (R

′,s̄)
f
R′,s̄,σ

GTR′TR′ |πFS⟩︸ ︷︷ ︸
|πFS⟩

=
eiφ√
NC

∑
R′

eik·R
′
e
iϕTR′ (R+R′,s)

e
−iϕTR′ (R

′,s̄)
PGf

†
R+R′,s,σfR′,s̄,σ|πFS⟩,

https://hdl.handle.net/20.500.11767/103865
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where the additional phases eiϕTR′ (R+R′,s)
e
−iϕTR′ (R

′,s̄) turn out to be plus minus signs (specified
in Eq. (E.10) of Appendix E) for the π-flux ansätze Ref. [II.], and the global phase eiφ can be
left off for convenience.

4.3.4 Transformation properties under the action of the SU(N) spin opera-
tors

The spectral weights |⟨f |T a
k |GS⟩|2 appearing in Eq. (4.5) are non-zero only if the states |f⟩

transform under the same irreducible representation as the T a
k |GS⟩.

The T a
k |GS⟩ is the eigenstate of the translation operator TR with eigenvalue e−ik·R, since

TRT
a
k |GS⟩ = 1√

Ns

∑
R′,s

eik·(R
′+δs)TRT

a
R′,sT

−1
R TR|GS⟩︸ ︷︷ ︸

|GS⟩

=
1√
Ns

∑
R′,s

eik·(R
′+δs)T a

R+R′,s|GS⟩

=
1√
Ns

∑
R̃,s

eik·(R̃−R+δs)T a
R̃,s

|GS⟩ = e−ik·RT a
k |GS⟩, (4.21)

where we supposed that the ground state is translationally invariant TR|GS⟩ = |GS⟩, as expected
from a quantum spin liquid, and we changed the summation variable to R̃ ≡ R+R′.

The translation operators TR form a commutative group, which has only one-dimensional
irreps labeled by k, where the 1 × 1 matrices representing the translation operators are the
eigenvalues e−ik·R. Therefore, the initial statement of this section can be rephrased as the
eigenstates of TR with different eigenvalues (different k) are orthogonal to each other.

Thus, in the spectral weight |⟨f |T a
k |GS⟩|2, we project out the eigenstate of TR with eigenvalue

e−ik·R from |f⟩. Therefore, it is reasonable to construct the states |f⟩ as eigenstates of TR, which
is exactly what we achieve by solving the generalized eigenvalue problem H̃k|fk⟩ = Ek

f Õk|fk⟩
(4.16) for the block matrices H̃k and Õk. In principle, we could solve the generalized eigenvalue
problem H̃|f⟩ = EÕ|f⟩ for the full Hamiltonian and overlap matrices even in the real space
basis |R,R′, σ⟩ of Eq. (4.11), since the eigenstate of TR is projected out anyway, but this would
increase the Monte Carlo error.

Furthermore, as explained in Appendix A.6, the states T a
k |GS⟩ transform under the N2 − 1

dimensional adjoint representation of SU(N), meaning that the action of the total spin operators
on these states is equivalent to a matrix multiplication

T a
TT

b
k|GS⟩ =

N2−1∑
c=1

Γa
c,bT

c
k|GS⟩, (4.22)

where the (N2 − 1) × (N2 − 1) matrices Γa
c,b ≡ ifabc represent the total spin operators T a

T in
the adjoint representation (fabc are the structure constants in Eq. (1.19)). Consequently, the
spectral weight |⟨f |T a

k |GS⟩|2 will be non-zero only if there is a part in |f⟩ which transforms
under the same irrep. Here we will argue that the Gutzwiller projected particle-hole excitations
f †R+R′,s,σfR′,s̄,σ̄|πFS⟩ transform under the adjoint representation, implying that the states |f⟩
transform the same way, since they are linear combinations of the formers.

The |πFS⟩ transforms as an SU(N) singlet, the set of fermionic creation operators {f †R+R′,s,σ|σ ∈
{1 . . . N}} transforms under the fundamental representation (here we will denote it as N), while
the set of fermionic annihilation operators {fR′,s̄,σ|σ ∈ {1 . . . N}} transform under the conjugate
representation at site r = R′ + δs (here we will denote it as N̄). Therefore, the set of states
{f †R+R′,s,σfR′,s̄,σ̄|πFS⟩|σ, σ̄ ∈ {1 . . . N}} transform under the reducible representation N ⊗ N̄
(note that here we allow for different σ and σ̄, unlike in Eq. (4.20)). This reducible represen-
tation can be decomposed to irreducible representations as N ⊗ N̄ = 1 ⊕ (N2 − 1), where 1
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denotes the one-dimensional SU(N) singlet, and N2 − 1 the adjoint representation (for an ar-
gument using the Young tableau see Fig. A.1(c)). The meaning of this decomposition is, that
we can form linear combinations from the states {f †R+R′,s,σfR′,s̄,σ̄|πFS⟩|σ, σ̄ ∈ {1 . . . N}} which
transform either under the SU(N) singlet or under the adjoint representations Ref. [I.]. The state
transforming as a singlet is simply

∑N
σ=1 f

†
R+R′,s,σfR′,s̄,σ|πFS⟩, while as argued in Eq. (A.39) of

Appendix A.6.3,

T a
T

N∑
σ,σ′=1

λbσ,σ′f
†
R+R′,s,σfR′,s′,σ′ |πFS⟩ =

N2−1∑
c=1

Γa
c,b

N∑
σ,σ′=1

λcσ,σ′f
†
R+R′,s,σfR′,s′,σ′ |πFS⟩, (4.23)

so the states transforming under the adjoint irrep are {
∑N

σ,σ̄=1 λ
a
σ,σ̄f

†
R+R′,s,σfR′,s̄,σ̄|πFS⟩|a ∈

{1 . . . N2 − 1}}, where λaσ,σ̄ are the N × N matrices representing the SU(N) spin operators in
the fundamental representation. When calculating the structure factor Saa(k, ω) for a given
a, the spectral weights |⟨f |T a

k |GS⟩|2 will be non-zero, only if the states |f⟩ also transform
under the adjoint irrep, which is ensured if they are formed from the linear combinations of∑N

σ,σ̄=1 λ
a
σ,σ̄f

†
R+R′,s,σfR′,s̄,σ̄|πFS⟩ for the same index a. However, these linear combinations are

formed during the solution of the generalized eigenvalue problem, so we don’t need to deal with
them. For the diagonal generators satisfying λaσ,σ′ = δσ,σ′λaσ,σ (where a can be any of the N − 1
indices of diagonal generators) the states

|(N2 − 1)a,k,R, s, s̄⟩ ≡
N∑

σ=1

λaσ,σ|k,R, s, s̄, σ⟩ (4.24)

=
1√
NC

∑
R′,σ

eik·R
′
e
iϕTR′ (R+R′,s)

e
−iϕTR′ (R

′,s̄)
λaσ,σPGf

†
R+R′,s,σfR′,s̄,σ|πFS⟩

transform under the adjoint irrep (since they are linear combinations of the states∑N
σ=1 λ

a
σ,σf

†
R+R′,s,σfR′,s̄,σ̄|πFS⟩), while the state

|1,k,R, s, s̄⟩ ≡
N∑

σ=1

|k,R, s, s̄, σ⟩ (4.25)

transforms as the SU(N) singlet irrep. For example, in the SU(3) case, the diagonal generators
are

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 (4.26)

(see Appendix A.3), so we have the states

|(N2 − 1)3,k,R, s, s̄⟩ ≡
N∑

σ=1

(|k,R, s, s̄, 1⟩ − |k,R, s, s̄, 2⟩) (4.27)

and

|(N2 − 1)8,k,R, s, s̄⟩ ≡
N∑

σ=1

1√
3
(|k,R, s, s̄, 1⟩+ |k,R, s, s̄, 2⟩ − 2|k,R, s, s̄, 3⟩) . (4.28)

Projecting the Hamiltonian onto the subspaces of these states as

H̃k,(N2−1)a ≡ ⟨(N2 − 1)a,k,R, s, s̄|H|(N2 − 1)a,k,R
′, s′, s̄′⟩, (4.29)

Õk,(N2−1)a ≡ ⟨(N2 − 1)a,k,R, s, s̄|(N2 − 1)a,k,R
′, s′, s̄′⟩,

H̃k,1 ≡ ⟨1,k,R, s, s̄|H|1,k,R′, s′, s̄′⟩,
Õk,1 ≡ ⟨1,k,R, s, s̄|1,k,R′, s′, s̄′⟩,
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where

0 = ⟨(N2 − 1)a,k,R, s, s̄|H|1,k,R′, s′, s̄′⟩ and 0 = ⟨(N2 − 1)a,k,R, s, s̄|1,k,R′, s′, s̄′⟩, (4.30)

not only reduces the sizes of these matrices, but also allows us to separate the approximating
eigenstates |fk⟩ and their energies Ek

f into subspaces of these irreps, by solving the generalized
eigenvalue problems separately as

H̃k,(N2−1)a |fk(N2−1)a
⟩ = Ek

f,(N2−1)a
Õk,(N2−1)a |fk(N2−1)a

⟩ and H̃k,1|fk1 ⟩ = Ek
f,1Õk,1|fk1 ⟩. (4.31)

Due to the SU(N) symmetry, the matrices H̃k,(N2−1)a and Õk,(N2−1)a are equal (up to
the Monte Carlo error) for every diagonal generator, so we can reduce the Monte Carlo errors
by averaging these matrices, and solving the generalized eigenvalue problem for the averaged
matrices

H̃k,⟨N2−1⟩ =
1

N − 1

∑
a

H̃k,(N2−1)a

Õk,⟨N2−1⟩ =
1

N − 1

∑
a

Õk,(N2−1)a . (4.32)

(4.33)

For example, in the SU(3) case, H̃k,⟨N2−1⟩ = 1
2

(
H̃k,(N2−1)3 + H̃k,(N2−1)8

)
and Õk,⟨N2−1⟩ =

1
2

(
Õk,(N2−1)3 + Õk,(N2−1)8

)
.

4.3.5 Calculation of spectral weights |⟨f |T a
kPG|GS⟩ for diagonal SU(N) spin

operators

Solving the generalized eigenvalue problem of Eq. (4.16) and Eq. (4.31) gives the approxi-
mating eigenstates

|fk⟩ =
∑

R,s,s̄,σ

Af,k
R,s,s̄,σ|k,R, s, s̄, σ⟩, (4.34)

and
|fk(N2−1)3

⟩ =
∑

R,s,s̄,σ

A
f,k,(N2−1)3
R,s,s̄,σ |(N2 − 1)3k,R, s, s̄, σ⟩, (4.35)

respectively. Either of these can be used for the calculation of the weights, as will be outlined
below. However, the construction of these states is not so simple, since the generalized eigenvalue
problem requires the overlap matrix to have only positive (non-zero) eigenvalues, which is not
true, because not all |k,R, s, s̄, σ⟩ are linearly independent, resulting in 0 eigenvalues of the
overlap matrix. This issue can be resolved in a way explained in Appendix (K). In this subsection,
we suppose that this issue was already resolved and have constructed the states |fk⟩ or |fk(N2−1)3

⟩.
Following Ferrari et al. [91], and using Eq. (4.6), we can write:

T 3
kPG|FS⟩ = 1√

Ns

∑
R′,s

eik·(R
′+δs)T 3

R′,sPG|FS⟩

=
1√
Ns

∑
R′,s

eik·(R
′+δs)PG

1

2

(
f †R′,s,1fR′,s,1 − f †R′,s,2fR′,s,2

)
|FS⟩

=
1

2
√
NB

∑
s

eik·δs (|k,R = 0, s, s, 1⟩ − |k,R = 0, s, s, 2⟩) ,

=
1√
NB

∑
s

eik·δs |(N2 − 1)3,k,R = 0, s, s⟩ (4.36)
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where in the second row we used that [T 3
R′,s, PG] = 0 on any site (see Eq. (2.15)), and we wrote

R = 0, since in the definition of the states |k,R, s, s̄, σ⟩ the R (4.20) is the the relative Bravais
lattice vector separating the fermionic operators f †R+R′,s,σfR′,s̄,σ. Consequently, the overlap in
the spectral weights for S33(k, ω) can be expressed as

⟨fk|T 3
kPG|FS⟩ = 1

2
√
NB

∑
s

eik·δs
(
⟨fk|k,R = 0, s, s̄ = s, σ = 1⟩ − |k,R = 0, s, s̄ = s, σ = 2⟩

)
=

1

2
√
NB

∑
s

eik·δs
∑

R′,s′,s̄′,σ′

(Af,k
R′,s′,s̄′,σ′)

∗(Õk
R′,s′,s̄′σ′;0,s,s,1 − (Õk

R′,s′,s̄′σ′;0,s,s,2)

=
1

2
√
NB

∑
s

eik·δs
∑

R′,s′,s̄′,σ′

(A
f,k,(N2−1)3
R′,s′,s̄′,σ′ )∗Õk,(N2−1)3

R′,s′,s̄′σ′;0,s,s,1, (4.37)

where the states are ordered in some way, so the R′, s′, s̄′σ′ corresponds to an index i and
the 0, s, s, 1 corresponds to another index j so that Õk

R′,s′,s̄′σ′;0,s,s,1 = Õk
i,j . To get the correct

spectral weights for S33(k, ω), we normalize it to satisfy the sum rule given in Eq. (6.2). The
normalization is needed, because the approximating ground state PG|FS⟩ is not normalized (|FS⟩
is supposed to be normalized, and the action of the PG decreases its norm). Analogous equations
hold for the spectral weights of Saa(k, ω) for any diagonal generator T a.

To reduce Monte Carlo errors we can solve the generalized eigenvalue problem for the aver-
aged Hamiltonian and overlap matrices of Eqs. (4.33), which yields more precise approximating
eigenstates analogous to Eq. (4.35) and more precise spectral weights as in Eq. (4.37).

Summary

In section 4.2, we presented the formula for the calculation of the mean-field dynamical spin
structure factor, dervied in Appendix I. In section 4.3, we introduced the dynamical variational
Monte Carlo method developed in Ref. [90] for the SU(2) case, which makes use of Gutzwiller
projected particle-hole excitations of the Fermi sea. In section 4.3.3, we have constructed the
Gutzwiller projected particle-hole excitations for the π-flux ansätze, which contains additional
gauge phases (presented in Appendix E) relative to the 0-flux case. In section 4.3.4, we gave a
group theoretical argument on why this method can be used for the calculation of the dynamical
spin structure factor for the SU(N) Heisenberg model with arbitrary N .



Chapter 5

The S33(k, ω) of the SU(3) Heisenberg
chain

The SU(3) Heisenberg chain is defined by the Hamiltonian

H = J

Ns∑
i=1

Ti ·Ti+1 = J

Ns∑
i=1

8∑
a=1

T a
i T

a
i+1 =

J

2

Ns∑
i=1

(
Pi,i+1 −

1

3
I
)
, (5.1)

where we set J = 1 below. The model is exactly solvable in the fundamental representation with
Bethe ansatz and it can be simulated with Density Matrix Renormalization Group (DMRG)
method and quantum Monte Carlo methods without sign problem. Its critical field theory is the
SU(3)1 Wess-Zumino-Witten model [94]. The ground state of the SU(3) Heisenberg chain in the
fundamental representation is well approximated using the Gutzwiller projected Fermi sea of the
uniform hopping Hamiltonian

HMF = t

L∑
i=1

3∑
σ=1

(
f †i,σfi+1,σ + f †i+1,σfi,σ

)
=
∑
k,σ

2t cos(k)︸ ︷︷ ︸
ε(k)

f †k,σfk,σ, (5.2)

as was shown by comparing the variational energy per site with Bethe ansatz, and the static
structure factor with quantum Monte Carlo simulation in [95].

Here besides ground state properties, we also calculate the dynamical structure factor S33(k, ω)
of Eq. (4.5) at T = 0, and compare it with exact diagonalization (ED), Bethe ansatz, DMRG,
and conformal field theory (see Ref. [I.]).

First, we calculated the S33(k, ω) for a chain of length Ns = L = 18 sites by exact evaluation
of the Hamiltonian and overlap matrices H̃k

R,σ;R′,σ′ and Õk
R,σ;R′,σ′ (exact variational method, see

Appendix J). The result is shown in Fig. 5.1(a), together with the dynamical structure factor
calculated by exact diagonalization (ED), with the help of the standard Lánczos algorithm [96].

The lowest energy excitations are located at wave vectors k = 0 and k = ±2π/3, which
can be understood from the 1/3 filled one-particle spectrum ε(k) ≡ 2t cos(k) of the mean-field
Hamiltonian (5.2) shown in Fig. 5.1(e), where a particle is hopped from the highest energy
occupied state to the lowest energy unoccupied state. The relative wave vectors k = 0 and
k = ±2π/3 of these particle-hole excitations determine the locations of the low-energy excitations
in the mean-field case (see Fig. 5.1(c)). Eventually, in the variational calculation, we get the
low-energy excitations at the same wave vectors. With an increasing cluster size the available
one-particle states move closer to each other, so that the excitation energies of these particle-hole
excitations get smaller. Consequently, in the thermodynamic limit, the mean-field spectrum will
have gapless excitations at wave vectors k = 0 and k = ±2π/3. To see whether the Gutzwiller
projected spectrum is also gapless, we show the finite-size scaling of the gap ∆ in Fig. 5.2, where
the convergence of L∆(L) in the L→ ∞ limit, shows that the gap closes. For these calculations,
we used the averaged Hamiltonian and overlap matrices of Eq. (4.33) to reduce the Monte Carlo
errors.

We also compared the S33(k, ω) with the S88(k, ω), and as expected from the SU(3) spin
rotation symmetry of the Heisenberg Hamiltonian, the two dynamical structure factors were in
perfect correspondence (T 3 and T 8 are the two diagonal SU(3) spin operators, see Appendix
A.3).

53
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Figure 5.1: (a) Comparing S33(k, ω) for a chain of length L = 18 calculated using the exact
variational method (red) and by ED (blue). The area of the circles is proportional to the spectral
weights |⟨f |T 3

kPG|FS⟩|2 (red) and |⟨f |T 3
k |GS⟩|2 (blue). (b) S33(k, ω) and S88(k, ω) for L = 72

calculated by VMC. The green background shows the two soliton continuum (k, ω) = (q33̄, ε33̄)
of the Bethe Ansatz solution, Eqs. (5.4) and (5.5), in the thermodynamic limit. In (c) and (d)
we show the mean-field results for chains of lengths L = 18 and L = 72, respectively. (e) The
one-particle energy spectrum ε(k) = 2t cos(k) of the uniform HMF in Eq. (5.2), showing how
the particle-hole excitations lead to gapless excitations (in the thermodynamic limit) at relative
wave vectors 0, 2π/3 and 4π/3 (equivalent to −2π/3). (f) DMRG results for S33(k, ω) from
Ref. [97], showing that the distribution of the spectral weights at low energies is similar to that
in panel (b). The dashed lines show the boundaries of the two soliton continuum (5.5) of the
Bethe-Ansatz. The difference in the ω spectra is due to different choice of exchange coupling
JDMRG =

√
2J in Ref. [97]. Reprinted figure with permission from [Moritz Binder and Thomas

Barthel, Physical Review B, Vol. 102, 014447 (2020)] Copyright (2024) by the American Physical
Society.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.014447
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.014447
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Figure 5.2: Finite-size scaling of the gap ∆ at the
k = 2π/3 multiplied by the chain length L, as a
function of 1/L. The blue circles show the ED
gap, the exact variational results are shown with
black crosses, and the VMC results with black
lines with error bars. The convergence of L∆ to
a finite value in the L→ ∞ implies that the gap
closes, since if the gap remained finite, L∆ would
diverge. The arrow points to πηvBA = 4π2/9,
the exact value in the thermodynamic limit using
η = 4/3 and vBA = π/3, the velocity from the
Bethe Ansatz, Eq. (5.7).

We can compare these results with mean-field calculations in Figs. 5.1(c) and (d), where
Eq. (4.8) simplifies to

S33
MF(k, ω) =

1

2L

∑
q

ε(q)<εF
ε(k+q)>εF

δ (ω − ε(k + q) + ε(q)) , (5.3)

since in the uniform hopping Hamiltonian the eigenstates are simply f †k,σ|0⟩ and there is only
one band (so vk,1,1 = 1 in Eq. (4.8)). Eq. (5.3) shows that every excitation has equal spectral
weights, and the excitation energies are simply the differences of one-particle energies ω = ε(k+
q) − ε(q). Thus, we expect every circle in Figs. 5.1(c) and (d) to have equal area. However,
certain excitations are degenerate, so their areas sum up. The effect of the Gutzwiller projector
is to shift the spectral weights towards lower energies (giving a much better agreement with ED),
and lowering the range of the excitation energies (the range of ω/J in Fig. 5.1(a) is lower than
the range of ω/t in Fig. 5.1(c)).

Next, using the VMC method discussed in the previous section and in Appendices J and K,
we calculated the S33(k, ω) and S88(k, ω) for a chain of length L = 72, shown in Fig. 5.1(b) (the
difference between S33(k, ω) and S88(k, ω) is barely noticeable). The results can be qualitatively
compared with mean-field theory (shown in Fig. 5.1(d)), DMRG calculations of Ref. [97] (shown
in Fig. 5.1(f)), and with Bethe-Ansatz results (shown as the background in Fig. 5.1(b)).

The elementary excitations from the Bethe-Ansatz solution are two types of solitons, the
3 and the 3̄, denoting the fundamental and the conjugate irreps of SU(3), respectively, with
dispersions

ε3(k) =
2π

3
√
3

[
cos

π

3
− cos

(
k +

π

3

)]
, 0 ≤ k ≤ 4π

3
, (5.4a)

ε3̄(k) =
2π

3
√
3

[
cos
(π
3
− k
)
− cos

π

3

]
, 0 ≤ k ≤ 2π

3
, (5.4b)

in the thermodynamic limit [98]. The two-soliton continuum shown in the background of
Fig. 5.1(b) is spanned by

q33̄ = k3 + k3̄ , (5.5a)
ε33̄ = ε3(k3) + ε3̄(k3̄) , (5.5b)

where k3 ∈ [0, 2π/3] and k3̄ ∈ [0, 4π/3]. The solitons with ε3(k) correspond to particles, and
those with ε3̄(k) are analogs of holes. As mentioned in Sec. 4.3.4, particle-hole excitations
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(including those changing particle flavor like f †k+q,σfq,σ′ |FS⟩) provide a basis for the reducible
representation 3⊗ 3̄, just like the two soliton excitations discussed above.

