
THESIS BOOKLET

Quantum Spin Liquids in SU(N)
Heisenberg Models: Variational

Monte Carlo Study of Dynamical
Correlations

Dániel Vörös

Supervisor: Karlo Penc

Budapest University of Technology and Economics

2025



Background
The traditional description of phase transitions, developed by Lan-

dau, relies on the concept of symmetry breaking. Each distinct phase
is associated with a particular symmetry group, and a phase transition
is accompanied by a symmetry breaking, in which the symmetry group
of one phase is the subset of the symmetry group of the other phase. In
this way, concepts like order parameters—quantities that vanish above
the critical temperature but acquire a finite value below it—emerged as
the universal hallmark of both classical and quantum phase transitions.
In Landau’s theory, all classical and quantum phase transitions arise
from a form of symmetry breaking.

This well-established paradigm was challenged with the discovery of
the fractional Quantum Hall effect [1], where multiple distinct phases
share the same conventional symmetries. Realizing that such states of
matter could not be understood within the symmetry-breaking frame-
work, physicists began searching for “hidden” quantum orders that
could distinguish these phases.

Quantum spin liquids (QSLs) represent a typical setting for these
novel ideas in Mott insulators. A QSL is the ground state of a quantum
spin system that remains fully symmetric—concerning the symmetries
of the underlying lattice and of the Hamiltonian. Consequently, QSLs
exhibit no conventional magnetic order of any kind (e.g. ferromag-
netic or antiferromagnetic). While magnetically ordered ground states
usually have bosonic excitations, like the spin-1 magnon, QSLs have
fractionalized fermionic excitations, as the spin-1/2 spinons. The split-
ting of the bosonic excitation to a pair of fermionic quasiparticles is
called fractionalization. Therefore, the existence of the QSL ground
state and the fractionalized excitations is directly measurable through
the dynamical spin structure factor, if at the lowest excitation energies
we observe a continuum (implicating a pair of quasiparticles) instead
of a single branch.

A promising approach to characterizing hidden quantum orders at
the mean-field level involves the concept of the projective symmetry
group (PSG). When the fluctuations beyond mean-field theory are
weak, the mean-field quantum order (protected by the PSG) becomes
the quantum order of the real ground state [2, Sec. 9.9.1]. If the
mean-field one-particle energy spectrum is gapped, the quantum or-
der is called topological order, and is characterized by the ground state
degeneracy [3]. If the one-particle energy spectrum is gapless, then the
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quantum order is characterized by the existence and location (in recip-
rocal space) of gapless excitation towers in the dynamical spin struc-
ture factor [2, Sec. 9.10.2]. Analogous to symmetry breaking protecting
gapless excitations following Goldstone’s theorem [4, Sec. 6.1], certain
PSGs can protect gapless fermionic excitations and their reciprocal-
space locations [2, Sec. 9.10.2]. Experimentally, the dynamical spin
structure factor provides a tool to identify a gapless quantum spin liq-
uid ground state [2, Sec. 9]. Quantum phase transitions can occur
without conventional symmetry breaking, driven instead by changes in
the PSG itself.

One-dimensional spin systems are archetypal examples of quantum
spin liquids, where strong quantum fluctuations suppress all forms
of magnetic order. In contrast, stabilizing a quantum spin liquid in
two-dimensional systems is far more challenging and often requires en-
hanced fluctuations. Such enhancements can be achieved by geometric
frustration (e.g., on the triangular or kagome lattice) or by introduc-
ing further-neighbor interactions. Another route is to enlarge the spin
symmetry group, considering SU(N) or Sp(N) models with N > 2 [5],
which increases quantum fluctuations and thereby helps to stabilize
quantum spin liquids.

Aims
In this thesis, we seek new avenues to stabilize and characterize two-

dimensional quantum spin liquids by considering models with enhanced
SU(N > 2) symmetries.

Our primary goal was to calculate the dynamical spin structure
factor of the SU(4) Heisenberg model on the honeycomb lattice, which
may be realized in α-ZrCl3