The interactions between the flavorons f †k+q,b′,σ′ |πFS⟩ and the antiflavorons fq,b,σ|πFS⟩ are
hidden in the fluctuations beyond the mean-field solution (B). These interactions could make the
mean-field ansatz unstable, and open a gap. However, from the Bethe-Ansatz solution we know,
that the spectrum is indeed gapless, and the gapless excitation towers are at the same wave
vectors as in the mean-field calculations. Therefore, we conclude that the interactions between
the flavorons and antiflavorons are weak (they are almost the true quasiparticles of the SU(3)
Heisenberg chain), and the simple hopping Hamiltonian (5.2) yields a stable quantum spin liquid
PG|FS⟩.

Overall, the low-energy spectrum is in good agreement with ED, Bethe-Ansatz, and DMRG
results as well, with the exception of the missing arc around k = π, which would correspond
to two particle-hole excitations in the variational approach and four-soliton excitations in the
Bethe-Ansatz (shown with ω4(k) in Fig. 5.1(f)). However, the DMRG results in Fig. 5.1(f) show
that the spectral weight of the four soliton excitations is much smaller than that of the two soliton
excitations, and the distribution of the spectral weights is also similar to those in Fig. 5.1(b) at
low energies.

We would like to remark that the correspondence would not be so good in the SU(4)
Heisenberg chain, which has 4 gapless excitation towers, at k ∈ {0, π/4, π, 3π/4} (see Ref. [99]
Fig. 3.(b)). Three of these at (k ∈ {0, π/4, 3π/4}) can be reproduced with single particle-hole
excitations of the 1/4 filled Fermi sea, similar to those shown in Fig. 5.1(e), but the tower at
k = π would require two particle-hole excitations. This can be understood as hopping a particle
from one edge of the Fermi sea to the other produces a relative wave vector π/2, while hopping
two particles gives an excitation of a relative wave vector π/2 + π/2 = π.

In contrast, the two particle-hole excitations of the SU(3) model do not create new gapless
towers, because hopping two particles from the same edge results in an excitation of wave vector
2π/3 + 2π/3 = 4π/3, which is equivalent to −2π/3.

5.1 The low-energy structure of a tower

The SU(3)1 Wess-Zumino-Witten conformal field theory determines the finite-size scaling of
the spectral weight of the lowest energy peak in a tower as S(0,0) ∝ L−1/3, and the ratios of
the spectral weights of the lowest energy peaks as S(1,0)/S(0,0) = S(0,1)/S(0,0) = S(1,1)/S(1,0) =
S(1,1)/S(0,1) = 2/3 and S(2,0)/S(0,0) = S(0,2)/S(0,0) = 5/6 in the thermodynamic limit (for the
notation of the peaks see the inset of Fig. 5.3(a)). The variational approach fails to reproduce
the scaling of the lowest peak, as we observe S(0,0) ∝ L−1/4 (see Fig. 5.3(a)), but this does not
contradict the stability of the quantum spin liquid PG|FS⟩ because even the weak interactions
between the flavorons and antiflavorons may modify the exponents. Surprisingly, the ratios
S(1,0)/S(0,0), S(0,1)/S(0,0), S(2,0)/S(0,0), and S(0,2)/S(0,0) approach the correct results (as shown
in Fig. 5.3(b)), but the ratios S(1,1)/S(1,0) and S(1,1)/S(0,1) seem to be wrong.

Finally, we calculate the central charge c, which characterizes the universality class of the
model. According to the conformal field theory [100, 101, 102] , the finite-size scaling of the
ground state energy is given by

E(L) = Lε∞ − π

6L
vc , (5.6)

where c is the central charge and v is the velocity of the excitations, and ε∞ ≡ limL→∞E(L)/L
is the ground state energy density. Bethe-Ansatz provides exact results (see Ref. [98]) for both
the velocity

vBA =
π

3
≈ 1.0472 (5.7)
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Figure 5.3: (a) The log-log plot of the finite-size scaling of the lowest peak S(0,0) (at wave vectors
±2π/3), shown in the inset. The variational means the numerically exact and the VMC the
Monte Carlo evaluations of the H̃k and Õk matrices in Eq. (4.16), (explained in App. J). Unlike
the exact diagonal (ED) calculations, the variational results seem to follow an L−1/4 scaling
(the purple line is a guide to the eye), instead of the L−1/3 behavior known from the SU(3)1
Wess-Zumino-Witten conformal field theory [94] Ref. [I.]. Note the slight downward bending of
the ED data suggesting that the exponent is indeed smaller than −1/4, tending toward −1/3.
(b) The ratios of the spectral weights of the lowest energy peaks should approach the values
S(1,0)/S(0,0) = S(0,1)/S(0,0) = 2/3 and S(2,0)/S(0,0) = S(0,2)/S(0,0) = 5/6 determined by the
SU(3)1 Wess-Zumino-Witten model [94], Ref. [I.]

and the ground state energy density

ε∞BA =
1

3
− π

6
√
3
− ln 3

2
≈ −0.518273 (5.8)

in the thermodynamic limit.
The velocity v can be calculated from the dynamical structure factor of the Gutzwiller pro-

jected particle-hole excitations as the slope ∆ω/∆k of the continuum at k = 0 in the ther-
modynamic limit. In Fig. 5.4 we show the finite-size scaling of the slopes, and the fitting of
the quadratic polynomial vdyn(L) = v∞dyn + bdynL

−1 + cdynL
−2 yields v∞dyn ≈ 1.0901 ± 8 · 10−4,

bdyn ≈ −0.13± 0.02, and cdyn ≈ −3.5± 0.15, where v∞dyn differs from the exact value (5.7) only
with 4%.

To calculate the central charge, we also need the finite-size scaling of the ground state energy.
We plot the finite-size scaling of the variational energy E = ⟨FS|PGHPG|FS⟩/⟨FS|PGPG|FS⟩ in

Figure 5.4: Finite-size scaling of the slopes
∆ω/∆k of the dynamical structure factor at
k = 0, where ∆k = 2π/L. The + markers
show the exact variational results, the squares
the variation Monte Carlo results, and the cir-
cles the exact diagonalization results. We fit-
ted a quadratic polynomial on both the vari-
ational, and the exact diagonalization results,
to estimate the thermodynamic limit, which
is known to be π/3 ≈ 1.0472 from Bethe
Ansatz calculations [98].
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Figure 5.5: Finite-size scaling of the ground
state energy density, calculated for the approx-
imating variational ground state PG|FS⟩ (vari-
ational and VMC denotes the points calculated
numerically exactly and with Monte Carlo, re-
spectively), and compared with exact diagonal-
ization results (ED). The arrow shows the exact
energy density in the thermodynamic limit ob-
tained from Bethe Ansatz, Eq. (5.8).

Fig. 5.5. To extract ε∞ and the product vc in Eq. (5.6) we fitted the function b − a/L2 on
E/L, shown in Fig. (5.5). From this fit we get the ground state energy density ε∞ = b ≈
−0.516981 ± 2 · 10−6 (with a relative error of 0.3%), and π

6 vc = a ≈ 1.1612 ± 3 · 10−4, so
vc ≈ 2.2178± 6 · 10−4 with a relative error of 6%.

Using Eq. (5.6), the velocity v∞dyn ≈ 1.0901±8 ·10−4, and the ε∞ = b ≈ −0.516981±2 ·10−6,
we get c ≈ 2.034 ± 0.002, which is within a relative error of 2% to the exact value c = 2 from
the SU(3)1 Wess-Zumino-Witten model [94].

Summary

In this chapter, we computed the dynamical spin structure factor S33(k, ω) of the SU(3)
Heisenberg chain with this method. We showed that the low energy spectrum and the distri-
bution of the spectral weights of the SU(3) Heisenberg chain can be well reproduced by this
method, comparing the S(k, ω) to exact diagonalization results for 18 sites, to the two-soliton
continuum of the Bethe Ansatz, and DMRG results for 72 sites. Detailed analysis of the finite-
size effects showed that the method captures the critical Wess-Zumino-Witten SU(3)1 behavior,
and reproduces the correct exponent, except for the size dependence of the weight of the bottom
of the conformal tower. We also calculated the velocity of excitations, and the central charge,
which turn out to be very close to the exact results.

We conclude, that the PG|⟩ is a stable quantum spin liquid in the sense that the fluctuations
beyond the mean-field approximation are not strong enough to open a gap, as can be seen from
the Bethe-Ansatz solution. However, these fluctuations can modify the exponents, as seems to
be the case in the finite-size scaling of the lowest spectral weight S(0,0) ∝ L−1/4 in the gapless
towers at q = ±2π/3.

These results were published in Ref. [I.], in which we also calculated the dynamical spin
structure factor of the SU(3) Haldane-Shastry model, which is special, because the Gutzwiller
projected Fermi sea is its exact ground state. Furthermore, we also calculated the single mode
approximation for both the SU(3) Heisenberg model and the SU(3) Haldane-Shastry model,
which gave a slightly worse approximation of the velocity of excitations than the slope of the
dynamical structure factor at k = 0. For brevity, we have not included these additional results
here.



Chapter 6

The S33(k, ω) of the SU(4) and SU(6)
Dirac spin liquids

In the case of the one-dimensional SU(3) Heisenberg chain, we saw that the spectrum of
Gutzwiller projected particle-hole excitations is a gapless continuum, where the location of the
gapless towers can be understood from mean-field theory. Thus, it is reasonable to expect that
the spectrum of the Gutzwiller projected particle-hole excitations will be similar to the mean-
field spectrum even in the two-dimensional case. In sections 2.3.1 and 2.3.2 we saw that the
one-particle spectra of the two-dimensional Dirac spin liquids are gapless, so we expect gapless
towers in the mean-field dynamical spin structure factors, similarly to the one-dimensional case.

The features of the S33(k, ω) of the SU(4) and SU(6) Dirac spin liquids on the honeycomb
and kagome lattices are very similar, therefore we will discuss them together. The complica-
tion relative to the one-dimensional case is that S33(k, ω) is periodic in the extended Brillouin
zone, while the mean-field band structure is periodic in the reduced Brillouin zone, as shown
in Fig. 6.1(c) (for an explanation see App. H). In the mean-field case, we expect gapless exci-
tations in the thermodynamic limit at all relative wave vectors connecting Dirac-Fermi points,
since these correspond to particle-hole excitations f †k+q,b′fq,b|πFS⟩ from the top of the Fermi sea
(b ∈ {1, 2}) to the lowest unoccupied states at the bottom of the Dirac cone in the second band
(b′ ∈ {3, 4}), highlighted by the arrow labeled ωM, see Figs. 6.1(d), 6.2(d), and 2.1(d). These
relative wave vectors are all the Γ, Γ′, M and M′ points in the extended Brillouin zone.

However, in a finite-size cluster, the antiperiodic boundary condition shifts the available wave
vectors of one-particle states so that no particle can reside at the Dirac-Fermi point. Therefore,
in a finite-size cluster, the lowest energy excitations are not gapless. In the mean-field case,
the finite-size gap corresponds to the energy difference of the one-particle states closest to the
Dirac-Fermi point, see Fig. 6.1(d). As the available wave vectors move closer to the Dirac-Fermi
point with increasing system size, the finite-size gap disappears in the thermodynamic limit as
∆ ∝ N

−1/2
s .

We show the S33(k, ω) for the SU(4) and SU(6) Heisenberg models in Figs. 6.2(a) and 6.3(a),
respectively. The mean-field S33

MF(k, ω) for the SU(4) and SU(6) models are shown in Figs. 6.2(b)
and 6.3(b), respectively. In all cases, we can recognize towers at low energies centered at the Γ,
Γ′, M, and M′ points in the extended Brillouin zones, at the same wave vectors where we expect
gapless excitations in the thermodynamic limit of the mean-field case. The shape of the energy
spectrum is similar in the mean-field and variational calculations, so it is reasonable to expect that
the variational results would become a gapless continuum in the thermodynamic limit, just as in
the mean-field case. However, the excitations have lower energies in the variational calculations
than in the mean-field results. We show the gapless mean-field spectra in the thermodynamic
limit of the SU(4) and SU(6) models in the backgrounds of Figs. 6.2(b) and 6.3(c), respectively.
The experimental observation of the gapless excitation towers at the Γ, Γ′, M, and M′ points
would indicate the stability of the Dirac spin liquid, the existence of fractionalized fermionic
quasiparticles and the existence of the mean-field quantum order.

Comparing the S33
MF(k, ω) and S33(k, ω) in Figs. 6.5, 6.2, and 6.3, we can see that the

Gutzwiller projector shifts the spectral weights |⟨f |T 3
kPG|FS⟩|2 towards the lower edges of the

continuum, relative to the mean-field spectral weights |⟨f |T 3
k |FS⟩|2. However, this difference

decreases with increasing N , as the distributions of the spectral weights in the SU(6) case are
almost identical for a 48 site cluster shown in Figs. 6.3(a) and (b). These results suggest that the
distribution of the spectral weights becomes identical in the large-N limit of SU(N) models in the

59
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Figure 6.1: (c) The mean-field band structure of the π-flux HMF on the honeycomb lattice
(2.1) shown in the extended Brillouin zone (eBZ) (dashed blue hexagons). The band structure
is periodic in the reduced Brillouin zone (rBZ, shown with red hexagons), which fits multiple
times into the eBZ. There are Dirac Fermi points at the center of every rBZ. The solid arrows
in panel (c) show the gapless particle-hole excitations in the thermodynamic limit, a particle
hops between Dirac-Fermi points (from the tip of the lowest Dirac cone to the tip of the Dirac
cone above it). In panels (a) and (b), we show all Brillouin zones of the honeycomb and kagome
lattices, respectively (see App. H). In the thermodynamic limit of the mean-field calculations,
we expect gapless excitations in S33

MF(k, ω) at all relative wave vectors that connect Dirac-Fermi
points (the centers of the red hexagons). These are all the Γ, Γ′, M, and M′ points of the eBZ.
Due to the anitperiodic boundary condition, in a finite size cluster, the available wave vectors for
one-particle states are shifted, so that no one-particle state is available at the Dirac-Fermi point.
The available wave vectors are shown with circles on the band structure in panels (c) and (d), for
a 72-site cluster on the honeycomb lattice. In panel (d), we show the lowest energy particle-hole
excitations in this 72-site cluster, where the particle is hopped from the highest energy occupied
state to the lowest energy unoccupied state. At the mean-field level, the excitation energy ω is
simply the difference of the one-particle energies.
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Figure 6.2: The S33(k, ω) calculated by VMC is shown in (a) and the mean-field S33
MF(k, ω) of

Eq. (4.8) in (b), forNs = 72, along the blue path in the extended Brillouin zone shown in (e). The
area of the circles in (a) and (b) is proportional to the spectral weights. The colors of the circles
and the background in (b) correspond to the colors of the bands of the one-particle spectrum of
Eq. (2.26) shown in (d), where the circles on the bands show the available one-particle states for
the 72-site cluster in the reduced Brillouin zone. In the Fermi sea, the lowest band is completely
filled and the higher energy bands are empty. Both the cyan and the yellow circles in (d) and (e)
show the wave vectors of the available one-particle states (shifted by the APBC), but only the
yellows are the closest to the Dirac-Fermi points located in the centers of every red hexagon (the
reduced Brillouin zones) in panel (e). The blue plusses and the red crosses in (a) and (b) denote
the lowest energy excitations with zero spectral weights transforming as the adjoint |fk(15)3⟩ and
as the singlet |fk1 ⟩ representations (see Eq. (4.31)), respectively. The relative wave vectors on
the Γ′

1 − M′
3 − Γ′

2 path are shown with magenta circles in (e), which are not shifted by the
APBC. The mean-field peaks in (b) are degenerate on this path, because all these relative wave
vectors correspond to moving a particle between the wave vectors closest to Dirac points (marked
with yellow circles). (c) Comparison of the static structure factor S33(k) =

∫
S33(k, ω)dω for

the projected (blue), mean-field (orange), renormalized mean-field (dashed green), and ED (red
diamonds, from Ref. [6]) calculations. The Monte Carlo errors in (a) and (c) are smaller than
the symbol sizes.
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Figure 6.3: (a) the S33(k, ω) calculated by VMC for Ns = 48, (b) the S33
MF(k, ω) mean-field

calculations of Eq. (4.8) for Ns = 48 and (c) the S33
MF(k, ω) for Ns = 3888, all along the light

green path in the extended Brillouin zone shown in (d). The area of the circles in (a) and (b)
is proportional to the spectral weights. Both the cyan and the yellow circles in (d) show the
wave vectors of the available one-particle states (shifted by the APBC), but only the yellows are
the closest to the Dirac-Fermi points located in the centers of every cyan hexagon (the reduced
Brillouin zones). The relative wave vectors on the Γ − M2 − Γ′

2 path are shown with magenta
circles in (d), which are not shifted by the APBC. The mean-field peaks in (b) are degenerate
on this path, because all these relative wave vectors correspond to moving a particle between
the wave vectors closest to Dirac points (marked with yellow circles). These excitations remain
degenerate even in larger systems as in (c), but only those at the M, and M′ points remain of finite
spectral weights. We expect gapless towers in real experiments at every M, M′, Γ and Γ′ point
of the extended Brillouin zone since all these correspond to ΓMF points (the centers of the cyan
hexagons), where the one-particle spectrum is gapless (see Figs. 6.2(d) and 2.1(d)). In (d), (e),
and (f) we compare the static structure factor S33(k) =

∫
S33(k, ω)dω for the projected (upper

halves in (d) and (e)) and renormalized mean-field (lower halves) cases, both having the same
sum rules. Both show triangular-shaped plateaus around the K′ points, with the difference that
in the projected case, there are humps at the corners of these triangles at the M′ points, as can be
seen in the zoomed figure in (e). In (f), we show the mean-field results without renormalization
(orange), showing the decreased correlations due to charge fluctuations (see Appendix C.1). The
Monte Carlo errors in (a), (d), and (f) are smaller than the symbol sizes.
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Figure 6.4: In the variational calculation, the
√
Ns∆(k) at the M′ and Γ points tend to a finite

value in the Ns → ∞ limit, indicating that the gap probably vanishes as ∆(k) ∝ N
−1/2
s , just

like in the mean-field case. If the gap remained finite,
√
Ns∆(k) would diverge. Due to the

large Monte Carlo errors, we can not exclude this possibility with certainty, but the data make
such a scenario unlikely. Similarly, the weights at the bottom of the towers at the M′ and M
points probably scale as S33(k,∆(k)) ∝ N

−1/2
s , unlike in the mean-field case, where they scale

as S33
MF(k,∆(k)) ∝ N−1

s . However, the error bars in both cases are too big to draw definitive
conclusions. The straight lines go through the 32- and 72-site results and serve as a guide to the
eye.

fundamental representation. Maybe even the interactions between the flavorons f †k+q,b′,σ′ |πFS⟩
and the antiflavorons fq,b,σ|πFS⟩ vanish in the large-N limit, just like in the large-N limit of
Sp(2N) Heisenberg models [2, Sec. 9.8]).

We were not able to calculate the S33(k, ω) for a cluster larger than 48 sites in the SU(6)
case, because the Monte Carlo errors increase with an increasing SU(N) symmetry. A 48-site
cluster is too small to conclude about the thermodynamic limit, so we calculated the S33

MF(k, ω)
in the SU(6) case for a 3888-site cluster on the kagome lattice (shown in Fig. 6.3(c)). Such
calculation is less useful in the SU(4) case, since the distribution of the spectral weights is less
similar, and Fig. 6.2(a) already gives a feeling about the distribution of the spectral weights in
the thermodynamic limit.

The similarity of the mean-field and variational spectra in finite systems does not prove that
the projected spectrum becomes gapless in the thermodynamic limit. To be sure, we should
analyze the finite-size scaling of the gap shown in Fig. 6.4. The results suggest a ∆(k) ∝
N

−1/2
s +O(N

−3/2
s ) like scaling, which indicates a gapless spectrum at the M′ and Γ points, just

like in the mean-field case. However, the error bars are too large to draw definitive conclusions.
The projected spectrum may be gapped only if the Gutzwiller projector can open a gap. Since
the differences between the projected and mean-field calculations become smaller with increasing
N , if the Gutzwiller projector cannot open a gap in the SU(2) case, we do not expect a gap in
the SU(4) and SU(6) cases either. While we are not aware of a finite-size scaling analysis of
the gap in the SU(2) case, the gapless feature of the projected spectrum is quite convincing in
References [91, 103, 92, 104, 105].

The antiperiodic boundary condition breaks the D6 projective symmetry of the mean-field
Hamiltonian, therefore S33(k, ω) and S33

MF(k, ω) are onlyD2 symmetric, as argued in Appendix. E.2.
This can be seen from the differences of the spectral weights at the M′

1 and M′
2 points at higher

energies in Figs. 6.2(a) and (b). However, since this D6 projective symmetry breaking is due
to the boundary condition, the D6 symmetry of S33(k, ω) and S33

MF(k, ω) is restored in the
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thermodynamic limit.
In the mean-field band structure, the APBC shifts the available wave vectors of one-particle

states (shown with circles in Fig. 6.2(d)), so that no one-particle state is available at the Dirac-
Fermi point. The Dirac-Fermi points are located at the centers of the reduced Brillouin zones,
which we call the ΓMF point. Consequently, the arrangement of the wave vectors around the
ΓMF point is D2 symmetric, there are remaining reflection symmetries around the dashed green
lines in Fig. 6.2(d) and (e) and the line connecting the Γ and Γ′

2 points in Fig. 6.3(d). The
two highest-energy occupied one-particle states in the vicinity of the Dirac-Fermi point in the
lowest band are located at the two wave vectors closest to the ΓMF point (the yellow circles in
Figs. 6.2(e) and 6.3(d)). Similarly, the two lowest energy unoccupied states in the vicinity of
the Dirac-Fermi point in the next band are also located at these wave vectors. A fermion can
hop from these two occupied one-particle states to the two unoccupied one-particle states in four
possible ways, shown with black and magenta arrows in Fig. 6.2(d). All four possible ways of
hopping correspond to different particle-hole excitations with the same excitation energy ωM.
Two such particle-hole excitations have relative wave vectors ΓMF, the particle jumps upwards
in Fig. 6.2(d), shown with magenta arrows. The other two particle-hole excitations have relative
wave vectors surrounding the ΓMF point, shown with the black arrows in Fig. 6.2(d). Thus, two
out of these four particle-hole excitations have relative wave vector ΓMF, while the other two
have relative wave vectors surrounding the ΓMF point. Therefore, in the mean-field S33

MF(k, ω),
we will have three degenerate excitations around every ΓMF point with excitation energy ωM. As
we show in Figs. 6.1, the center of every reduced Brillouin zone is a ΓMF point since there is a
Dirac-Fermi point. Therefore, all of the M, M′, Γ or Γ′ points of the extended Brillouin zone are
also ΓMF points in the reduced Brillouin zone. Consequently, there are three degenerate points
around every M, M′, Γ or Γ′ point in the extended Brillouin zone, which are visible only if we
go through them in the correct direction (specified by the APBC). In the case of the honeycomb
lattice, we can see these excitations along the Γ′

1 – M′
3 – Γ′

2 path in Fig. 6.2(b), but we see 7
degenerate excitations instead of 3, because each of the Γ′

1, M′
3, and Γ′

2 points is surrounded
with two degenerate excitations (shown with the magenta circles in Fig. 6.2(e)), giving a total
of 9 excitations, but only 7 are visible in this path. In the case of the kagome lattice, we see
these degenerate excitations in the Γ – M2 – Γ′

2 path, here we also have 5 instead of 3 for the
same reason. These excitations are also present in the variational calculation on both lattices
(Figs. 6.2(a) and 6.3(a)), but in these cases, the degeneracy is lifted, the excitations in the ΓMF
points have lower energies than the excitations surrounding them.

At the Γ′ points, we get high-energy excitations in both the SU(4) and SU(6) cases, originating
from particle-hole excitations c†kΓ′+q,b′cq,b|πFS⟩ with a fermion being hopped from the top of the
Fermi sea (b ∈ {1, 2}) to the bottom of the higher energy Dirac cone (b′ ∈ {7, 8}), indicated
by the ωΓ′ arrow in Fig. 6.2(d). The available one-particle states move towards the Dirac-Fermi
point with increasing system size, so that ωΓ′ → 2

√
3t (from the dispersions (2.26) and (2.31))

in the thermodynamic limit.
Finally, let us turn to the question of whether we get all the gapless towers from single

particle-hole excitations. Let us recall that in the one-dimensional case, we got all the towers
for the SU(3) Heisenberg model (at q = 0 and ±2π/3), while for the SU(4), the single particle-
hole states give only the q = 0 and the ±π/2 and the tower at the q = π originates from two
particle-hole excitations. In the two-dimensional case, the relative wave vectors connecting the
Dirac-Fermi points (the Γ, Γ′, M, and M′ points) generate a triangular lattice in the reciprocal
space, as can be seen from Figs. 6.2(e) and 6.3(d)). Thus, all the wave vectors of the two
particle-hole excitations are also accessible by single particle-hole excitations.

The stability of the gapless quantum spin liquid, the existence of fractionalized fermionic
quasiparticles, and the mean-field quantum order can be verified through the existence and
location of gapless excitation towers in the experimentally measured dynamical spin structure
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Figure 6.5: The dynamical spin structure factor S33(k, ω) of the SU(2) symmetric J1 − J2
Heisenberg model (2.45) on the triangular lattice in the quantum spin liquid regime. These
figures were taken from Ref. [92] (Figs. 8. and 9.). The Figures labeled as "projected" are
the same as the variational calculations (explained in Sec. 4.3) we used in Figs. 6.2(a) and
6.3(a), and those labeled as "unprojected" correspond to the mean-field calculations (explained
in Sec. 4.2) used in Figs. 6.2(b) and 6.3(b) and 6.3(c). We included these figures, to show that the
Gutzwiller projector can create new gapless excitations (the low energy excitation at the K point
of the "triangular lattice-projected" panel), which are not present in the mean-field calculations.
Furthermore, the distribution of the spectral weights differs more than in the SU(4) and SU(6)
cases (shown in Figs. 6.2 and 6.3).

factor. However, we saw that the Gutzwiller projected variational spectrum seems to be gapless
at the same wave vectors as the mean-field calculations. If this was always the case, there
would be no need for the variational calculations for the experimental identification of a gapless
quantum spin liquid. However, this is not always the case, as was shown for the staggered-flux
SU(2) Dirac spin liquid on the triangular lattice, where the Gutzwiller projector creates a gapless
excitation, which is not present in the mean-field case [92] (we show their Figure in Fig. 6.5 for
comparison). What we have to compare with experiments to conclude about the stability of a
gapless quantum spin liquid is the Gutzwiller projected spectrum. We believe that the similarity
of the Gutzwiller projected and mean-field spectra in our cases is due to the increased SU(N)
symmetries.

However, even in the SU(2) case, the Gutzwiller projected spectrum can be very similar to
the mean-field result, as was shown in Ref. [93] (and also included in [92]) on the square lattice,
though the distribution of the spectral weights is very different (we also show this Figure in
Fig. 6.5).

We also compared the finite-size scaling of the lowest energy spectral weights of S33
MF(k, ω)

and S33(k, ω) in the SU(4) case, which seems to be different. Namely, the S33
MF(k, ω) at the

M′ points scales as 2
3N

−1
s + O

(
N−2

s

)
, and at the M points as 5

12N
−1
s + O

(
N−2

s

)
, while in the

projected case the scaling seems to be S33(k,∆(k)) ∝ N
−1/2
s +O(N

−3/2
s ), as shown in Fig. 6.4.

Unfortunately, the large error bars do not allow a more precise determination of the finite-size
scalings.

So far there was no indication that the S33(k, ω) calculated by the variational method would
indeed be similar to the real dynamical spin structure factor of the SU(4) Heisenberg model.
Therefore, we compared our results with exact diagonalization (ED) for a small cluster of 16
sites in Fig. 6.6. For the ED, we used periodic boundary conditions, while for the variational
method, we had to impose APBC to make the Fermi sea non-degenerate. The orientation of
the APBC in a C6 symmetric cluster causes a simple rotation of the data, but since this cluster
is not C6 symmetric, the orientations of the APBC are not equivalent. For one of the APBC
orientations, (Fig. 6.6(c)) the lowest energy excitations seem to be quite similar to the ED results.
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Figure 6.6: (a) and (b) the Ns = 16 site clusters with different antiperiodic boundaries (dashed
green lines), which reverse the sign of the hoppings they cross. (c) The S33(k, ω) for the 16-site
cluster in (a), calculated by variational method (blue circles) and by exact diagonalization (black
circles). The red crosses indicate the lowest energy states transforming as SU(N) singlets, from
which we can see that the variational ground state energy of the |πFS⟩ state is close to the ED
ground state energy, which is at ω = 0. (d) The S33(k, ω) for the 16-site cluster in (b), in this
case, the agreement is not so good. We expect the sensitivity to the boundary conditions to
decrease with larger clusters. (e) and (f) show the mean-field S33

MF(k, ω) for the clusters in (a)
and (b), respectively. The crosses in panels (c)-(f) show excitations with zero spectral weights.

One could argue that we should have chosen the same boundary conditions for the two methods,
so if we had chosen periodic boundary conditions for the ED, then we should have also used
PBC for the variational method. However, choosing APBC for the variational method means
multiplying by −1 the fermions that are beyond the boundary, and this sign change cancels from
the definition of the spin operators in Eq. (2.2), so the boundary condition of Heisenberg chain
remains periodic.

In the SU(4) case, we also found that at low energies, the local S33
MF(ω) =

∑
k

∫
S33

MF(k, ω)
within a tower above the M and M′ points is proportional to the degeneracy (the number of
particle-hole excitations with the same ω), ignoring finite-size corrections. Consequently, the∫ ω
0 S33

MF(ω
′)dω′ ∝ ω4 and from this the S33

MF(ω) ∝ ω3 follows. However, the matrix elements in
Eq. (4.8) are not all equal at a given ω.
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6.1 The static spin structure factor

The static spin structure factor at zero temperature is defined as

Saa(k) ≡ 1

Ns

∑
R,s

∑
R̄,s̄

e−ik·(R+δs)eik·(R̄+δs̄)⟨GS|T a
R,sT

a
R̄,s̄|GS⟩

= ⟨GS|T a
−kT

a
k |GS⟩ =

∫
Saa(k, ω)dω, (6.1)

where we approximate |GS⟩ with the PG|πFS⟩ for the Heisenberg model (variational method),
and |πFS⟩ in the mean-field case.

In the SU(4) case, both the projected S33(k) and the mean-field S33
MF(k) have maxima only

at the M′ points in the form of a hump (see Fig. 6.2(c)). In the SU(6) case, both S33(k) and
S33

MF(k) have triangular-shaped plateaus around the K′ points (see Fig. 6.3(d)), with the corners
located at the M′ points. The difference between S33(k) and S33

MF(k) in the SU(6) model is that
the former has small humps at the M′ points (shown in the zoomed panel of Fig. 6.3(e), and in
Fig. 6.3(f)), similarly to the SU(4) case.

The shapes of S33
MF(k) (the orange curves in Figs.6.2(c) and 6.3(f)) are similar to the shapes

of the Gutzwiller projected S33(k), with a difference in their normalizations, meaning that the
correlations are reduced in the mean-field case. The normalization of the Fourier transformed
spin operators in Eq. (4.2) and the static structure factor in Eq. (6.1) (consistent with the
normalization of the dynamical structure factor in Eq. (4.5)) implies the sum rules∑

k∈eBZ

S33(k) =
∑

k∈eBZ

∫
dωS33(k, ω) =

Nk

Ns

∑
R,s

C2

N2 − 1
=
Nk

2N
, (6.2)

and ∑
k∈eBZ

S33
MF(k) =

∑
k∈eBZ

∫
dωS33

MF(k, ω) =
Nk

Ns

∑
R,s

CMF
2

N2 − 1
=
Nk

2N

(
1− 1

N

)
, (6.3)

as derived in Appendix C (see also Ref. [II.]), where Nk is the number of wave vectors in the ex-
tended Brillouin zone, C2 and CMF

2 are the quadratic Casimir operators of the Heisenberg model
and its mean-field theory, Nk = 3

2Ns on the honeycomb lattice, and Nk = 4
3Ns on the kagome

lattice. The relative factor
(∑

k∈eBZ S
33
MF(k)

)
/
(∑

k∈eBZ S
33(k)

)
= 1 − 1/N comes from the

different values of the quadratic Casimir operators CMF
2 = C2

(
1− 1

N

)
, as argued in Appendix

C.1. The eigenvalue of the quadratic Casimir operator is determined by the irreducible repre-
sentation of the Heisenberg model, which depends on the local Hilbert spaces. In the Gutzwiller
projected treatment every site is singly occupied corresponding to the fundamental representa-
tion, so C2 = (N2 − 1)/(2N) (as derived in App. A.3). However, in the mean-field approach,
any site can be simultaneously occupied by multiple fermions, mixing different irreducible rep-
resentations (for details see App. C.1). Thus, the charge fluctuations of the mean-field approach
violate the single occupancy constraint of Eq. (2.5) and reduce the correlations. However, even
though the multiple occupancy persists for any N , the difference between the sum rules vanishes
in the large-N limit, showing the decreasing difference between the mean-field and Gutzwiller
projected results with an increasing N .

We can divide the S33
MF(k) with (1 − 1/N), so that the sum rule of this renormalized

S33
MF(k)/(1− 1/N) is the same as that of the projected S33(k). The renormalized S33

MF(k)/(1−
1/N) is shown with dashed light green in Figs. 6.2(c) and 6.3(f), and in the upper halves of
Figs. 6.3(d), and 6.3(e). Comparing the renormalized mean-field S33

MF(k)/(1 − 1/N) with the
Gutzwiller projected S33(k), we can see that the differences are much smaller in the SU(6) case
than in the SU(4) case, again indicating that the projected and mean-field calculations become
equal in the large-N limit.
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Figure 6.7: In the left panel we show on a logarithmic scale the decay of the SU(4) spin correla-
tions ⟨P0δ − 1/4⟩(−1)δ/2 = 30⟨πFS|PGT

3
0 T

3
δ PG|πFS⟩(−1)δ/2 of the SU(4) Heisenberg model on

a zig-zag chain of the honeycomb lattice, taken from Ref. ([6]). In the right panel we show the
logarithm of the SU(6) spin correlations |S(r)| ≡

∑35
a=1 |⟨πFS|PGT

a
0 T

a
δ PG|πFS⟩| of the SU(6)

Heisenberg model on the kagome lattice calculated by VMC (solid lines with error bars) as a
function of the logarithm of distance. In both panels, the approximately linear decay of the
correlation function on the log-log scale suggests a power-law dependence on the distance, but
perhaps the achievable distances were not large enough to see the exponential decay. On the
right panel, we also plot the mean-field correlation function |SMF(r)| ≡

∑35
a=1 |⟨πFS|T a

0 T
a
δ |πFS⟩|

with dashed-lines, which is known to approach a ∝ r−4 decay for large r. The colors of the
right panel encode different directions: the red along the edges of the triangles and the blue in
the directions crossing the centers of the hexagons. We average over equivalent directions to
eliminate the anisotropy effect of the antiperiodic boundary condition. The absolute values of
S(r) take care of the alternating sign structure along the edges of the triangles (we put empty
circles for S(r) > 0). At the same time, S(r) is always positive along the directions through the
centers of the hexagons. The mean-field results are negative for all r > 0. The dotted lines with
r−3 and r−4 are guides for the eye. In both panels, the VMC results seem to decay algebraically
with a power between 3 and 4, while the mean-field correlations of a Dirac spin liquid always
approach a ∝ r−4 decay.

The mean-field static spin correlation function decays as a power law |⟨πFS|T a
r T

a
r̄ |πFS⟩| ∝

|r − r̄|−4 at large enough |r − r̄|, which is typical for every system with a Dirac-Fermi point
[49, 106] Ref. [II.]. We also calculated the static spin correlation function in the Gutzwiller
projected Fermi sea |⟨πFS|PGT

a
r T

a
r̄ PG|πFS⟩| in the SU(6) case, shown in the right panel of

Fig. 6.7. In the left panel of Fig. 6.7, we show the |⟨πFS|PGT
a
r T

a
r̄ PG|πFS⟩| in the SU(4) case,

taken from Ref. [6]. In both cases, the decay seems linear in log-log scales, suggesting a power
law decay, just as in the mean-field case (S(r) = cr−α → lnS(r) = ln c − α ln r). However, we
can not exclude that the cluster sizes were not large enough, and the real decay is exponential.
The exponential decay is usually accompanied by a gapped spectrum, while a power law decay
is usually accompanied by a gapless spectrum. We plotted the finite size scaling of the finite size
gap of the Gutzwiller projected spectrum in the SU(4) case in Fig. 6.4, which suggests a gapless
spectrum, but again, due to the large Monte Carlo errors, this is not a proof. The steepness
of the line in the log-log plot determines the exponent of the power law decay, and in both the
SU(4) and the SU(6) cases the steepness seems to be between −3 and −4, so that the decay of
|⟨πFS|PGT

a
r T

a
r̄ PG|πFS⟩| seems to be proportional to |r − r̄|−α with a power 3 ≤ α ≤ 4. Again,

in the mean-field approximation we get α = 4 in both the SU(4) and SU(6) cases.
What really matters is not the decay of |⟨πFS|PGT

a
r T

a
r̄ PG|πFS⟩|, but instead the decay of
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|⟨GS|T a
r T

a
r̄ |GS⟩|, where |GS⟩ is the ground state of the SU(N) Heisenberg model in the funda-

mental representation. If |⟨GS|T a
r T

a
r̄ |GS⟩| also decays as a power law, then the spectrum of the

SU(N) Heisenberg model should be gapless, and if the gapless towers are at the same locations
as in the variational calculation, then the PG|πFS⟩ is stable. However, even if PG|πFS⟩ is stable,
and both |⟨πFS|PGT

a
r T

a
r̄ PG|πFS⟩| ∝ |r − r̄|−α and |⟨GS|T a

r T
a
r̄ |GS⟩| ∝ |r − r̄|−β decay as power

laws, their exponents might be different α ̸= β. The reason for this is that the interactions be-
tween the flavorons f †k+q,b′,σ′ |πFS⟩ and the antiflavorons fq,b,σ|πFS⟩ (hidden in the fluctuations
beyond the mean-field approximation) can change the exponent, even if these interactions are
weak, and the mean-field ansatz is stable.

In the SU(4) case, the humps at the M′ points correspond to a short-range four-sublattice
order, as shown in Ref. [6]. In the SU(6) case, the alternating sign structure of the static spin
correlation function in the directions ri − rj along the edges of the triangles (shown with the

empty circles in Fig. 6.7) can be reproduced by
∑6

l=1 e
ikM′

l
·(ri−rj), where kM′

l
are the wave vectors

of the M′ ∈ eBZ points.

Summary

We computed the dynamical spin structure factor S33(k, ω) of the SU(4) and SU(6) Heisen-
berg models on the honeycomb and kagome lattices, respectively. For these variational calcu-
lations, we approximated the ground state by the Gutzwiller projected π-flux Fermi sea, and
the excited states by Gutzwiller projected particle-hole excitations of the π-flux Fermi sea, as
explained in section 4.3. We compared these variational results with non-interacting mean-field
calculations. The two approaches produce qualitatively similar results, suggesting that the energy
spectrum of the Gutzwiller projected excitations may also be a gapless continuum of fractional-
ized excitations (see Figs. 6.2 and 6.3), with the gapless towers located at the M, M′, Γ and Γ′

points of the extended Brillouin zone.
Quantitatively, the Gutzwiller projection shifts the spectral weight |⟨f |T 3

k |πFS⟩|2 from higher
to lower energies, thus emphasizing the lower edge of the continuum. The distributions of the
mean-field and variational spectral weights show a much better agreement in the SU(6) case than
in the SU(4) case. We attribute the decreasing difference between the two approaches to the
increased SU(N) symmetry. However, while in the SU(4) case we could calculate the S33(k, ω)
variationaly for a 72-site cluster, in the SU(6) case we were limited to a cluster of 48-sites. Relying
on the similarity of the variational and mean-field calculations in the SU(6) case, we calculated
the S33(k, ω) in the mean-field approach for an extensive system with 3888 sites, to assess the
thermodynamic limit.

In the mean-field approach of the SU(4) case, we obtained the 1/r4 decay of the spin corre-
lation function, and the local correlations show S33

MF(ω) ∝ ω3 behavior.
For both the SU(4) and SU(6) cases, the static spin structure factor S33(k) =

∫
dωS33(k, ω)

has maxima at the M′ points of the extended Brillouin zone. However, in the SU(6) case, there are
increased weights in the form of triangular-shaped plateaus around the K′ points of the extended
Brillouin zone, which are not present in the SU(4) calculations. The differences between the
static variational and mean-field calculations are the reduced sum rules and the reduced maxima
of the mean-field results.

The ratio of the sums
(∑

k∈eBZ S
33
MF(k)

)
/
(∑

k∈eBZ S
33(k)

)
= 1 − 1/N shows that the cor-

relations are reduced in the mean-field case. As argued in Appendix C.1, the reason is that the
charge fluctuations reduce the value of the quadratic Casimir operator, appearing in the sum
rules. However, even though the charge fluctuations persist for any N , the difference between
the mean-field and VMC sum rules vanishes in the large-N limit.

The real space spin-spin correlations decay algebraically with the distance, with a power
between 3 and 4, similarly as in the SU(4) case Ref. [6].
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These results were published in Refs. Ref. [II.] and Ref. [III.].



Appendix A

Details of the SU(N) spin operators: the
generators of the su(N) Lie algebra
A.1 Rotations in 3D, the SO(3) group and the so(3) Lie algebra

Before calculating the SU(N) spin rotation operator, let us recapitulate the properties of
classical rotations. In this section, we follow sections I.3 and IV.2 of the book [107].

A rotation operator R is expected to preserve the norm of a vector r, in the sense that
rT · r = (Rr)T · (Rr) = (rTRT ) · (Rr) and also the angle between any two vectors u and v,
which depends on their inner product uT · v = (Ru)T · (Rv) = (uTRT ) · (Rv), implying that
R must be orthogonal RTR = I (giving the O in SO(3)). The condition that R must be
orthogonal does not uniquely specify rotations because reflections also satisfy RTR = I. Taking
the determinant of this relation det

(
RTR

)
= det

(
RT
)
det(R) = (det(R))2 = det(I) = 1, so

that det
(
RT
)
= ±1. To uniquely specify rotations, we have to add the condition det(R) = +1

(giving the S in SO(3) as "special") because the det(R) = −1 specifies reflections. The set of
orthogonal operators with unit determinants form the SO(3) rotation group. So far, we have
been talking about rotation operators. When we take a set of matrices satisfying the same
multiplication relations as the rotation operators, then we have a representation of the rotation
operators with matrices. The size of the matrices representing the SO(3) rotations depends
on the representation. An irreducible representation is when the rotation matrices can not be
simultaneously block diagonalized with basis transformations. In the fundamental representation
(sometimes called defining representation) of SO(3) these become 3× 3 matrices, describing the
rotation of vectors in 3 dimensions (3 linearly independent vectors serve as a basis for this irrep).

The condition to have det(R) = +1 also allows us to use Taylor expansion for the infinitesimal
rotation around the identity as

R(ϕ) = I + ϕA+O(ϕ2), (A.1)

where ϕ is a small angle. A reflection with det(R) = −1 can not be continuously connected to
the identity. R have to satisfy the orthogonality condition in every power of ϕ,

RT · R = (I + ϕA+O(ϕ2))T (I + ϕA+O(ϕ2)) = I + ϕ(AT +A) +O(ϕ2), (A.2)

so AT = −A must hold, meaning that A is antisymmetric (and real since R is real). Any finite
rotation R can be separated into a series of many small rotations as R(θ) = R(θ/m)m, where
θ is not a small angle, but for a large m, θ/m is small. Therefore, we can use the expression of
the infinitesimal rotations as

R(θ) = lim
m→∞

R(θ/m)m = lim
m→∞

(
I +

θ

m
A
)m

= exp (θA) . (A.3)

We can take a set of real antisymmetric matrices {Bj} serving as a basis, so that any real
antisymmetric matrix can be written as their linear combination A =

∑
j Bj . To know how

many such matrices we need, we have to count how many independent real numbers A can have.
Its diagonal has zeros (since Ai,i = −Ai,i), and the off diagonals satisfy Ai,j = −Aj,i. Therefore,
only three real numbers are independent, so we can choose the three matrices

B1 =

0 0 0
0 0 −1
0 1 0

 B2 =

 0 0 1
0 0 0
−1 0 0

 B3 =

0 −1 0
1 0 0
0 0 0

 (A.4)
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as a basis. If we further express the real antisymmetric matrices Bj = −iLj with hermitian
matrices L†

j = Lj , then the Lj become the operators of angular momentum (divided by ℏ) Lx/ℏ,
Ly/ℏ and Lz/ℏ. These satisfy the commutation relations [Li, Lj ] = iℏ

∑
k εi,j,kLk, so they are

the generators of the so(3) Lie algebra. With these, we can write an infinitesimal rotation (with
angle ϕ) and a finite rotation (with angle θ)

R(ϕ) = I +
i

ℏ
ϕ
∑
j

njLj +O(ϕ2) R = exp

 i

ℏ
θ
∑
j

njLj

, (A.5)

therefore the Lj are also called infinitesimal generators of rotations. The norm
∑

j |nj |2 can be
melted into θ, so that we can interpret the

∑
j njLj = n · L as the inner product of the unit

vector n (specifying the axis of rotation through the right-hand rule) with the vector operator
L.

Eq. (A.5) shows that the sizes of the matrices of angular momenta Lj and the size of the
rotation matrices R are the same. In the fundamental irrep of SO(3) every matrix is 3 dimen-
sional. However, higher-dimensional irreps of SO(3) exist labeled by the integer j, where the
dimension is given by d = 2j + 1, which equals the number of basis states for this irrep. The
three-dimensional fundamental irrep has j = 1, with basis vectors |j = 1,m = 1⟩, |j = 1,m = 0⟩,
|j = 1,m = −1⟩, where m is the eigenvalue of Lz. For a general j the basis states can be labeled
with m ∈ {−j . . . j} integers, and serve as a basis for both the rotation matrices (forming the
SO(3) group) and the angular momentum operators Lx, Ly and Lz (being the generators of the
so(3) Lie algebra). The main point is that even though the number of generators Lx, Ly, and Lz

came from the number of linearly independent 3× 3 hermitian matrices (which turns out to be
3), it remains the same for any irrep j, regardless of its dimension. In other words, the number of
generators Lx, Ly, and Lz is always deduced from the fundamental irrep of a given algebra (and
group), and remains the same for any other irrep, only the dimension of the matrices increases.
The number of generators changes, if we change the group (and the algebra with it), for example
to SO(N > 3).

A.2 Spin rotations and the SU(N) group

In the preceding section, we presented the SO(3) group of rotations and its so(3) Lie algebra,
to be able to compare the followings with something well known. In this section, we follow
section IV.4. of the book [107].

SU(N) spins are the wave functions that serve as a basis for the local Hilbert space of the
SU(N) Heisenberg model in a given irreducible representation (see Sec. 1.4.2 and Appendix A.5).
In the fundamental representation, there are N such wave functions, which can be taken to be
{c†j,σ|0⟩|σ ∈ {1 . . . N}}, where c†j,σ are the fermionic creation operators of the SU(N) Hubbard
model (1.2) on site j. The rotation of a wavefunction |ψ⟩ by an operator U is expected to leave
invariant its norm ⟨ψ|ψ⟩ = ⟨ψ|U †U |ψ⟩, and the inner product of any two wavefunctions |ψ⟩ and
|ϕ⟩ as ⟨ψ|ϕ⟩ = ⟨ψ|U †U |ϕ⟩, therefore the U has to be unitary (giving the letter U in SU(N)),
meaning U †U = I. Taking the determinant of this relation we get det

(
U †U

)
= det

(
U †) det(U) =

| det(U)|2 = det(I) = 1, implying that det(U) = eiφ is a phase. Similarly, as in the case of SO(3)
rotations, we expect an SU(N) rotation to be continuously connected to the identity because an
infinitesimal rotation is almost like doing nothing. Therefore, we will set det(U) = +1 (giving
the letter S in SU(N), as "special"). Unitary operators with unit determinants form the SU(N)
group, describing the transformations of wavefunctions with the properties we expect from an
SO(3) rotation. The det(U) = +1 condition allows us to use Taylor expansion for an SU(N)
rotation with the infinitesimal angle ϕ as

U(ϕ) = I + ϕA+O(ϕ2), (A.6)
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where the unitarity condition

U †U = (I + ϕA+O(ϕ2))†(I + ϕA+O(ϕ2)) = I + ϕ(A† +A) +O(ϕ2) (A.7)

requires A† = −A, so that A† is antihermitian. Writing A = iB the B becomes hermitian. We
can write a finite SU(N) rotation U(θ) as a sequence on infinitesimal SU(N) rotations, and use
the above expansion to get

U(θ) = lim
m→∞

(U(θ/m))m = lim
m→∞

(
I + i

θ

m
B
)m

= exp (iθB) . (A.8)

We can use the relation det exp(A) = exp(TrA) as +1 = detU = det[exp (iθB)] = exp (iθTrB),
to deduce TrB = 0. Therefore, we can take a basis of traceless hermitian operators {T a}, in
which basis we can write B =

∑
a naT

a. The number of linearly independent basis operators
{T a} is equal to the number of independent real numbers in an N×N traceless hermitian matrix.
There are N real numbers in its diagonal, and (N2−N)/2 complex numbers in its upper right off-
diagonal (the lower left off-diagonals are the complex conjugate of these), where every complex
number is counted as two independent real numbers. The traceless condition reduces the N
independent real numbers in the diagonal by one, so in total there are N − 1 + 2(N2 −N)/2 =
N2−1 independent real numbers. For example, in the su(3) Lie algebra we have 32−1 = 8 linearly
independent operators {T a}, which are called the Gell-Mann matrices [46], presented in Appendix
A.3. These matrices can be constructed in different ways, one of them is presented in Appendix
A.3. Independently of their choice, the T a matrices are called the generators of the su(N) Lie
algebra, and they satisfy the commutation relations [T a, T b] = i

∑
c fabcT

c of Eq. (1.19). The
reason for this is that the commutator [T a, T b] is itself antihermitian ([T a, T b]† = [(T b)†, (T a)†] =
[T b, T a] = −[T a, T b]) and traceless (Tr

[
T a, T b

]
= TrT aT b − TrT bT a = 0), therefore it can be

written as a linear combination of the antihermitian traceless matrices iT c, where fabc are the
coefficients in the linear combination. Of course, the fabc depends on the particular construction
of the T a. In summary, an infinitesimal SU(N) rotation with a small angle ϕ, and a finite SU(N)
rotation with an angle θ can be written with the generators T a as

U(ϕ) = I + iϕ
N2−1∑
a=1

naT
a +O(ϕ2) U(θ) = exp

iθ N2−1∑
a=1

naT
a

 . (A.9)

These equations show that the sizes of the matrices of the generators T a and the matrices of
SU(N) rotations U are the same in any representation. The number of generators T a was
determined in the fundamental irrep of the su(N) Lie algebra (which is also the fundamental
irrep of the SU(N) group), but it remains the same for any other irrep of su(N), only the size of
the matrices T a is changed.

The norm
∑N2−1

a=1 |na|2 can be melted into the angles ϕ and θ, so that
∑N2−1

a=1 naT
a = n ·T

can be interpreted as the inner product of the unit vector n (specifying the axis of SU(N) rotation
in an N2 − 1 dimensional spin space through the right-hand rule) and the vector operator T.

Eq. (A.9) expresses the rotation of a single SU(N) spin, the simultaneous rotation of all
SU(N) spins around the same axis n with the same angle ϕ is given by the SU(N) operator
U =

∏Ns
j=1 e

iϕn·Tj , where j is the site index.

A.3 The matrices representing the SU(N) spin operators in the
fundamental representation

As argued in Appendix A.2, the generators of the su(N) Lie algebra in the fundamental
irreducible representation form a basis in the space of N × N traceless hermitian matrices,
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therefore there should be N2 − 1 generators. These can be constructed in different ways, here
we follow the convention from section V.3 of the book [107] and [108]. In this convention, the
generators are orthonormalized as

TrT aT b =
1

2
δa,b, (A.10)

where TrA†B can be viewed as an inner product in the vector space of matrices. Furthermore,
we set the generators Sx, Sy, Sz of the su(2) Lie algebra to be Sa = 1

2σ
a in the fundamental

representation, where σa are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A.11)

In case of su(3), the 32 − 1 = 8 generators are again of the form Sa = 1
2λ

a, where in this
convention the λa are

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0


λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2


, (A.12)

called the Gell-Mann matrices [46]. The first three Gell-Mann matrices are simply the Pauli
matrices complemented with zeros, they form an su(2) subalgebra of su(3). The λ1, λ4 and λ6 in
the first column are basically σx in the 1− 2, 1− 3 and 2− 3 sectors, respectively. Similarly, the
λ2, λ5 and λ7 contain the σy in these sectors. If we had three diagonal matrices containing the σz

in these sectors, then the su(3) algebra would be equal to the product of three non-overlapping
su(2) subalgebras as su(2) ⊗ su(2) ⊗ su(2). However, there are only two diagonal matrices λ3

and λ8, therefore these su(2) subalgebras overlap, and their missing σz like matrices are linear
combinations of λ3 and λ8.

From the su(3) case above, we can deduce how to construct the generators T a = 1
2λ

a in
the fundamental representation of any su(N) Lie algebra in this convention. First, take the λa

matrices in the fundamental irrep of the su(N − 1) Lie algebra and complete every matrix with
one row and one column of zeros. Then, add σx and σy in all possible sectors which were not
included yet. The number of diagonal matrices should be N−1 in the su(N) Lie algebra, so when
complementing the matrices of su(N − 1) to su(N), we have to add one more diagonal matrix.
Let us denote the indices a of the diagonal matrices λa as D(n), so that n ∈ {1 . . . N − 1}, and
the D(n) iterates through the diagonal indices (for example, in the su(3) case D(1) = 3, and
D(2) = 8). The new diagonal matrix λD(N−1) should be orthogonal to all previous diagonal
matrices as TrλD(N−1)λD(n) = 0 with n < N − 1, which is easily achieved by setting its first
N −1 diagonal elements to 1. Then we make it traceless by setting the last element to −(N −1),
and finally normalize the matrix so that it satisfies TrλD(N−1)λD(N−1) = 2 (the normalization
of the λa follows from Eq. (A.10) after dividing both sides with 4).

In reality, we first construct the matrices λa in the fundamental representation, which deter-
mine the structure constants fabc through the commutation relations

[
1

2
λa,

1

2
λb
]
= i

N2−1∑
c=1

fabc
1

2
λc, (A.13)
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and then we build in these matrices into the operators T a
j = 1

2

∑
σ,σ′ f

†
j,σλ

a
σ,σ′fj,σ′ of Eq. (2.2),

to get the same commutation relations for the T a as for the 1
2λ

a. Consequently, the structure
constants fabc depend on the specific construction of the matrices λa. For the construction
described here, the structure constants of the su(2) Lie algebra are the Levi Civita symbols
ε123 = ε231 = ε312 = +1 and ε321 = ε213 = ε132 = −1 (all others like ε112 are zeros), while in the
su(3) case, these are

f123 = 1 (A.14)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1

2

f458 = f678 =

√
3

2
,

where the ones not listed are zeros.
Once the fabc were fixed, the matrices λa of all the other irreducible representations are

constructed in a way to satisfy the commutation relations (A.13) for the same fabc, and their
spin operators are constructed in some basis by building the λa into their definitions.

The eigenvalue of the quadratic Casimir operator Ĉ2 ≡
∑N2−1

a=1 T aT a of Eq. (1.21) is diagonal
in every irreducible representation (since the eigenvalues of the Casimir operators determine the
irrep), which can be written as Ĉ2 = C2I. We can get the eigenvalue C2 by taking the trace
Tr Ĉ2 = C2Tr I = C2d, where d is the dimension of the irrep. In the fundamental representation
d = N , and using the normalization of spin operators TrT aT b = 1

2δa,b of Eq. (A.10) we get
Tr Ĉ2 =

∑N2−1
a=1 TrT aT a = (N2 − 1)/2, so

C2 =
N2 − 1

2N
. (A.15)

In the su(N) case there are N − 1 simultaneously diagonal matrices (λ3 and λ8 in the
su(3) case), which means that the simultaneous eigenstates of these diagonal matrices can be
parametrized by N − 1 quantum numbers |mD(1), . . .mD(N−1)⟩ (in the su(3) case these states
have quantum numbers |m3,m8⟩). These states are what we call SU(N) spins in section 1.4.2.
In the su(2) case, the only quantum number is m, which forms the states |j,m⟩ in the irrep
labeled by j. The irrep label is not written explicitly in the |mD(1), . . .mD(N−1)⟩, it would either
involve the eigenvalues of all Casimir operators or the young tableau of the irrep. The range
of the m1, . . .mN−1 quantum numbers depends on the irrep, just as in the su(2) case, where
m ∈ {−j . . . j}. In the fundamental representation of su(3) these eigenstates (the su(3) spins)
are |m3 = 0,m8 = − 1√

3
⟩, |m3 = 1

2 ,m8 = 1
2
√
3
⟩ and |m3 = −1

2 ,m8 = 1
2
√
3
⟩, which form a triangle

(called weight diagram) in the space where the horizontal axis is m3 and the vertical axis is
m8. In the fundamental representation of su(N) the number of states |mD(1), . . .mD(N−1)⟩ is N ,
spaning the N dimensional Hilbert space of this irrep.

The non-diagonal matrices can be separated into [N2 − 1− (N − 1)]/2 = N(N − 1)/2 pairs
(the σx and σy in a given sector) to form raising and lowering operators similar to S+ and S−,
with the difference that these do not raise or lower the single value m, but the N − 1 quantum
numbers m1, . . .mN−1 simultaneously. In the su(3) case, these are the followings:

I± = T 1 ± iT 2 V± = T 4 ± iT 5 V± = T 6 ± iT 7, (A.16)

which have the following commutation relations with the diagonal T 3 and T 8:

[T 3, I±] = ±I± [T 3, U±] = ∓1

2
U± [T 3, V±] = ±1

2
V± (A.17)

[T 8, I±] = 0 [T 8, U±] = ±
√
3

2
U± [T 8, V±] = ±

√
3

2
V±. (A.18)
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Consequently, the operators I±, U± and V± iterate between the simultaneous eigenstates |m3,m8⟩
of λ3 and λ8 as

I±|m3,m8⟩ ∝ |m3 ± 1,m8⟩

U±|m3,m8⟩ ∝ |m3 ∓
1

2
,m8 ±

√
3

2
⟩ (A.19)

V±|m3,m8⟩ ∝ |m3 ±
1

2
,m8 ±

√
3

2
⟩,

in any irreducible representation of su(3).

A.4 SU(N) spin rotational symmetry of the Heisenberg model

The SU(N) symmetry of the Heisenberg Hamiltonian (1.10) means that it is invariant under
the simultaneous rotation of all SU(N) spins around the same axis n with the same angle ϕ,
which is done by the global SU(N) spin rotation operator U =

∏Ns
j=1 e

iϕn·Tj (see the end of
Appendix A.2) as

UHU−1 =

Ns∏
j=1

eiϕn·TjH
Ns∏
j=1

e−iϕn·Tj = H, (A.20)

which is equivalent to [U,H] = 0.
Before turning to the proof, let us mention why is this symmetry important. Firstly, we have

seen in Sec. 2.6 that if the ground state is not invariant under some transformation U , which
leaves the Hamiltonian invariant (called symmetry breaking), then the ground state must be
degenerate. We also saw that breaking a continuous symmetry can lead to gapless excitations
due to the Goldstone theorem. If the ground state becomes ferromagnetic or antiferromagnetic,
then the continuous SU(N) spin rotation symmetry is broken, and the operator U can transform
one ground state into a linear combination of the others.

Secondly, if the ground state does not break any symmetry, it is also invariant under any
global SU(N) spin rotation as U |GS⟩ = |GS⟩. As shown in Appendix A.2, an infinitesimal SU(N)
spin rotation can be Taylor expanded around the identity (A.9), so we can do the same with the
global SU(N) spin rotation

U(ϕ) =

Ns∏
j=1

eiϕn·Tj = eiϕn·
∑Ns

j=1 Tj = eiϕn·TT = eiϕ
∑N2−1

a=1 naTa
T (A.21)

for ϕ≪ 1 as

U(ϕ) = I + iϕ
N2−1∑
a=1

naT a
T +O(ϕ2), (A.22)

where T a
T ≡

∑Ns
j=1 T

a
j . We can choose the axis of rotations n so, that it points into the direction

of one of the SU(N) spin operators, say T b, simplifying the above equation to

U(ϕ) = I + iϕT b
T +O(ϕ2). (A.23)

Consequently, U(ϕ)|GS⟩ = |GS⟩ for any U implies T b
T |GS⟩ = 0 for any b. Therefore, the total

quadratic Casimir operator
∑N2−1

a=1 T a
TT

a
T (1.22) also takes on an eigenvalue 0, so that the ground

state transforms as an SU(N) singlet.
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Now let us turn to the proof of [U,H] = 0 for the global SU(N) spin rotations U defined in
Eq. (A.21) for any axis of rotation n and any angle ϕ. It is helpful to expand the exponential to
a power series

U = eiϕ
∑N2−1

a=1 naTa
T =

∞∑
n=0

(−1)n

n!

ϕN2−1∑
a=1

naT
a
T

n

. (A.24)

If T a
T commutes with H for all a ∈ {1 . . . N2 − 1}, then every power of T a

T commutes with H,
and so will U .

The Heisenberg Hamiltonian (1.18) can be rewritten as

H = J
∑
⟨i,j⟩

N2−1∑
a=1

T a
i T

a
j =

J

2

∑
⟨i,j⟩

N2−1∑
a=1

(
(T a

i + T a
j )

2 − (T a
i )

2 − (T a
j )

2
)

=
J

2

∑
⟨i,j⟩

(
Ĉ2,i+j − Ĉ2,i − Ĉ2,j

)
, (A.25)

since the SU(N) spin operators on different sites commute. The
∑

a(T
a
i )

2 = Ti ·Ti = Ĉ2,i is the
quadratic Casimir operator on site i (1.21), while

∑
a(T

a
i + T a

j )
2 = Ti+j · Ti+j = Ĉ2,i+j is the

quadratic Casimir operator of the subsystem composed of sites i and j. In the commutator

[T a
T ,H] =

 Ns∑
l=1

T a
l ,
J

2

∑
⟨i,j⟩

Ĉ2,i+j − Ĉ2,i − Ĉ2,j

 =
J

2

∑
⟨i,j⟩

Ns∑
l=1

[T a
l , Ĉ2,i+j − Ĉ2,i − Ĉ2,j ]

=
J

2

∑
⟨i,j⟩

 ∑
l /∈{i,j}

[T a
l , Ĉ2,i+j − Ĉ2,i − Ĉ2,j ]︸ ︷︷ ︸

0

+[T a
i + T a

j , Ĉ2,i+j − Ĉ2,i − Ĉ2,j ]

 . (A.26)

The Ĉ2,i trivially commutes with T a
j (since i ̸= j), but it also commutes with T a

i , because the
Casimir operators at site i commute with all T a

i (see Sec. 1.4.2). The only terms which do not
commute are [T a

i , Ĉ2,i+j ] ̸= 0 and [T a
j , Ĉ2,i+j ] ̸= 0. However, the sum of the spin operators

commutes [T a
i + T a

j , Ĉ2,i+j ] =
∑

b[T
a
i + T a

j , (T
b
i + T b

j )
2] = 0, since Ĉ2,i+j is a Casimir operator

on the subsystem of sites i and j.
Thus, we conclude that [T a

T ,H] = 0 for all a ∈ {1 . . . N2−1}, implying [U,H] = 0 (equivalently
to Eq. (A.20)), so that the Heisenberg Hamiltonian has global SU(N) spin rotation symmetry.

A.5 Young tableaux

As mentioned in Sections 1.4.2, and 2.1, the set of states {f †i,σ|0⟩|σ ∈ {1 . . . N}} form an
N dimensional basis for the fundamental representation of SU(N), meaning that the spin op-
erators are represented by the matrices ⟨0|fj,σT a

j f
†
j,σ′ |0⟩ = 1

2λ
a
σ,σ′ (see Eq. (2.3)), and the basis

states transform under the fundamental representation as T a
j f

†
j,σ|0⟩ =

∑N
σ′=1

1
2λ

a
σ′,σf

†
j,σ′ |0⟩ (see

Eq. (2.4)).
If we take the product of r such states on some sites j1, j2 . . . jr, we get a multiparticle

wavefunction f †j1,σ1
f †j2,σ2

. . . f †jr,σr
|0⟩. The set of these states for σ1, σ2 . . . σr ∈ {1 . . . N} forms an

N r dimensional basis for a reducible representation of the su(N) Lie algebra. In this reducible
representation, the total SU(N) spin operators

∑r
j=1 T

a
j are represented by N r ×N r matrices,

with the matrix elements given by

⟨0|fl1,ρ1fl2,ρ2 . . . flr,ρr

 r∑
j=1

T a
j

 f †j1,σ1
f †j2,σ2

. . . f †jr,σr
|0⟩. (A.27)
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These matrices can be simultaneously block diagonalized by a basis transformation, decompos-
ing the reducible representation to a direct sum of irreducible representations. Such a basis
transformation means taking the linear combinations of the r-particle product states as

|ψi⟩ ≡
N∑

σ1,σ2,...σr=1

ψi
σ1,σ2,...σr

f †j1,σ1
f †j2,σ2

. . . f †jr,σr
|0⟩, (A.28)

where i ∈ {1 . . . N r}. As claimed in the books [107, Sec. IV.4] and [109, Sec. 8.4], we get a
decomposition to irreducible representations, if we symmetrize or antisymmetrize in every flavor
index σ. In the su(2) case, constructing all symmetrized or antisymmetrized multiparticle wave-
functions reproduces the basis states of any irrep appearing in the Clebsh-Gordon decomposition.

The simplest example is the product of two particles f †j1,σ1
f †j2,σ2

|0⟩, which can be antisym-
metrized as 1√

2
(f †j1,σ1

f †j2,σ2
− f †j1,σ2

f †j2,σ1
)|0⟩ or symmetrized as 1√

2
(f †j1,σ1

f †j2,σ2
+ f †j1,σ2

f †j2,σ1
)|0⟩.

In the su(2) case, where both σ1, σ2 ∈ {1, 2}, antisymmetrization gives |ψ1⟩ ≡ 1√
2
(f †j1,1f

†
j2,2

−
f †j1,2f

†
j2,1

)|0⟩ (usually denoted as 1/
√
2(| ↑↓⟩ − | ↓↑⟩)), which is the one-dimensional basis of

the s = 0 singlet irrep, while symmetrization yields the three states |ψ2⟩ ≡ f †j1,1f
†
j2,1

|0⟩, |ψ3⟩ ≡
1√
2
(f †j1,1f

†
j2,2

+f †j1,2f
†
j2,1

)|0⟩, and |ψ4⟩ ≡ f †j1,2f
†
j2,2

|0⟩ (usually denoted as | ↑↑⟩, 1/
√
2(| ↑↓⟩+ | ↓↑⟩),

and | ↓↓⟩), forming the three-dimensional basis for the s = 1 triplet irrep. The sets {|ψ1⟩} and
{|ψ2⟩, |ψ3⟩, |ψ4⟩} transform separately under the action of the spin operators Sx, Sy, and Sz.
Thus, the 4× 4 matrices representing the spin operators in the basis of product states are block
diagonalized to 1 × 1 and 3 × 3 blocks in the basis of {|ψ1⟩, |ψ2⟩, |ψ3⟩, |ψ4⟩}. The set of 1 × 1
block matrices form the singlet irrep and the set of 3× 3 block matrices form triplet irrep. The
sites j1 and j2 are arbitrary for the singlet, but j1 ̸= j2 for the two triplet irrep.

In the su(3) case, σ1, σ2 ∈ {1, 2, 3}, so we get multiple states even after the antisym-
metrization of two-particle wavefunctions, since we have |ψ1⟩ ≡ 1√

2
(f †j1,1f

†
j2,2

− f †j1,2f
†
j2,1

)|0⟩,
|ψ2⟩ ≡ 1√

2
(f †j1,2f

†
j2,3

− f †j1,3f
†
j2,2

)|0⟩, and |ψ3⟩ ≡ 1√
2
(f †j1,1f

†
j2,3

− f †j1,3f
†
j2,1

)|0⟩. To form a basis

for the su(3) singlet, we have to antisymmetrize a 3-particle wavefunction as (f †j1,1f
†
j2,2

f †j3,3 +

f †j1,3f
†
j2,1

f †j3,2 + f †j1,2f
†
j2,3

f †j3,1 − f †j1,3f
†
j2,2

f †j3,1 − f †j1,1f
†
j2,3

f †j3,2 − f †j1,2f
†
j2,1

f †j3,3)|0⟩. Symmetrization
of two-particle wavefunctions yields 6 independent linear combinations in the su(3) case, namely
f †j1,1f

†
j2,1

|0⟩, f †j1,2f
†
j2,2

|0⟩, f †j1,3f
†
j2,3

|0⟩, (f †j1,2f
†
j2,1

+ f †j1,1f
†
j2,2

)|0⟩, (f †j1,3f
†
j2,1

+ f †j1,1f
†
j2,3

)|0⟩, and
(f †j1,2f

†
j2,3

+ f †j1,3f
†
j2,2

)|0⟩, the set of which form the six-dimensional basis for an irreducible rep-
resentation of su(3).

In the case of su(N), to form a basis for the su(N) singlet representation, we have to antism-
metrize an N particle wavefunction. We can not antisymmetrize more then N particles because
we get 0, but we can symmetrize any number of particles. We can antisymmetrize subsets of a
2N particle wavefunction, so that we antisymmetrize in two subsets of N particles, which also
forms a one-dimensional basis for the su(N) singlet representation (an example of this being the
decoupled David star in chapter 3).

Hybrid symmetrization and antisymmetrization procedures are also possible, for example, we
can symmetrize first in the first two flavors σ1 and σ2, and then antisymmetrize in the flavors
σ1 and σ3 (which will destroy the symmetric feature in σ1 and σ2). In the su(3) case, the set of
these hybrid three-particle wavefunctions forms a basis for the adjoint irreducible representation.

Due to the connection of the SU(N) group and the su(N) Lie algebra in Eq. (A.9), the set of
states forming a basis for a given irrep of the su(N) Lie algebra also forms a basis for the same
irrep of the SU(N) group. In general, the basis for every irreducible representation of the su(N)
Lie algebra and the SU(N) group can be constructed by multiparticle wavefunctions.

In the books [107, Sec. IV.4] and [109, Sec. 8.4], the basis of each irreducible representation
is formed by tensors. These tensors can have many upper and lower indices. Depending on
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the convention, a tensor of r lower indices and no upper indices is equivalent to an r particle
wavefunction. Antisymmetrizing N − 1 lower indices is equivalent to introducing an upper
index, therefore any tensor can be rewritten only with lower indices, and is thus equivalent to
a multiparticle wavefunction. Antisymmetrizing N − 1 particles on the same lattice site can be
thought of as a hole, so that on the same site the upper indices can be analogies of the holes.
However, we can also antisymmetrize N − 1 particles residing on different sites, so we can have
upper indices which are not analogs of holes. For the sake of clarity, we will not talk about
tensors with upper and lower indices, only multiparticle wavefunctions.

A.5.1 Young tableau: a pictorial representation of symmetrization and anti-
symmetrization

In the following subsections, we follow section 8.4 of the book [109]. Every flavor index
σ of the multiparticle wavefunction corresponds to a box, so the number of boxes is equal to
the number of particles. The r boxes of the r particle wavefunction are arranged in a way
to represent the symmetrization and antisymmetrization procedure of the σ indices, what we
call a Young tableau (the Young tableaux is the plural). For the boxes in the same row the
corresponding σ indices are symmetrized, while for the boxes in the same column the σ indices
are antisymmetrized. We can not antisymmetrize more than N indices, therefore we can not
have more than N boxes in a column. A single column of N boxes corresponds to the completely
antisymmetric wavefunction, forming a one-dimensional basis for the SU(N) singlet irrep. All
the rows must be arranged to the left, and every row must have less or equal number of boxes
than the row on top of it.

We first label the boxes with the σ indices starting from the top row in increasing order to
the right (as σ1, σ2 . . . σl), following with the second row (σl+1, σl+2 . . . σl′)) and so on. Next,
we symmetrize the multiparticle wavefunction in the indices of each row separately. Finally, we
antisymmetrize the multiparticle wavefunction in the indices in the columns separately (which
destroys the previous symmetrization).

A.5.2 Pictorial calculation of the dimension with a Young tableau

In this subsection, we follow section 8.4 (ii) of the book [109]. As already stated, the linear
combinations of the elements of the r particle wavefunction form a basis for an irreducible
representation. The number of linearly independent linear combinations is the dimension of the
irreducible representation (it determines the sizes of the matrices representing the SU(N) spin
operators in this irrep). The dimension can be written as a ratio of two numbers, which are both
calculated from the Young tableau (for specific examples see Fig. A.1(a) and (b)). For this, we
draw the shape of the Young tableau in both the numerator and the denominator, and we fill
each box with one integer. In the denominator, the number in a given box is the number of
boxes below it (in the same column) plus the number of boxes to the right of it (in the same
row) plus 1 (see Fig. A.1(a) and (b)). In the numerator, we start from the leftmost box in the
top row, and we write N in it. Next, we write integers in descending order in the boxes below it
(so in the first column we will have the integers N , N − 1, N − 2 ... from top to bottom). Then,
we fill the boxes in every row, starting from the leftmost box (which was already filled) to the
right, and we write in integers in ascending order. The first row will contain the numbers N ,
N + 1, N + 2 . . . from left to right. The second row will have N − 1, N , N + 1, . . . , the third
row N − 2, N − 1, N, . . . always in ascending order from left to right. Finally, the dimension
of the irreducible representation is the product of all the numbers in the Young tableau of the
numerator divided by the product of all the numbers in the Young tableau of the denominator.
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Figure A.1: (a) An example for the calculation of the dimension of an irrep, the basis for this irrep
is formed by hybridly symmetrized and antisymmetrized eight-particle wavefunctions (rows show
symmetrization, columns antisymmetrization). The rules for the calculation of the dimension
are given in Appendix A.5.2
. (b) The Young tableau of the adjoint representation has a column of N − 1 boxes and an
additional box in the first row. Its dimension is N2 − 1. (c) The direct product of the conjugate
and fundamental irreps is reducible, therefore we can decompose it to a direct sum of irreps with
a basis transformation (symmetrization and antisymmetrization). The irreps appearing in the
decomposition can be constructed by adding the single box of the fundamental representation to
the Young tableau of the conjugate representation in all possible ways. There are only two ways
to do this while keeping a valid Young tableau, resulting in the singlet and the adjoint irreps.
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A.5.3 Decomposition of a direct product of two Young tableaux

In this section, we follow section 8.4 (iii) of the book [109]. The direct product of two
irreducible representations is reducible, so it can be decomposed into the direct sum of irreducible
representations. In other words, if the r1 particle wavefunctions |ψi⟩ with i ∈ {1 . . . d1} form a
d1 dimensional basis for the first irreducible representation, and the r2 particle wavefunctions
|ϕj⟩ with j ∈ {1 . . . d2} form a d2 dimensional basis for the second irreducible representation,
then the r1 × r2 particle wavefunctions |ψi⟩ ⊗ |ϕj⟩ form a basis for the d1 × d2 dimensional
product representation, which is reducible. The decomposition to irreducible representations
means a basis transformation (symmetrization or antisymmetrization), which simultaneously
block diagonalizes every SU(N) spin operator. The symmetrized or antisymmetrized linear
combinations transform separately under the action of the SU(N) spin operators, so that we can
represent these linear combinations by Young tableaux too. There are rules for the decomposition
of a direct product of two arbitrary Young tableau to a direct sum of Young tableaux, but these
rules are quite complicated [109, Sec. 8.4 (iii)]. Here, we consider only a simple case, where
the first Young tableau can be arbitrary, but the second is a single box forming a basis for the
fundamental representation. In the decomposition to irreps, we get all possible Young tableaux
which can be formed by adding a box to the first Young tableau. In the simplest case, both
Young tableaux are single boxes. Then there are only two possibilities: we either antisymmetrize
or symmetrize these two indices, resulting in a single column of two boxes or a single row of
two boxes, respectively. In the case of SU(2), a box is a spin 1/2, antisymmetrization leads to
the singlet irrep (a column of two boxes) while symmetrization to the triplet irrep (a row of two
boxes), as shown in Fig. A.1(c). Another simple but important example is, when the first Young
tableau is a column of N−1 boxes (conjugate irrep), and the second is a single box (fundamental
irrep). In this case, there are only two possibilities to add a new box: we either add it to the
bottom, getting a column of N boxes (singlet irrep), or we add it to the first row (adjoint irrep).
We can not add the box to any other row than the first because in a legal Young tableau any
row must have less or equal number of boxes than the row about it. Both the conjugate and
the fundamental representation are N dimensional, so their direct product is N × N = N2

dimensional, matching the sum of the dimensions of the one-dimensional singlet representation
and the N2 − 1 dimensional adjoint representation (see Figs. A.1(b) and (d)), appearing in the
decomposition.

A.6 Other irreducible representations of SU(N)

As stated in Appendices A.2 and A.3 the number of generators of the su(N) Lie algebra is
always N2 − 1, but the size of the matrices varies among different irreducible representations
(irreps). The size of these matrices corresponds to the dimension of the Young tableau of the
given irrep. In the case of the fundamental irrep, the Young tableau is a single box, meaning that
the basis of this irrep is N dimensional, so the generators are represented by N × N matrices.
Thinking in terms of the repulsive SU(N) Hubbard model in the U/t→ ∞ limit, the fundamental
representation of the Heisenberg model emerges from the 1/N filling of the Hubbard model (with
one fermion per site on average).

A.6.1 The conjugate representation

The conjugate representation has the same dimensionality N and the same eigenvalue of the
quadratic Casimir operator (A.15) as the fundamental representation, but its Young tableau is
a column of N − 1 boxes, instead of a single box. Thinking in terms of the repulsive SU(N)
Hubbard model in the U/t→ ∞ limit, the conjugate representation emerges from the (N−1)/N
filling corresponding to N − 1 fermions per site (as having one hole at every site on average). In
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the SU(2) case, the two representations are the same since one fermion per site is the same as
one hole per site.

A.6.2 The self-conjugate representation

Another frequently used irrep in the literature is the self-conjugate representation of su(N)
represented by a Young tableau of a column of N/2 boxes (self-conjugate because N − N/2
boxes give the same). Therefore, this irrep exists only for even N . In terms of the repulsive
Hubbard model, it emerges from the half-filled case, with N/2 fermions per site on average. The
one-dimensional basis of the SU(N) singlet is formed by the antisymmetrization of N fermions (a
column of N boxes in the Young tableau). Therefore, the basis function of the singlet irrep can be
formed by combining two lattice sites with the basis functions of the self-conjugate representation
(forming a dimer) for any N , since the decomposition of the product of two identical Young
tableaux with a column of N/2 boxes will contain a Young tableau of a column with N boxes.
In contrast, for the formation of a basis function of an SU(N) singlet from the basis functions
of the fundamental representation we have to combine N singly occupied sites since we have to
take the product of N single boxes, to be able to construct a column of N boxes. For this reason,
people frequently use it in the SU(N) expansion because it is possible to form a basis for the
SU(N) singlet with two sites only for any N .

A.6.3 The adjoint representation

The adjoint representation is N2 − 1 dimensional and is represented by a Young tableau
shown in Fig. A.1(b). In the following, we will show that the matrices representing the to-
tal SU(N) spin operators T a

T ≡
∑Ns

j=1 T
a
j in this irrep are given by the structure constants of

Eq. (1.19) as λab,c = −ifabc (see "The adjoint representation of SU(N)" in [107, Sec. IV.4]).
As we will show, the (N2 − 1) × (N2 − 1) matrices λab,c are written in the basis of states
{T 1

k |GS⟩, T 2
k |GS⟩ . . . TN2−1

k |GS⟩}, where T a
k ≡ 1√

Ns

∑
R,s e

ik·(R+δs)T a
R,s from Eq. (4.2), and the

ground state |GS⟩ of the antiferromagnetic SU(N) Heisenberg model is supposed to transform as
an SU(N) singlet, implying T a

T|GS⟩ = 0 for any a ∈ {1 . . . N2−1}. In the literature it is common
to say that the states T a

k |GS⟩ transform under the adjoint representation, or that they belong
to the adjoint representation. The adjoint transformation is significant for the calculation of the
spectral weights |⟨f |T a

k |GS⟩|2 in the dynamical spin structure factor of Eq. (4.5), as discussed in
section 4.3.4.

First, let us calculate the commutator [T a
T, T

b
k], where we will use that T a

T =
∑Ns

j=1 T
a
j = T a

k=0

as

[T a
T, T

b
k] = [T a

0 , T
b
k] =

∑
R,R̄,ss̄

ei0·(R+δs)eik·(R+δs)[T a
R,s, T

b
R̄,s̄] (A.29)

=
∑

R,R̄,ss̄

eik·(R+δs)δR,R̄δs,s̄i

N2−1∑
c=1

fa,b,cT
c
R,s (A.30)

= i

N2−1∑
c=1

fa,b,c
∑
R,s

eik·(R+δs)T c
R,s = i

N2−1∑
c=1

fa,b,cT
c
k. (A.31)

Using this commutator, we can calculate the action of the total SU(N) spin operators T a
T on the

basis states {T 1
k |GS⟩, T 2

k |GS⟩ . . . TN2−1
k |GS⟩}, as

T a
TT

b
k|GS⟩ = [T a

T, T
b
k]︸ ︷︷ ︸

i
∑

c fabcT
c
k

|GS⟩+ T b
k T

a
T|GS⟩︸ ︷︷ ︸

0

=

N2−1∑
c=1

ifabc︸︷︷︸
Γa
c,b

T c
k|GS⟩ =

N2−1∑
c=1

Γa
c,bT

c
k|GS⟩ (A.32)
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The above equation shows, that in the basis of states {T 1
k |GS⟩, T 2

k |GS⟩ . . . TN2−1
k |GS⟩} the T a

T
is represented by the matrix Γa having matrix elements Γa

c,b ≡ ifa,b,c. From now on, let us
abbreviate the basis states as |a⟩ ≡ T a

k |GS⟩, so Eq. (A.32) simplifies to

T a
T|b⟩ = i

N2−1∑
c=1

fabc|c⟩ =
N2−1∑
c=1

Γa
c,b|c⟩. (A.33)

As we will show below, the Γa matrices represent the total SU(N) spin operators T a
T in the

adjoint irreducible representation. Thus, the above equation shows that the states |b⟩ ≡ T b
k|GS⟩

transform under the action of the total SU(N) spin operators T a
T as the adjoint irrep, since the

action of T a
T is equal to the multiplication with the matrix Γa. In the literature, this is often

abbreviated as the states T b
k|GS⟩ transform under the adjoint irreducible representation.

We can derive the commutation relations of these Γ matrices from the commutation relations
of the T a

T, since

[T a
T, T

b
T]|c⟩ = T a

T

N2−1∑
d=1

Γb
d,c|d⟩ − T b

T

N2−1∑
d=1

Γa
d,c|d⟩

=
N2−1∑
d=1

Γb
d,c

N2−1∑
e=1

Γa
e,d|e⟩ −

N2−1∑
d=1

Γa
d,c

N2−1∑
e=1

Γb
e,d|e⟩ (A.34)

=

N2−1∑
e=1

[Γa,Γb]e,c|e⟩ (A.35)

= i
N2−1∑
d=1

fa,b,dT
d
T|c⟩ = i

N2−1∑
d=1

fa,b,d

N2−1∑
e=1

Γd
e,c|e⟩, (A.36)

where in the last row we used the Lie algebra [T a
T, T

b
T] = i

∑N2−1
d=1 fa,b,dT

d
T. Comparing the third

and the fourth rows above, we get

[Γa,Γb]e,c = i
N2−1∑
d=1

fa,b,dΓ
d
e,c, (A.37)

showing that the Γa matrices satisfy the same commutation relations as the T a
T, so the set of Γa

matrices forms a representation of the su(N) Lie algebra. The number of basis states T a
k |GS⟩

is equal to the number of generators N2 − 1, so the Γa are (N2 − 1) × (N2 − 1) matrices and
the dimension of this representation is d = N2 − 1. These matrices form the adjoint irreducible
representation of su(N) [107, Sec. IV.4].

A.6.3.1 Particle-hole excitations

Similarly, a basis for the adjoint representation can also be formed by the following linear
combinations of real-space-particle-hole excitations
{
∑N

σ,σ̄=1 λ
a
σ,σ̄f

†
R+R′,s,σfR′,s̄,σ̄|πFS⟩|a ∈ {1 . . . N2−1}}, where the λaσ,σ̄ are N ×N matrices repre-

senting the SU(N) spin operators in the fundamental representation (see Appendix A.3). To show
this, we will follow the same steps as for the states T 1

k |GS⟩, since |πFS⟩ is also an SU(N) singlet.
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First, using T a
T ≡

∑
R̃,s̃ T

a
R̃,s̃

= 1
2

∑
R̃,s̃

∑N
ρ,ρ′=1 f

†
R̃,s̃,ρ

λaρ,ρ′fR̃,s̃,ρ′
, we calculate the commutatorT a

T,
N∑

σ,σ′=1

λbσ,σ′f
†
R+R′,s,σfR′,s′,σ′

 =

1
2

∑
R̃,s̃

N∑
ρ,ρ′=1

f †
R̃,s̃,ρ

λaρ,ρ′fR̃,s̃,ρ′
,

N∑
σ,σ′=1

λbσ,σ′f
†
R+R′,s,σfR′,s′,σ′


=

1

2

∑
R̃,s̃

N∑
ρ,ρ′=1

N∑
σ,σ′=1

λaρ,ρ′λ
b
σ,σ′

[
f †
R̃,s̃,ρ

f
R̃,s̃,ρ′

, f †R+R′,s,σfR′,s′,σ′

]

=
1

2

∑
R̃,s̃

N∑
ρ,ρ′=1

N∑
σ,σ′=1

λaρ,ρ′λ
b
σ,σ′

(
δR̃,R+R′δs̃,sδσ,ρ′f

†
R̃,s̃,ρ

fR′,s′,σ′ − δR′,R̃δs′,s̃δσ′,ρf
†
R+R′,s,σfR̃,s̃,ρ′

)

=
1

2

N∑
ρ=1

N∑
σ,σ′=1

λaρ,σλ
b
σ,σ′f

†
R+R′,s,ρfR′,s′,σ′ −

1

2

N∑
ρ′=1

N∑
σ,σ′=1

λbσ,σ′λaσ′,ρ′f
†
R+R′,s,σfR′,s′,ρ′

=
1

2

N∑
σ,σ′,α=1

(
λaσ,αλ

b
α,σ′f

†
R+R′,s,σfR′,s′,σ′ −

1

2
λbσ,αλ

a
α,σ′f

†
R+R′,s,σfR′,s′,σ′

)

=
1

2

N∑
σ,σ′=1

(
N∑

α=1

λaσ,αλ
b
α,σ′ − λbσ,αλ

a
α,σ′

)
︸ ︷︷ ︸

2i
∑N2−1

c=1 fabcλ
c
σ,σ′

f †R+R′,s,σfR′,s′,σ′

= i
N2−1∑
c=1

fabc

N∑
σ,σ′=1

λcσ,σ′f
†
R+R′,s,σfR′,s′,σ′ , (A.38)

where we used the commutation relation
[
1
2λ

a, 12λ
b
]
= i
∑N2−1

c=1 fabc
1
2λ

c of Eq. (A.13). Using the
above commutator we get

T a
T

N∑
σ,σ′=1

λbσ,σ′f
†
R+R′,s,σfR′,s′,σ′ |πFS⟩ = [T a

T,
N∑

σ,σ′=1

λbσ,σ′f
†
R+R′,s,σfR′,s′,σ′ ]︸ ︷︷ ︸

i
∑N2−1

c=1 fabc
∑N

σ,σ′=1 λ
c
σ,σ′f

†
R+R′,s,σfR′,s′,σ′

|πFS⟩

+
N∑

σ,σ′=1

λbσ,σ′f
†
R+R′,s,σfR′,s′,σ′ T

a
T|πFS⟩︸ ︷︷ ︸

0

=

N2−1∑
c=1

ifabc︸︷︷︸
Γa
c,b

N∑
σ,σ′=1

λcσ,σ′f
†
R+R′,s,σfR′,s′,σ′ |πFS⟩, (A.39)

equivalently to Eqs. (A.32) and (A.33), from which Eqs. (A.36) and (A.37) follow the same way as
in the previous section, so the basis states |a⟩ ≡

∑N
σ,σ′=1 λ

a
σ,σ′f

†
R+R′,s,σfR′,s′,σ′ form a basis for the

(N2−1)×(N2−1) Γa
c,b = ifabc matrices. In other words, the states

∑N
σ,σ′=1 λ

a
σ,σ′f

†
R+R′,s,σfR′,s′,σ′

also transform under the adjoint irreducible representation.
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Mean-field theory in the projective con-
struction

Substituting the fermionic decomposition T a
i = 1

2

∑N
σ,σ′=1 f

†
i,σλ

a
σ,σ′fi,σ′ of Eq. (2.2) into the

Heisenberg Hamiltonian H = J
∑

⟨i,j⟩
∑N2−1

a=1 T a
i T

a
j of Eq. (1.18) we get

H = J
∑
⟨i,j⟩

N2−1∑
a=1

1

2

N∑
α,β=1

f †i,αλ
a
α,βfi,β

1

2

N∑
γ,ϵ=1

f †j,γλ
a
γ,ϵfj,ϵ

 (B.1)

=
J

4

∑
⟨i,j⟩

N∑
α,β,γ,ϵ=1

N2−1∑
a=1

λaα,βλ
a
γ,ϵ

 f †i,αfi,βf
†
j,γfj,ϵ,

which can be simplified using the relation [108]

N2−1∑
a=1

λaα,βλ
a
γ,ϵ = 2δα,ϵδβ,γ −

2

N
δα,βδγ,ϵ (B.2)

to

H =
J

2

∑
⟨i,j⟩

 N∑
α,β=1

f †i,αfi,βf
†
j,βfj,α − 1

N

N∑
α,β=1

f †i,αfi,αf
†
j,βfj,β

 (B.3)

=
J

2

∑
⟨i,j⟩

 N∑
α,β=1

(
f †i,αfi,βf

†
j,βfj,α

)
− 1

N


where in the second step we used that

∑N
α,β=1 f

†
i,αfi,αf

†
j,βfj,β = ninj = 1, due to the single

occupancy constraint of Eq. (2.5). It will be convenient to change the order of fermionic operators
as f †i,αfi,βf

†
j,βfj,α = f †i,αfi,βδα,β − f †i,αfj,αf

†
j,βfi,β , where again

∑N
α,β=1 f

†
i,αfi,βδα,β = ni = 1.

Taking out the minus sign, the Heisenberg Hamiltonian can be written as

H = −J
2

∑
⟨i,j⟩

 N∑
α,β=1

(
f †i,αfj,αf

†
j,βfi,β

)
+

1

N
− 1

 (B.4)

It is important to emphasize that Eq. (B.4) together with the single occupancy constraint
nj = 1 of Eq. (2.5), is an exact mapping of the Heisenberg Hamiltonian (1.18) to interacting
fermions.

To obtain the mean-field approximation, let us first rewrite a pair of operators with their
expectation value plus the fluctuation around the expectation value (in the hope that the fluc-
tuation is much smaller than the expectation value) like f †i,αfj,α = ⟨f †i,αfj,α⟩+ δ(f †i,αfj,α) where
the fluctuation is δ(f †i,αfj,α) ≡ f †i,αfj,α−⟨f †i,αfj,α⟩, and similarly f †j,βfi,β = ⟨f †j,βfi,β⟩+ δ(f

†
j,βfi,β).
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Substituting these expressions into Eq. (B.4) we get

H = −J
2

∑
⟨i,j⟩

( N∑
α,β=1

[
⟨f †i,αfj,α⟩+ δ(f †i,αfj,α)

] [
⟨f †j,βfi,β⟩+ δ(f †j,βfi,β)

]
+

1

N
− 1
)

= −J
2

∑
⟨i,j⟩

( N∑
α,β=1

⟨f †i,αfj,α⟩⟨f
†
j,βfi,β⟩+ ⟨f †i,αfj,α⟩δ(f

†
j,βfi,β) + δ(f †i,αfj,α)⟨f

†
j,βfi,β⟩

+ δ(f †i,αfj,α)δ(f
†
j,βfi,β) +

1

N
− 1
)
,

(B.5)

which is still an exact mapping of the Heisenberg Hamiltonian (1.18). The mean-field approxi-
mation is obtained by neglecting the second order term in the fluctuations δ(f †i,αfj,α)δ(f

†
j,βfi,β),

assuming that it is small, and taking all expectation values ⟨. . . ⟩ = ⟨FS| . . . |FS⟩ in the ground
state |FS⟩ of the mean-field Hamiltonian. Dropping all constants, the mean-field Hamiltonian is

HMF = −J
2

∑
⟨i,j⟩

N∑
α,β=1

[
⟨f †i,αfj,α⟩δ(f

†
j,βfi,β) + δ(f †i,αfj,α)⟨f

†
j,βfi,β⟩

]
(B.6)

= −J
2

∑
⟨i,j⟩

N∑
α,β=1

[
⟨f †i,αfj,α⟩f

†
j,βfi,β − ⟨f †i,αfj,α⟩⟨f

†
j,βfi,β⟩

+f †i,αfj,α⟨f
†
j,βfi,β⟩ − ⟨f †i,αfj,α⟩⟨f

†
j,βfi,β⟩

]
. (B.7)

Leaving away the constants ⟨. . . ⟩⟨. . . ⟩ gives us two terms, which are identical, up to an index
change α↔ β, giving a factor of 2. The resulting Hamiltonian

HMF =
∑
⟨i,j⟩

N∑
β=1

(
−J

N∑
α=1

⟨f †i,αfj,α⟩

)
︸ ︷︷ ︸

ti,j

f †j,βfi,β (B.8)

allows for the identification of the hoppings, as given in Eq. (2.7).



Appendix C

Sum rules
As we stated in Eqs. (6.2) and (6.3), the sum rules are different in the projected and the

mean-field cases. This section shows how the charge fluctuations affect the sum rule in the mean-
field case for a general SU(N) model in the fundamental representation. The sum rule is defined
as ∑

k∈eBZ

S33(k) =
∑

k∈eBZ

⟨GS|T 3
−kT

3
k |GS⟩ (C.1)

=
∑

k∈eBZ

1

Ns

∑
R,s
R̄,s̄

e−ik·(R+δs−R̄−δs̄)⟨GS|T 3
R,sT

3
R̄,s̄|GS⟩,

where we inserted the expression of Eq. (4.2). Using the relation∑
k∈eBZ

e−ik·(R+δs−R̄−δs̄) = NkδR,R̄δs,s̄, (C.2)

where Nk is the number of wave vectors in the extended Brillouin zone, we get∑
k∈eBZ

S33(k) =
Nk

Ns

∑
R,s

⟨GS|T 3
R,sT

3
R,s|GS⟩ (C.3)

=
Nk

Ns

∑
R,s

1

N2 − 1

N2−1∑
a=1

⟨GS|T a
R,sT

a
R,s|GS⟩ = Nk

Ns

∑
R,s

1

N2 − 1
⟨GS|Ĉ2,R,s|GS⟩,

where in the second row we assumed that the ground state does not break the SU(N) sym-
metry, so ⟨GS|T b

R,sT
b
R,s|GS⟩ = 1

N2−1

∑N2−1
a=1 ⟨GS|T a

R,sT
a
R,s|GS⟩ for every b ∈ {1 . . . N2 − 1}

(i.e., it transforms as an SU(N) singlet). The expression
∑N2−1

a=1 T a
R,sT

a
R,s is the quadratic

Casimir operator Ĉ2,R,s of Eq. (1.21), so Eq. (C.3) is general and allows for different irreps
on different sites. In case of the SU(N) Heisenberg model in the fundamental representation,
GS|T a

R,sT
a
R,s|GS⟩ = (N2 − 1)/2N on every site, as shown in Eq. (A.15). Thus, the sum rule of

the Heisenberg model reads∑
k∈eBZ

S33(k) =
Nk

Ns

∑
R,s

1

N2 − 1
⟨GS|Ĉ2,R,s|GS⟩ = Nk

2N
. (C.4)

As argued in the following section, we get the same sum rule, if we make the approximation
|GS⟩ ≈ PG|FS⟩. As argued in Appendix H,Nk = 3

2Ns for the honeycomb lattice, whileNk = 4
3Ns

for the kagome lattice.

C.1 Mean-field sum rule

In the case of the mean-field hopping Hamiltonian of Eq. (2.6), the value of the quadratic
Casimir operator is reduced due to the charge fluctuations in |FS⟩. To calculate its precise value
let us substitute the fermionic projective construction of the SU(N) spin operators (Eq. (2.2))
into the Casimir operator

Ĉ2 =

N2−1∑
a=1

T aT a =
1

4

N2−1∑
a=1

N∑
α,β,
γ,ϵ=1

c†αλ
a
α,βcβc

†
γλ

a
γ,ϵcϵ (C.5)
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where we omit the site indices for convenience. Using the completeness relation
∑N2−1

a=1 λaα,βλ
a
γ,ϵ =

2δα,ϵδβ,γ − 2
N δα,βδγ,ϵ of Eq. (B.2) we get

N2−1∑
a=1

T aT a =
N∑

α,γ=1

(
1

2
c†αcγc

†
γcα − 1

2N
c†αcαc

†
γcγ

)
. (C.6)

Rearranging the order of the fermionic operators results in

Ĉ2,R,s =

N2−1∑
a=1

T a
R,sT

a
R,s =

N + 1

2
nR,s −

N + 1

2N
n2
R,s, (C.7)

where nR,s ≡
∑N

σ=1 c
†
R,s,σcR,s,σ is the total fermion number operator on the site with lattice

vector r = R + δs. The value of nR,s determines the irreducible representation on a given site
(see Appendices A.6 and A.5), so we get the eigenvalue of the quadratic Casimir operator of
this irrep. On a singly occupied site (nR,s = 1), the quadratic Casimir operator takes on the
same value N2−1

2N as in the fundamental representation of SU(N). This is not surprising, since
the states c†R,s,σ|0⟩ form a basis for the fundamental representation. The Gutzwiller projector
enforces single occupancy, so ⟨FS|PGĈ2,R,sPG|FS⟩ = N2−1

2N , and we get the same sum rule (C.4)
as for the SU(N) Heisenberg model in the fundamental representation, just as we stated in
Eq. (6.2).

However, to calculate the mean-field expectation value
∑N2−1

a=1 ⟨FS|T a
R,sT

a
R,s|FS⟩, we have to

consider all the possible occupations with their probabilities. Consequently, the |FS⟩ without
Gutzwiller projection mixes different irreducible representations, so that |FS⟩ is not an eigenstate
of the Casimir operators. Since the fermions are uncorrelated in the mean-field approach (i.e.,
each flavor of fermions occupies a site independently of the other flavors), the probability that r
fermions occupy a site is determined by the binomial distribution Pbinom(r) =

(
N
r

)
pr(1− p)N−r,

where p = 1/N is the probability that one of the flavors occupies this site. Thus

CMF
2,R,s = ⟨FS|Ĉ2,R,s|FS⟩ = ⟨FS|

(
N + 1

2
nR,s −

N + 1

2N
n2
R,s

)
|FS⟩

=

N∑
r=0

Pbinom(r)

(
N + 1

2
r − N + 1

2N
r2
)

=

(
N2 − 1

2N

)(
1− 1

N

)
, (C.8)

for any site with indeces R, s. The above equation shows that the deviation from the proper value
of the quadratic Casimir operator in the fundamental representation is a factor 1− 1

N . We note
that this is an average, as the probability of multiply occupied sites (r > 1) is non-zero even in
the large-N limit, since the binomial distribution Pbinom(r) approaches the Poisson distribution
with parameter λ = Np = 1. Substituting the CMF

2 from Eq. (C.8), to the general formula in
Eq. (C.3) we get ∑

k∈eBZ

S33
MF(k) =

Nk

Ns

∑
R,s

1

N2 − 1
CMF
2,R,s =

Nk

2N

(
1− 1

N

)
, (C.9)

just as stated in Eq. (6.3).



Appendix D

Relation between the ground states of
gauge equivalent mean-field Hamiltoni-
ans

In this appendix, we prove that if we take two gauge equivalent (2.33) Hamiltonians

HMF
2 = GHMF

1 G−1, (D.1)

which are further related by some invertible operator O as

HMF
2 = OHMF

1 O−1, (D.2)

then their ground states |FS1⟩ and |FS2⟩ are related as

|FS2⟩ = O|FS1⟩, (D.3)

provided that both |FS1⟩ and |FS2⟩ are non-degenerate.
If O = G, then Eqs. (D.1) and (D.2) are the same.
To prove Eq. (D.3), we start from the two eigenvalue equations

HMF
1 |FS1⟩ = EMF

FS,1|FS1⟩ (D.4)

and
HMF

2 |FS2⟩ = EMF
FS,2|FS2⟩. (D.5)

We can use Eq. (D.2) as

HMF
2 |FS2⟩ = OHMF

1 O−1|FS2⟩ = EMF
FS,2|FS2⟩

HMF
1 O−1|FS2⟩ = EMF

FS,2O−1|FS2⟩ (D.6)

where in the second row we multiplied from the left with O−1. If we showed that EMF
FS,1 = EMF

FS,2,
then comparing the last equation above with the eigenvalue equation (D.4), the non-degeneracy
of |FS1⟩ would imply that |FS2⟩ = O−1|FS2⟩. To prove EMF

FS,1 = EMF
FS,2, it is enough to show that

the one-particle energy spectra of the gauge equivalent HMF
1 and HMF

2 are the same (which is
shown in Eq. ( 2.34)), since the mean-field ground state energy is just the sum of the one-particle
energies below the Fermi energy εF.
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Appendix E

Gauge transformations for projective sym-
metries

The projective symmetry HMF = GggHMFg−1G−1
g of Eq. (2.32) can be rewritten for the

hopping Hamiltonian (2.6) as

∑
⟨a,b⟩

N∑
σ=1

ta,bf
†
a,σfb,σ =

∑
⟨i,j⟩

N∑
σ=1

ti,jGggf
†
i,σfj,σg

−1G−1
g (E.1)

=
∑
⟨i,j⟩

N∑
σ=1

ti,jGggf
†
i,σg

−1G−1
g Gggfj,σg

−1G−1
g

=
∑
⟨i,j⟩

N∑
σ=1

ti,jGgf
†
g(i),σG

−1
g Ggfg(j),σG

−1
g

=
∑
⟨i,j⟩

N∑
σ=1

ti,je
iϕg(g(i))f †g(i),σfg(j),σe

−iϕg(g(j)) (E.2)

Since the coefficients of a given pair of fermionic operators

f †a,σfb,σ

must be equal, there must be a nearest neighbor pair of sites ⟨a, b⟩ = ⟨g(i), g(j)⟩, for which

ta,bf
†
a,σfb,σ = ti,je

iϕg(g(i))f †g(i),σfg(j),σe
−iϕg(g(j))

ta,bf
†
a,σfb,σ = tg−1(a),g−1(b)e

iϕg(a)f †a,σfb,σe
−iϕg(b)

e−iϕg(a)ta,be
iϕg(b) = tg−1(a),g−1(b), (E.3)

where in the second row we relabeled the indices as a = g(i) and b = g(j). The meaning of
Eq. (E.3) is that HMF is invariant under a combined transformation Ggg, if the effect of g on
the hoppings can be reversed by the gauge phases. For real hoppings, the phases of the gauge
transformations can also be chosen to be real as eiϕg(a) = ±1 = e−iϕg(a), so we will call them
gauge signs. These gauge signs can be transferred to the hoppings, so the gauge transformation
Gf †a,σG−1 = −f †a,σ changes the signs of the hoppings ta,b that are connected to site a. The
gauge signs for the generators of the space group formed by the D6 point group (C6 and σ)
and the elementary translations (T1,2), are shown in Fig. E.1, for both the honeycomb and
the kagome lattices, supposing periodic boundary conditions (for APBC see Appendix E.2).
We can figure them out easily in the following way. We start from an arbitrary lattice site
astart (in Fig. E.1 we started from sublattice A), and we choose not to change the sign of the
fermionic operator f †astart,σ, meaning that its gauge sign is set to eiϕg(astart) = +1 (this choice
can be changed at the end by multiplying every f †a,σ with minus signs simultaneously). First,
we look at the transformed hoppings tastart,b connected to site astart and compare them with the
original hoppings tg−1(astart),g−1(b), which were not yet affected by g. If a hopping was changed
(tastart,b ̸= tg−1(astart),g−1(b)), then the fermionic operator at site b must be multiplied with a
minus sign as eiϕg(b) = −1, to reverse the change of the hopping as e−iϕg(astart)tastart,be

iϕg(b) =
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−tastart,b = tg−1(astart),g−1(b). This way we can determine the gauge signs e−iϕg(b) at the nearest
neighbor sites b of astart. Next, we repeat the same procedure for the nearest neighbor sites of
b, and iterate it until we go through the entire cluster.

The label of the sites j can be changed to the Bravais lattice vector R = R1a1 + R2a2
(specifying the unit cell of site j) and the sublattice index s. In the case of the honeycomb lattice,
the gauge signs can be reformulated as eiϕC6

(R,s) = (−1)ξs , eiϕT1
(R,s) = (−1)R1+ξs , eiϕT2

(R,s) =
(−1)R1+R2+ξs , and eiϕσ(R,s) = (−1)ξs(R2+1)+(R1+1)R2 , where s ∈ {A,B}, ξA = 0, and ξB = 1.
The gauge signs of the translations can also be given with the plane waves eiϕT1,2

(R,s)
= eiQ1,2·r,

where Q1 = (π,
√
3π) and Q2 = (π,−

√
3π) are wave vectors at the M′ points of the extended

Brillouin zone, because these also give the same gauge signs as above, when evaluated on the
lattice vector r = R + δs of a given site. In the case of the kagome lattice, the gauge signs of
translations can be reformulated as eiϕT1

(R,s) = (−1)R1 and eiϕT2
(R,s) = (−1)R1+R2 , and also as

eiϕT1
(R,s) =

√
2 cos(Q1 · r− π/4) and eiϕT2

(R,s) =
√
2 cos(Q2 · r+ π/4), where Q1 = (π, π/

√
3)

and Q1 = (−π, π/
√
3), provided that r are lattice vectors.

E.1 Gauge transformations for combined geometrical transfor-
mations

We call combined geometrical transformations those which are not generators of the space
group, meaning neither elementary translations (T1,2) nor generators of the point group (C6,
σ). The gauge transformation of a combined geometrical transformation can be figured out
from the gauge transformations of the generators of the space group. Let us first consider
a simple combined transformation g1g2 (where both g1 and g2 are some generators of the
space group). The gauge transformation Gg1g2 should reverse the effect of g1g2 as HMF =
Gg1g2g1g2HMF(g1g2)

−1G−1
g1g2 . We can find out the form of the gauge phases of Gg1g2 by the

consecutive application of Gg1g1 and Gg2g2 as

HMF = Gg1g1
(
Gg2g2HMFg

−1
2 G−1

g2

)
g−1
1 G−1

g1 , (E.4)

which transfers to the hoppings as

ta,bf
†
a,σfb,σ = ti,j e

iϕg1 (g1g2(i))eiϕg2 (g2(i))︸ ︷︷ ︸
eiϕg1g2 (g1g2(i))

f †g1g2(i),σfg1g2(j),σ e
−iϕg2 (g2(j))e−iϕg1 (g1g2(j))︸ ︷︷ ︸

e−iϕg1g2 (g1g2(j))

(E.5)

Any geometric transformation g can be decomposed into a product of the generators of the space
group as g = g1g2 . . . gL. The gauge transformation for this product can be figured out the same
way as above, which turns out to be

eiϕg1g2...gL
(g1g2...gL(j)) = eiϕg1 (g1g2...gL(j))eiϕg2 (g2g3...gL(j)) . . . eiϕgL−1

(gL−1gL(j))eiϕgL
(gL(j)) (E.6)

Specifically, the translations TR′ with Bravais lattice vectors R′ = R′
1a1 + R′

2a2 can be written
as a product of the elementary translations TR′ = T

R′
1

1 T
R′

2
2 , where the order of T1 and T2 does

not matter. In this case, the gauge transformation is

e
iϕTR′ (TR′ (j)) = eiϕT1

(T
R′
1

1 T
R′
2

2 (j)) . . . eiϕT1
(T1T

R′
2

2 (j))eiϕT2
(T

R′
2

2 (j)) . . . eiϕT2
(T3

2(j))eiϕT2
(T2

2(j))eiϕT2
(T2(j)),

(E.7)
which looks complicated, but for the specific forms eiϕT1

(R,s) = (−1)a1R1+b1R2+c1ξs and eiϕT2
(R,s) =

(−1)a2R1+b2R2+c2ξs (which applies on both the honeycomb and the kagome lattices, as shown at
the end of the previous subsection) the above equation can be simplified. As mentioned in the
previous subsection, the site index can be equivalently replaced with the Bravais lattice vector
of the unit cell and the sublattice index as j ↔ (R, s), so e

iϕTR′ (TR′ (j)) = e
iϕTR′ (TR′ (R,s))

=
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Figure E.1: In the leftmost column we show the hopping structure of the π-flux HMF of the Dirac
spin liquid ansatz discussed in sections 2.3.1 and 2.3.2. The white and black bonds represent
positive and negative hopping amplitudes, respectively. On the remaining figures, we show
the gauge transformations Gg Eq. (2.16) reversing the effect of the corresponding geometrical
transformations g, assuring that the π-flux HMF is invariant under the combined transformations
Ggg (see Eqs. (2.32) and (E.3)). As the hoppings are real, the gauge phases of the gauge
transformations (2.16) become gauge signs. The lattice sites where the fermionic operators
acquire minus signs are marked with white circles. These minus signs can be transferred to the
surrounding hoppings, therefore the gauge transformations flip the signs of all those hoppings,
which are connected only to a single white circle. The purple bonds are visualizing the effect of
the geometrical transformations. The purple dashed hexagons show the quadrupled Wigner-Seitz
unit cell.
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e
iϕTR′ (R+R′,s). When we apply T2 at site j ↔ (R, s) the Bravais lattice vector R = R1a1 +
R2a2 is shifted with a2 as R + a2, so the coordinate R2 is raised with 1. Similarly, the
action of T1 shifts with a1, so it raises the coordinate R1 with 1. In Eq. (E.7) we first
shift site j by T2 R

′
2 times, so we get (−1)a2R1+b2(R2+1)+c2ξs × (−1)a2R1+b2(R2+2)+c2ξs × · · · ×

(−1)a2R1+b2(R2+R′
2)+c2ξs = (−1)[a2R1+b2R2+c2ξs]R′

2+b2
∑R′

2
n=1 n. Next, starting from site T

R′
2

2 (j) we
apply T1 R

′
1 times, and we get (−1)a1(R1+1)+b1(R2+R′

2)+c1ξs × (−1)a1(R1+2)+b1(R2+R′
2)+c1ξs ×· · ·×

(−1)a1(R1+R′
1)+b1(R2+R′

2)+c1ξs = (−1)[a1R1+b1(R2+R′
2)+c1ξs]R′

1+a1
∑R′

1
m=1 m. Therefore, Eq. (E.7)

simplifies to

e
iϕTR′ (R+R′,s)

= (−1)[a1R1+b1(R2+R′
2)+c1ξs]R′

1+a1
∑R′

1
m=1 m × (−1)[a2R1+b2R2+c2ξs]R′

2+b2
∑R′

2
n=1 n

= (−1)[a1R1+b1(R2+R′
2)+c1ξs]R′

1+a1(1+R′
1)R

′
1/2 × (−1)[a2R1+b2R2+c2ξs]R′

2+b2(1+R′
2)R

′
2/2,

(E.8)

where in the second row we used the formula Sn = (a1 + an)n/2 for the sums of both arithmetic
series

∑R1
m=1m and

∑R2
n=1 n. The sums of these series (1 +R′

1)R
′
1/2 and (1 +R′

2)R
′
2/2 are both

even, since either R′
1 or R′

1 + 1 is even (similarly for R2). Every even power of (−1) is +1, so it
can be ignored. Ignoring all even terms, we get

e
iϕTR′ (R+R′,s)

= (−1)[a1R1+b1(R2+R′
2)+c1ξs]R′

1 × (−1)[a2R1+b2R2+c2ξs]R′
2

= (−1)[a1R1+b1(R2+R′
2)+c1ξs]R′

1+[a2R1+b2R2+c2ξs]R′
2 (E.9)

At the beginning we claimed that the order of the T1 and T2 in Eq. (E.7) is unimportant, but
reversing the order of T1 and T2 in Eq. (E.7) yields a different expression as the one above, due to
the term b1R

′
2R

′
1. However, the additional gauge signs appearing in the expression of Gutzwiller-

projected particle-hole excitations of the |πFS⟩ in Eq. (4.20) turn out to be independent of the
order of T1 and T2, since the term b1R

′
2R

′
1 falls out as

e
iϕTR′ (R+R′,s)

e
−iϕTR′ (R

′,s̄)
= (−1)[a1R1+b1(R2+R′

2)+c1ξs]R′
1+[a2R1+b2R2+c2ξs]R′

2

× (−1)[b1R
′
2+c1ξs̄]R′

1+[c2ξs̄]R′
2

= (−1)[a1R1+b1R2+c1(ξs+ξs̄)]R′
1+[a2R1+b2R2+c2(ξs+ξs̄)]R′

2

For the specific forms eiϕ
H
T1

(R,s)
= (−1)R1+ξs (a1 = 1, b1 = 0, c1 = 1), eiϕ

H
T2

(R,s)
= (−1)R1+R2+ξs

(a2 = 1, b2 = 1, c2 = 1) on the honeycomb, and eiϕ
K
T1

(R,s)
= (−1)R1 (a1 = 1, b1 = 0, c1 = 0) and

e
iϕK

T2
(R,s)

= (−1)R1+R2 (a2 = 1, b2 = 1, c2 = 0) on the kagome lattices, we get

e
iϕH

TR′ (R+R′,s)
e
−iϕH

TR′ (R
′,s̄)

= (−1)[R1+(ξs+ξs̄)]R′
1+[R1+R2+(ξs+ξs̄)]R′

2

e
iϕK

TR′ (R+R′,s)
e
−iϕK

TR′ (R
′,s̄)

= (−1)[R1]R′
1+[R1+R2]R′

2 (E.10)

respectively.

E.2 The effect of antiperiodic boundary condition

We impose antiperiodic boundary conditions as shown in Figs. 2.1(a) and (c), and Fig. E.2(a),
which changes the sign of the hoppings crossing one of the cluster’s boundaries. After these
sign changes Eq. (E.3) will still hold for the T2 translations and the two reflections about the
antiperiodic boundary and perpendicular to it (the two reflections generate the D2 point group,
which also includes a C2 rotation), but it will no longer hold for the T1, C6 and the remaining
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Figure E.2: A cluster containing four quadrupled unit cells (shown with dashed magenta
hexagons) of the Dirac spin liquid ansätze shown in Figs. 2.1(a) and (c), where the black and
white bonds represent negative and positive hopping amplitudes, respectively. In the left panels
we show the effect of the antiperiodic boundary condition (APBC) (the green line), which flips
the sign of the hoppings ti,j crossing it (highlighted in green). In the right panels the translation
operator T1 shifts the hoppings by the primitive vector a1. For periodic boundaries, the gauge
transformation GPBC

T1
shown in Fig. E.1 restores the original hopping configuration, according to

and Eq. (E.3). However, due to the APBC, we must modify the gauge transformation so that
it restores the hopping configurations shown on the left panels. To do so, we change the GPBC

T1

so that we reverse the signs of the fermionic operators on the sites highlighted with green. The
resulting gauge signs of GAPBC

T1
are shown with white-filled circles, which can be transferred to

the surrounding hoppings. In other words, the signs of the hoppings on the bonds connected to
a single white circle are flipped.
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reflections if we use the same gauge transformations as we used in the case of periodic boundary
conditions. However, we can satisfy Eq. (E.3) for T1 if we multiply by −1 the gauge phases
eiϕT1

(j) at the locations marked by green circles in Fig. E.2(d). Regarding the C6 rotations and
the reflections about the other axis, we could not find any gauge transformation restoring their
effect. Indeed, the numerical calculation of the structure factor confirms the D2 point group
symmetry for antiperiodic boundary conditions, providing further support for the absence of
gauge transformations that would restore the full D6 point group.

Note that the boundary conditions of the fermionic operators do not affect the periodic
boundary condition of the spin operators, as can be understood from Eq. (2.2).



Appendix F

Gauge equivalence of doubled and quadru-
pled unit cell ansätze

As stated in Sec. 2.3, the π-flux HMF requires at least a doubled unit cell to accommodate the
hoppings creating the π-fluxes. In all articles we found, people used the doubled unit cell ansatz
shown in the second column of Fig. F.1, for both the honeycomb, and the kagome lattices [6, 58].
The doubled unit cell ansätze are gauge equivalent to the quadrupled unit cell ansätze shown in
the first column of Fig. F.1, but the gauge transformation connecting them requires the change
of the boundary conditions (PBC↔APBC) for certain cluster sizes. The gauge transformation in
a cluster containing a single quadrupled unit cell requires a change in the boundary conditions,
as shown in the second column of Fig. F.1. However, the gauge transformation in a cluster
containing four quadrupled unit cells does not involve the change of the boundary conditions,
as shown in the third column of Fig. F.1. Repeating the quadrupled unit cell an odd number of
times in the directions of the primitive vectors requires the change of the boundary conditions,
while repeating it even times does not involve any change.

We applied the ansatz with the quadrupled unit cell on both lattices, to construct the gauge
transformations GC6 and Gσ restoring the C6 and some σ symmetries as in Eq. (2.32). These
gauge transformations can be constructed for PBC, but if we impose APBC, the gauge trans-
formations GC6 and Gσ do not exist anymore, so the C6 and some σ projective symmetries are
broken (see Appendix E.2).

As the quadrupled unit cell ansatz with PBC yields a degenerate Fermi sea, we are forced to
impose APBC. Therefore, the doubled unit cell ansatz, which yields a non-degenerate Fermi sea,
must be gauge equivalent to the quadrupled unit cell ansatz with APBC. Consequently, if the
doubled unit cell ansatz for given boundary conditions gives a non-degenerate Fermi sea, then it
is not possible to construct the gauge transformations restoring the C6 and some σ symmetries.
These gauge transformations could be constructed, if we changed the boundary conditions, but
then the Fermi sea would become degenerate.

The number of energy bands in the mean-field spectrum (see Eqs. (2.26) and (2.31)) is equal
to the number of basis sites, therefore the number of energy bands in the quadrupled unit cell
ansatz is twice as much as in the doubled unit cell ansatz. However, as these are gauge equivalent,
they are expected to have the same energy spectrum (see Eq. (2.34), which is possible only by
doubling the degeneracy of every energy band. The number of available one-particle states in
the whole reduced Brillouin zone will not be different, because even if the energy bands of the
quadrupled unit cell are doubly degenerate, its reduced Brillouin zone is half as big as that of
the doubled unit cell ansatz with non-degenerate bands (see Appendix H.3).
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Figure F.1: The gauge equivalence of the quadrupled unit cell ansatz (first column) and the old
π-flux ansatz with doubled unit cell (second and third columns). The magenta dashed hexagons
denote the quadrupled Wigner-Seitz unit cells. The gauge transformation connecting these an-
sätze is tricky, because for certain clusters it involves the change of the boundary conditions
from periodic to antiperiodic as shown with the green dashed lines in the second column. The
signs of the hopping amplitudes intersected by the APBC are switched. The sites on which the
gauge transformation changes the signs of the fermionic operators are denoted with green circles.
These gauge signs can be transferred to the surrounding hoppings, so a hopping (not intersected
by the APBC) changes sign if only one of the connected sites is green.



Appendix G

Invariance of the expectation values of
spin operators in the mean-field ground
state

Here we will prove Eq. (2.43). If the mean-field ground states |FS1⟩ and |FS2⟩ of the gauge
equivalent Hamiltonians HMF

1 and HMF
2 are non-degenerate, we can show (see Appendix D) that

they are related as |FS2⟩ = G|FS1⟩ given in Eq. (2.36).
As the SU(N) spin operators T a

j are insensitive to gauge transformations (2.17), their expec-
tation values and correlations functions in the states |FS1⟩ and |FS2⟩ are equal, since

⟨FS1|T a
j |FS1⟩ = ⟨FS2|GT a

j G
−1|FS2⟩ = ⟨FS2|T a

j |FS2⟩ (G.1)

and

⟨FS1|T a
i T

a
j |FS1⟩ = ⟨FS2|GT a

i T
a
j G

−1|FS2⟩ = ⟨FS2|GT a
i G

−1GT a
j G

−1|FS2⟩ = ⟨FS2|T a
i T

a
j |FS2⟩,

(G.2)
where we inserted the idendtity as I = G−1G. Now let us choose the two Hamiltonians so that
HMF

1 is gauge equivalent to HMF
2 = gHMF

1 g−1 (so that HMF
1 is invariant under Ggg). Due to the

construction of HMF
2 , their ground states are related as |FS2⟩ = g|FS1⟩ (as argued in Appendix

D), so following the same steps as above we get

⟨FS1|T a
i |FS1⟩ = ⟨FS2|gT a

i g
−1|FS2⟩ = ⟨FS2|T a

g(i)|FS2⟩, (G.3)

and
⟨FS1|T a

i T
a
j |FS1⟩ = ⟨FS2|gT a

i g
−1gT a

j g
−1|FS2⟩ = ⟨FS2|T a

g(i)T
a
g(j)|FS2⟩. (G.4)

Comparing these equations with Eqs. (G.1) and (G.2), we can conclude that

⟨FS2|T a
i |FS2⟩ = ⟨FS2|T a

g(i)|FS2⟩, ⟨FS2|T a
i T

a
j |FS2⟩ = ⟨FS2|T a

g(i)T
a
g(j)|FS2⟩, (G.5)

and using |FS2⟩ = g|FS1⟩

⟨FS1|T a
g−1(i)|FS1⟩ = ⟨FS1|T a

i |FS1⟩, ⟨FS1|T a
g−1(i)T

a
g−1(j)|FS1⟩ = ⟨FS1|T a

i T
a
j |FS1⟩, (G.6)

which is just the same after relabeling the sites as i′ = g−1(i).
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Appendix H

Brillouin zones: original, extended, re-
duced
H.1 Original Brillouin zone

Bravais lattices have only one basis site in their unit cell (NB = 1), two-dimensional examples
are the square and the triangular lattices. In these lattices every lattice site can be connected by
translations by Bravais lattice vectors R = R1a1+R2a2, where a1 and a2 are the primitive vectors
of the lattice and R1, R2 are integers. The reciprocal lattice, describing the periodicity of the
direct lattice, is also a Bravais lattice with primitive vectors b1 and b2, defined by bc ·ad = 2πδc,d
with c, d ∈ {1, 2} in two dimensions. Therefore, the reciprocal primitive vectors b1 and b2 are

the rows of the matrix 1
2π

(
a1

∣∣∣∣∣a2
)−1

. Namely, for the primitive vectors a1 = (1, 0), and a2 =

(−1/2,
√
3/2), we get the reciprocal primitive vectors b1 = (2π, 2π/

√
3), and b2 = (0, 4π/

√
3).

The Brillouin zone is the Wigner-Seitz unit cell of the reciprocal lattice.

H.2 Extended Brillouin zone

In non-Bravais lattices, the unit cell has more than one basis sites (NB > 1), which we will
label by letters in every unit cell. The set of a given type of basis sites (e.g. the sites with label
A) form a Bravais sublattice (which is independent of the choice of the type of basis site), so
the Bravais lattice connects the unit cells. A reciprocal lattice always describes the periodicity
of a Bravais lattice, so we can not take the reciprocal lattice of a non-Bravais lattice. Instead,
we can take the reciprocal lattice of the Bravais lattice connecting the unit cells, which will have
less information than the direct lattice, because it does not contain the sublattice structure. The
Brillouin zone of the Bravais lattice connecting the unit cells will be called the original Brillouin
zone, or simply Brillouin zone, shown with the dark grey hexagons in Fig. H.1(c) and (d).

However, there is a way to construct a reciprocal lattice, which contains all the information
of the direct lattice, even if it a non-Bravais lattice. To do so, we should take the reciprocal
lattice of a different (artificial) Bravais lattice, which has smaller lattice spacing, so that we
can connect the lattice sites of the direct lattice with translations by the lattice vectors of this
artificial Bravais lattice. Clearly, this artifical Bravais lattice will have additional lattice sites
even where the original direct lattice had no lattice sites, but at least all the lattice sites of the
direct lattice will also be lattice sites of the artificial Bravais lattice. Specifically, we can associate
artificial triangular Bravais lattices to both the honeycomb and the kagome lattices, by putting
additional lattice sites in the centers of the hexagons, as shown in Fig. H.1(a) and (b). The
resulting artificial triangular lattices have smaller lattice spacings and different primitive vectors
than the original triangular lattices connecting the unit cells of the honeycomb, and kagome
lattices. Namely, if we choose the primitive vectors of both the honeycomb and kagome lattices
to be a1 = (1, 0), a2 = (−1/2,

√
3/2), then the primitive vectors of the artificial triangular lattices

become ãH1 = (1/2,
√
3/4), ãH2 = (0, 1/

√
3) and ãK1 = (1/2, 0), ãK2 = (−1/4,

√
3/4), which have

been shrinked as |ãHd | = 1√
3
|ad| and |ãKd | = 1

2 |ad|, respectively. The corresponding reciprocal
primitive vectors of the original Bravais lattice are b1 = (2π, 2π/

√
3), and b2 = (0, 4π/

√
3), and

for the artifical triangular lattices b̃H
1 = (4π, 0), b̃H

2 = (−2π, 2
√
3π) and b̃K

1 = (4π, 4π/
√
3),
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Figure H.1: (a) and (b) shows the artificial triangular lattices associated to the honeycomb, and
kagome lattices, respectively. These triangular lattices contain every lattice site of the original
lattice, so their reciprocal lattice will contain all information about the original lattices. (c) and
(d) show the original, extended, and reduced Brillouin zones, with the color code shown between
(c) and (d).
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b̃K
2 = (0, 8π/

√
3) (shown in Fig. H.1(c) and (d)), which have been elongated as |b̃H

c | =
√
3|bc|

and |b̃K
c | = 2|bc|, respectively. Consequently, the areas of the Brillouin zones of these artificial

triangular lattices are three and four times bigger than those of the original Brillouin zones of
the honeycomb and kagome lattices, respectively. Therefore, we will call them the extended
Brillouin zones (eBZ), shown with the light grey hexagons in Fig. H.1(c) and (d).

H.3 Reduced Brillouin zone

The π-flux mean-field Hamiltonians of sections 2.3.1 and 2.3.2 break the translational invari-
ance of the original lattice, requiring quadrupled unit cells to accomodate the hoppings. The
hopping structure is periodic only in this quadrupled unit cell, so the primitive vectors get dou-
bled. The Bravais lattice consists of vectors R = R12a1 +R22a2, where R1 and R2 are integers.
Consequently, the primitive vectors of the reciprocal lattice bMF

1 and bMF
2 get halved relative

to the original ones, since they are the rows of the matrix 1
2π

(
2a1

∣∣∣∣∣2a2
)−1

. Thus, the area of

the Brillouin zone of this reciprocal lattice is the quarter of the area of the original Brillouin
zone, and we will call it the reduced Brillouin zone (rBZ), shown with the red empty hexagons
in Fig. H.1(c) and (d).



Appendix I

Derivation of S33
MF(k, ω)

In this section, we will derive the formula (4.8) for a general mean-field Hamiltonian HMF,
with any unit cell and any band structure, supposing that the Fermi sea |FS⟩ fills complete
bands (so that the Fermi energy is not inside an energy band). This derivation was presented in
Ref. [II.].

The Bravais lattice vectors of the mean-field Hamiltonian HMF may be different from those
of the original lattice, since the accommodation of the hoppings can require enlarged unit cells,
like in the case of the π-flux HMF with a quadrupled unit cell (see Fig. 2.1), where the Bravais
lattice vectors are RMF = RMF

1 (2a1) + RMF
2 (2a2) with RMF

1 , RMF
2 integers (see Eq. (2.19)).

For simplicity, we will leave away the MF superscripts and subscripts everywhere (except in
S33

MF(k, ω)) in this section.

Substituting T 3
k = 1√

Ns

∑
R,s e

ik·(R+δs) 1
2

(
f †R,s,1fR,s,1 − f †R,s,2fR,s,2

)
from Eq. (4.6) into S33(k, ω)

(4.5), we get

S33
MF(k, ω) =

1

Ns

∑
f

∣∣∣∣∑
R,s

eik·(R+δs) 1

2
⟨f |f †R,s,1fR,s,1 − f †R,s,2fR,s,2|FS⟩

∣∣∣∣2δ(ω + EFS − Ef ), (I.1)

where the
∑

R sums over all mean-field Bravais lattice vectors, and the
∑

s sums over all mean-
field sublattice indices s ∈ {A,B, . . . }. Using f †R,s,σ = 1√

NC

∑
q∈rBZ e

−iq·Rf †q,s,σ of Eq. (2.21)
(where NC is the number of mean-field unit cells), we obtain

S33
MF(k, ω) =

1

Ns

∑
f

∣∣∣∣ 1

NC

∑
s

q,q′∈rBZ

eik·δs
∑
R

ei(k−q′+q)·R 1

2
⟨f |f †q′,s,1fq,s,1 − f †q′,s,2fq,s,2|FS⟩

∣∣∣∣2
× δ(ω + EFS − Ef ) , (I.2)

where q and q′ are wave vectors in the reduced Brillouin zone (rBZ), but k can be anywhere in
the extended Brillouin zone (eBZ), see the argument in Sec. 4.2. The sum

∑
R e

i(k−q′+q)·R would
usually lead to δk−q′+q,0, but that happens when all wave vectors are restricted to the rBZ, see
Appendix F of the Solid state physics book of Ashcroft and Mermin. Repeating that derivation,
the sum

∑
R e

i(k−q′+q)·R is not modified by adding a Bravais lattice vector R0 to every R as∑
R e

i(k−q′+q)·R =
∑

R e
i(k−q′+q)·(R+R0), since it corresponds to relabeling the Bravais lattice

vectors (due to periodic or antiperiodic boundary conditions). Consequently, the ei(k−q′+q)·R0

must be equal to 1 for any Bravais lattice vector R0. This is possible only if

k− q′ + q = Q, (I.3)

where Q = Q1b
MF
1 +Q2b

MF
2 (see Appendix H.3) is a reciprocal Bravais lattice vector, with Q1

and Q2 integers. In the usual case, when all wave vectors are in the rBZ, Q must be zero, since
that is the only reciprocal Bravais lattice vector in the rBZ. However, in our case, Q can be
anywhere in the eBZ, allowing for more possibilities. If we restrict both wave vectors q and q′

to the rBZ, then rearranging Eq. (I.3) we get q′ = k+ q−Q, meaning that Q is the reciprocal
Bravais lattice vector, which maps back the wave vector k + q to the rBZ. Therefore, we get∑

R e
i(k−q′+q)·R = NCδq′,k+q−Q. We will hide the wave vector Q and write everywhere only
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k+ q, which is meant to be mapped back into the rBZ. Consequently,

S33
MF(k, ω) =

1

4Ns

∑
f

∣∣∣∣∑
s

eik·δs
∑
q

⟨f |f †k+q,s,1fq,s,1 − f †k+q,s,2fq,s,2|FS⟩
∣∣∣∣2δ(ω + EFS − Ef ) .

(I.4)

The one-particle eigenstate of HMF with wave vector q and energy εb(q) can be written as
f †q,b,σ|0⟩ =

∑
s vq,b,sf

†
q,s,σ|0⟩ (see Eq. (2.27)), where b ∈ {1 . . . NB} is the band index, and

NB is the number of basis sites in the mean-field unit cell. Inverting this relation we have
f †q,s,σ|0⟩ =

∑NB
b=1 v

−1
q,s,bf

†
q,b,σ|0⟩ =

∑NB
b=1 v

∗
q,b,sf

†
q,b,σ|0⟩, where we used that the matrix composed

of the coefficients vq,b,s is unitary, namely v−1
q,s,b = v∗q,b,s. From these relations, we get

f †k+q,s,σfq,s,σ|FS⟩ =

(
NB∑
b′=1

v∗k+q,b′,sf
†
k+q,b′,σ

)(
NB∑
b=1

vq,b,sfq,b,σ

)
|FS⟩.

Therefore, we can write

S33
MF(k, ω) =

1

4Ns

∑
f

∣∣∣∣∑
s

eik·δs
∑
q

∑
b,b′

v∗k+q,b′,svq,b,s⟨f |f
†
k+q,b′,1fq,b,1 − f †k+q,b′,2fq,b,2|FS⟩

∣∣∣∣2
× δ(ω + EFS − Ef ) . (I.5)

The states |1⟩ = f †k+q,b′,1fq,b,1|FS⟩ and |2⟩ = f †k+q,b′,2fq,b,2|FS⟩ are multiparticle eigenstates of
HMF, which are non-zero only if b and b′ are such, that εb(q) < εF and εb′(k+q) > εF (meaning
that a particle is hopped out of the Fermi sea), since in |FS⟩ only the bands below the Fermi
energy εF are filled, see Eq. (2.8). Specifically, for the |πFS⟩ discussed in sections 2.3.1 and 2.3.2,
b ∈ {1, 2} and b′ > 2 (see Eqs. (2.26) and (2.31)). With these notations, we can rewrite the overlap
in Eq. (I.5) as ⟨f |1⟩ − ⟨f |2⟩. Since the particle-hole excited eigenstates of HMF are orthogonal
to each other, all the |f⟩ giving non-zero overlaps must either be equal to |1⟩ or they must be
equal to |2⟩. If |1⟩ = |2⟩, then we get zero anyway, what happens when k = 0, and b = b′. Thus,
all |f⟩ eigenstates giving non-zero overlaps, must be single particle-hole excitations of the form
|f⟩ = f †

k+q̃,b̃′,σ̃
f
q̃,b̃,σ̃

|FS⟩, and the
∑

f can be replaced by
∑

σ̃=1,2

∑
q̃

∑
b̃′,εb̃′ (k+q)>εF

∑
b̃,εb̃(q)<εF

.
Consequently, we get

⟨f |
(
f †k+q,b,1fq,b′,1 − f †k+q,b,2fq,b′,2

)
|FS⟩ = (1− δk,0δb,b′)δq̃,qδb̃,bδb̃′,b′(δσ̃,1 − δσ̃,2), (I.6)

which kills the sums
∑

q

∑
b,b′ in Eq. (I.5). The sum

∑2
σ̃=1 together with the term δσ̃,1 − δσ̃,2

gives a factor of 2 since the absolute value squared is the same for both σ̃ = 1, 2. Eventually, the
dynamical spin structure factor in the mean-field case becomes

S33
MF(k, ω) =

1

2Ns

∑
q̃

∑
b̃′

εb̃′ (k+q̃)>εF

∑
b̃

εb̃(q̃)<εF

∣∣∣∣∣∣
∑

s∈{A,B,... }

eik·δsv∗
k+q̃,b̃′,s

vq̃,b̃,s

∣∣∣∣∣∣
2

×δ(ω+EFS−Ef ) , (I.7)

Both the EFS and Ef are sums of the filled one-particle energies, and they differ only in the
εb(q) that was changed by the single-particle-hole excited eigenstate |f⟩ = f †

k+q̃,b̃′,σ̃
f
q̃,b̃,σ̃

|FS⟩.
This excited state removes the particle with energy εb̃(q̃) from the Fermi sea, and puts it into
the one-particle state with energy εb̃′(k + q̃). Therefore, Ef − EGS = εb̃′(k + q̃) − εb̃(q̃), so we
can change the Dirac delta to δ(ω + EFS − Ef ) = δ(ω − εb̃′(k+ q̃) + εb̃(q̃)).

Finally, we can leave off the˜notation for convenience, ending up with Eq. (4.8).



Appendix J

Monte Carlo sampling
An expectation value of a quantity B can be written as

⟨B⟩ =
∑
x

B(x)P (x), (J.1)

where P (x) is some probability distribution, and B(x) is the value to be averaged for all possible
configurations x. Every probability distribution must satisfy P (x) ≥ 0 ∀x and

∑
x P (x) = 1.

This allows us to use Monte Carlo sampling to evaluate such an expectation value, by sampling
the configurations with probabilities P (x). We can sample the configurations x with these
probabilities using the Metropolis algorithm [110]. For such an algorithm, we need to construct
some elementary steps that do not change the configuration x very much, we use pair exchanges
of fermions between randomly chosen sites i and j. We start from a random configuration x, and
propose a new configuration by randomly choosing a pair of sites for the pair exchange. Every
pair is proposed with the same probability, and we accept the proposed configuration with the
acceptance probability

A(x→ x′) =


P (x′)

P (x)
, if P (x′) < P (x),

1, if P (x′) > P (x).
(J.2)

If the configuration x′ was accepted, then we propose a new randomly chosen configuration from
this state, and iterate this process. If we start from a random configuration, then we need to
perform some warmup steps before counting the B(x) to the average, because we can start from
a configuration having a very small probability, so counting it to the average would increase
the error. After applying some warmup steps, the frequency of sampling a configuration is
proportional to its probability P (x) (called thermalization), so averaging the quantities B(x) for
many configurations will give an estimate of the expectation value ⟨B⟩. The more configurations
we sample, the better the estimate of ⟨B⟩ becomes. We can characterize how good this estimate
is, by the Monte Carlo error (the way to estimate the Monte Carlo error is presented in Appendix
J.3).

Usually, people determine the number of warmup steps necessary to achieve thermalization
by calculating the autocorrelation time of some quantity. Here we use a different approach, we
believe that the sampling was already thermalized after a few times Ns accepted pair exchanges
(we emphasize the word accepted), where Ns is the number of lattice sites. We believe so,
because starting from a random permutation of the numbers 1 . . . Ns, we can reach any other
permutation with only Ns pair exchanges (Fisher-Yates shuffles).

Similarly, when we average B(x) for different configurations x, to be able to estimate the
Monte Carlo errors correctly, we need to average the values of B(x) on uncorrelated configurations
x. Since an elementary step (the pair exchanges) does not change the configuration much, the
configurations connected with a single elementary step can not be considered to be uncorrelated.
For this reason, calculations of B(x) should be done after many elementary steps, when the new
configuration is already not correlated with the previous one. Using the argument of Fisher-Yates
shuffles again, we believe that Ns pair exchanges are enough to get an uncorrelated configuration.

In some cases, we can use Monte Carlo sampling to estimate sums that are not written in
the form of Eq. (J.1), by defining something to be a probability distribution.
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J.1 Sampling of the static properties

The expectation value of some quantity B in the state |ψ⟩ can be expressed in the form of
Eq. (J.1) as

⟨ψ|B|ψ⟩
⟨ψ|ψ⟩

=
1∑

x′⟨ψ|x′⟩⟨x′|ψ⟩
∑
x

⟨ψ|B|x⟩⟨x|ψ⟩

=
1∑

x′ |⟨x′|ψ⟩|2
∑
x

⟨ψ|x⟩⟨x|B|x⟩⟨x|ψ⟩

=
1∑

x′ |⟨x′|ψ⟩|2
∑
x

⟨x|B|x⟩|⟨x|ψ⟩|2

=
∑
x

⟨x|B|x⟩P (x) (J.3)

where we inserted the identity as I =
∑

x |x⟩⟨x| many times, and in the second row we supposed
that B is diagonal in the basis {|x⟩}. In the last step we defined the probability distribution
P (x) = |⟨x|ψ⟩|2/

(∑
x′ |⟨x′|ψ⟩|2

)
(clearly satisfying P (x) ≥ 0 ∀x and

∑
x P (x) = 1). When we

calculate the ratio of the probabilities in Eq. (J.2), we do not need to calculate the denominator
of P (x) = |⟨x|ψ⟩|2/

(∑
x′ |⟨x′|ψ⟩|2

)
, since P (x′)/P (x) = |⟨x′|ψ⟩|2/|⟨x|ψ⟩|2. If we use the basis of

product states defined in Eq. (2.9) as configurations, and the state |ψ⟩ is a Gutzwiller projected
Fermi sea (see Eq. (2.13)), then the ⟨x|ψ⟩ is a product of slater determinants of every flavor,
so the ratio |⟨x′|ψ⟩|2/|⟨x|ψ⟩|2 involves only the slater determinants of those flavors which were
changed in the pair exchange. The update of a Slater determinant in which only the k-th column
was changed can be done efficiently with the Sherman-Morrison formula ([111, 112])

det Ã = detA
∑
j

A−1
k,jÃj,k, (J.4)

where A and Ã are the old and new Slater matrices, respectively. This efficient update also
requires the storage and update of the inverse of the Slater matrix

Ã−1
k,j =

detA

det Ã
A−1

k,j

Ã−1
i,j = A−1

i,j −
A−1

k,j detA

det Ã

∑
l

A−1
i,l Ãl,k. (J.5)

Furthermore, the Monte Carlo sampling of the configurations makes possible the easy application
of the Gutzwiller projection, since all we have to do is to consider only singly occupied product
states of the form (2.9), which were denoted as |xPG⟩ in Eq. (2.13). In the product basis of
states like (2.9) the total fermion number operator ni ≡

∑N
σ=1 f

†
i,σfi,σ is diagonal, therefore the

diagonal spin operators (which can be expressed with the total fermion number operator) are
also diagonal (see Eq. (2.2)), allowing us to calculate ⟨FS|PGT

3
i T

3
j PG|FS⟩ = 1

4⟨FS|PG(ni,1 −
ni,2)(nj,1 − nj,2)PG|FS⟩.

J.2 Sampling of the dynamical structure factor

In order to evaluate the matrices H̃k = ⟨k,R, σ|H|k,R′, σ′⟩ and H̃k = ⟨k,R, σ|H|k,R′, σ′⟩
(where we have hidden the indices s, s̄ of the states (4.20) for simplicity) we first insert the
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identity operator I =
∑

x |x⟩⟨x|

H̃k
R,σ;R′,σ′ =

∑
x

⟨k,R, σ|x⟩⟨x|H|k,R′, σ′⟩

Ok
R,σ;R′,σ′ =

∑
x

⟨k,R, σ|x⟩⟨x|k,R′, σ′⟩, (J.6)

where the orthonormal basis {|x⟩} is formed by the product states |x⟩ of Eq. (2.9), with the
constraint that every site must be singly occupied (denoted as |xPG⟩ in Eq. (2.13)) to account
for the action of PG in Eq. 4.20.

For small system sizes (see Figs. 5.1(a)) the expressions above can be evaluated exactly by
going through each configuration |x⟩ of the Hilbert space and calculating ⟨x|H|k,R, σ⟩ and
⟨x|k,R, σ⟩. This is what we called the exact variational method in Sections 4.3 and 5.

However, for larger system sizes the direct evaluation becomes difficult, as the size of the
Hilbert space grows exponentially. Instead, one can use a Monte Carlo method to evaluate the
Hamiltonian and overlap matrix Eqs. (J.6) by random sampling the states |x⟩. To make the
sampling efficient, we have to introduce a probability distribution P (x), which should not be
small for the configurations for which the quantities ⟨x|H|k,R, σ⟩ and ⟨x|k,R, σ⟩ are not small.
In other words, if P (x) is very small for a configuration x̃, then this configuration probably will
not sampled, and the values ⟨x̃|H|k,R, σ⟩ and ⟨x̃|k,R, σ⟩ will not be counted to the average,
even if they are big. The simplest way to introduce the probability distribution P (x) is the
reweighting technique, in which we multiply and divide Eqs. (J.6) by P (x) as

H̃k
R,σ,R′,σ′ =

∑
x

⟨k,R, σ|x⟩√
P (x)

⟨x|H|k,R′, σ′⟩√
P (x)

P (x) ,

Ok
R,σ,R′,σ′ =

∑
x

⟨k,R, σ|x⟩√
P (x)

⟨x|k,R′, σ′⟩√
P (x)

P (x), (J.7)

meaning that we can use P (x) for the importance sampling of the configurations x, and calculate
the quantities ⟨k,R,σ|x⟩√

P (x)

⟨x|H|k,R′,σ′⟩√
P (x)

and ⟨k,R,σ|x⟩√
P (x)

⟨x|k,R′,σ′⟩√
P (x)

to be averaged. P (x) must satisfy

P (x) ≥ 0 ∀x and
∑

x P (x) = 1, otherwise we can not use it for importance sampling (not even
if we use the Metropolis algorithm). The normalization condition would be a problem, because
when we introduce some P̃ (x) we have to divide it with its norm to get P (x) = P̃ (x)/

∑
x′ P̃ (x′),

which we can not calculate due to the enormous size of the Hilbert space. This would not be
a problem for the importance sampling, because the Metropolis algorithm needs only the ratios
P (x′)/P (x), but the P (x) appears even in the quantities to be averaged. Luckily, the matrices
Hk and Ok are used in the generalized eigenvalue problem Hk|fk⟩ = Ek

fOk|fk⟩, implying that
we can multiply both Hk and Ok with the same number (which must be independent of x)
without changing the Ek

f or the |fk⟩. Therefore, we can multiply both with the norm
∑

x′ P̃ (x′)

to get the unnormalized P̃ (x) in the denominators as

H̃k
R,σ,R′,σ′ =

∑
x

⟨k,R, σ|x⟩√
P̃ (x)

⟨x|H|k,R′, σ′⟩√
P̃ (x)

P (x) ,

Ok
R,σ,R′,σ′ =

∑
x

⟨k,R, σ|x⟩√
P̃ (x)

⟨x|k,R′, σ′⟩√
P̃ (x)

P (x), (J.8)

The probability distribution P (x) can be chosen in many ways, before presenting our choice
we give a brief overview of the choices used in previous papers. In Refs. [88, 89], Li and Yang
chose the probability distribution

Pk(x) =

∑
q,σ |⟨x|k,q, σ⟩|2∑

x

∑
q,σ |⟨x|k,q, σ⟩|2

, (J.9)
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also followed by [90], where the states |k,q, σ⟩ = PGf
†
k+q,σfq,σ|FS⟩ were introduced in Eq. (4.9).

This probability distribution was used to sample the block matrices H̃k and Ok, which meant a
separate Monte Carlo simulation for each k.

On the other hand, Ferrari et al. [91] sampled according to the weight of |x⟩ in the approxi-
mating ground state,

P (x) =
|⟨x|PG|FS⟩|2∑
x |⟨x|PG|FS⟩|2

, (J.10)

where ⟨x|PG|FS⟩ is a product of real Slater determinants (2.10). The advantage is the ability to
sample all the block matrices H̃k and Ok simultaneously. Furthermore, the terms

⟨x|H|k,R, σ⟩
⟨x|PG|FS⟩

=
1√
L

∑
R′

eik·R
′ ⟨x|HPGf

†
R+R′,σfR′,σ|FS⟩

⟨x|PG|FS⟩
(J.11)

and
⟨x|k,R, σ⟩
⟨x|PG|FS⟩

=
1√
L

∑
R′

eik·R
′ ⟨x|PGf

†
R+R′,σfR′,σ|FS⟩
⟨x|PG|FS⟩

, (J.12)

appearing in the expressions (J.8) can be calculated very efficiently using the Sherman-Morrison
formula, since they reduce to quotients of real Slater determinants (2.11) which differ in a single
column only. However, configurations which are important for the excited states, but unimpor-
tant for the ground state will be sampled rarely: the |⟨x1|PG|FS⟩| ≫ |⟨x2|PG|FS⟩| condition does
not imply |⟨x1|k,R, σ⟩| ≫ |⟨x2|k,R, σ⟩| nor |⟨x1|H|k,R, σ⟩| ≫ |⟨x2|H|k,R, σ⟩|. Thus, the |x2⟩
may be just as important for some excited states as |x1⟩ is for the ground state, yet it will be
sampled with a much smaller probability.

Mei and Wen used an importance sampling similar to (J.10), with the difference of working in
the subspace of Sz

T = 1, and replacing the PG|FS⟩ with the lowest energy mean-field particle-hole
state in this subspace [113].

We used the probability distribution

P (x) =
maxR,R′,σ |⟨x|R,R′, σ⟩|∑
xmaxR,R′,σ |⟨x|R,R′, σ⟩|

, (J.13)

where the states
|R,R′, σ⟩ ≡ PGf

†
R,σfR′,σ|FS⟩ (J.14)

were introduced in Eq. (4.11).
As noted in Sec. (4.3) these states are connected with the states |k,R, σ⟩ as

|k,R, σ⟩ = 1√
L

∑
R′

eik·R
′ |R+R′,R′, σ⟩. (J.15)

Therefore, if the weight maxR,R′,σ |⟨x|R,R′, σ⟩| is small for a given configuration |x⟩, the weights
|⟨x|k,R, σ⟩| will also be small ∀k,R. Since the weights ⟨x|k,R, σ⟩ appears in both H̃k and Õk,
if maxR,R′,σ |⟨x|R,R′, σ⟩| is small, the contribution of this configuration to the matrices H̃k and
Õk will also be small, implying that every important configuration will be sampled with large
probability.

The choice of the maximum norm in (J.13) is arbitrary. Any norm of ⟨x|R,R′, σ⟩ is suitable
for importance sampling. The norm in Eq. (J.13) is a special case of the p-norm

P (x) =

(∑
|R,R′,σ⟩ |⟨x|R,R′, σ⟩|p

)1/p
∑

x

(∑
|R,R′,σ⟩ |⟨x|R,R′, σ⟩|p

)1/p , (J.16)
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with p = ∞.
On the one hand, this importance sampling is slower than that of Eq. (J.10) used by Ferrari

et al. in Ref. [91], since in each elementary step we have to calculate the NN2
s elements of

⟨x|R,R′, s, s̄, σ⟩ (here we have taken back the hidden sublattice indices). But these elements
are products of Slater determinants out of which one differs from those in ⟨x|PG|FS⟩ in a single
column only, so they can be calculated efficiently using Eqs. (J.4) and (J.5), provided that the
inverse matrix exists (which is not always the case). On the other hand, the configurations that
are important only for some of the states |k,R, σ, but are not important for the PG|FS⟩, are
sampled with higher probabilities.

As already mentioned, the numerator
∑

xmaxR′,R′′,σ |⟨x|R′,R′′, σ⟩| of Eq. (J.13) is inde-
pendent of |x⟩ and it multiplies both the H̃k and the Õk, so it falls out from the generalized
eigenvalue problem, and we do not have to measure it at all. Thus, the measurement of H̃k and
Õk for a given configuration |x⟩ consists of calculating the quantities

⟨x|H|k,R, σ⟩√
maxR′,R′′,σ |⟨x|R′,R′′, σ⟩|

(J.17)

and
⟨x|k,R, σ⟩√

maxR′,R′′,σ |⟨x|R′,R′′, σ⟩|
. (J.18)

The difficulty is in measuring ⟨x|H|k,R, σ⟩, since ⟨x|k,R, σ⟩ can be calculated from ⟨x|R,R′, σ⟩
using Eq. (J.15), and ⟨x|R,R′, σ⟩ was already calculated during importance sampling.

J.3 Estimation of Monte Carlo errors

We run the program typically a hundred times for each system size. Let us denote the number
of runs by M(Ns) for a system with Ns sites. In the ith run we obtained the subaverage Qi(Ns),
and we have M(Ns) runs so i = 1, . . . ,M(Ns). The total average

⟨Q(Ns)⟩ =
1

M(Ns)

M(Ns)∑
i=1

Qi(Ns) (J.19)

is the result of the MC calculation, with the standard error

σQ(Ns) =

√∑M(Ns)
i=1 [Qi(Ns)− ⟨Q(Ns)⟩]2
M(Ns)[M(Ns)− 1]

. (J.20)

We plot the above standard errors in the figures.
Some quantities were calculated by fitting functions to the data and optimizing the parameters

of the functions by the non-linear least squares method, using scipy.curve_fit. The errors of the
optimized parameters were estimated by passing the σQ(Ns) of the data we wanted to fit on,
setting the flag absolute_sigma = True, and taking the square root of the returned variance.

For the estimation of the error of the central charge (in Sec. 5) we used the error propagation
formula

σA
B
=
A

B

√(σA
A

)2
+
(σB
B

)2
, (J.21)

where in our case A = vc and B = v.



Appendix K

Details of the generalized eigenvalue prob-
lem

Not all of the states (4.9) or (4.20) are linearly independent. The linear dependencies show
up as zero eigenvalues of the overlap matrix. To solve the generalized eigenvalue problem, the
overlap matrix has to be positive definite (it can not have zero eigenvalues), therefore we have
to perform a basis transformation to remove the numerically zero eigenvalues. This could be
problematic if some of the positive eigenvalues of the overlap matrix were so small, that we
could not distinguish between positive eigenvalues and zero eigenvalues, due to the Monte Carlo
error. Fortunately, the positive eigenvalues of the overlap matrix are separated from the zero
eigenvalues with a gap of many orders of magnitude.

To eliminate the zero eigenvalues of the overlap matrix, following Appendix F.2 in the PhD
thesis https://hdl.handle.net/20.500.11767/103865, we first diagonalize Õk as

Ok
= U†kÕkUk, (K.1)

where Ok is a diagonal matrix containing the sorted eigenvalues of Õk in decreasing order, and Uk

is the matrix having the eigenstates of Õk in its columns, in the order of the corresponding eigen-
values in Ok. The eigenstates of Õk in the columns of Uk are expressed in the basis of Gutzwiller
projected particle-hole excitations (4.20) as |k,R, s, s̄, σ⟩ =

∑
R′,s′,s̄′,σ′ Uk

R,s,s̄,σ,R′,s′,s̄′,σ′ |k,R′, s′, s̄′, σ′⟩.
Next, we calculate Hk ≡ U†kH̃kUk (which is not diagonal) and we reduce both Hk and Ok to the
subspace of positive eigenvalues. To achieve this, if Ok has nz zero eigenvalues, then we remove
the nz last rows and the nz last columns of Hk and Ok (meaning that we eliminate the last nz
states |k,R, s, s̄, σ⟩). Denoting the reduced matrices as Hk,R and Ok,R we solve the generalized
eigenvalue problem

Hk,R|fk⟩ = Ok,R|fk⟩. (K.2)

This way, we get the approximating eigenstates |fk⟩ in the reduced basis of the eigenstates of
the overlap matrix as

|fk⟩ =
∑

R,s,s̄,σ

A
f,k
R,s,s̄,σ|k,R, s, s̄, σ⟩ (K.3)

To get the approximating eigenstates in the original basis |k,R, s, s̄, σ⟩ given in Eq. (4.34), we first
complete the coefficients Af,k

R,s,s̄,σ with nz zeros, so that we take back the eliminated eigenstates
|k,R, s, s̄, σ⟩ in the subspace of zero eigenvalues, and use

|fk⟩ =
∑

R,s,s̄,σ
R′,s′,s̄′,σ′

A
f,k
R,s,s̄,σUk

R,s,s̄,σ,R′,s′,s̄′,σ′ |k,R′, s′, s̄′, σ′⟩

=
∑

R,s,s̄,σ

Af,k
R,s,s̄,σ|k,R, s, s̄, σ⟩. (K.4)

This means, that the coefficients in Eq. (4.34) are given by

Af,k
R,s,s̄,σ =

∑
R′,s′,s̄′,σ′

A
f,k
R,s,s̄,σUk

R,s,s̄,σ,R′,s′,s̄′,σ′ . (K.5)
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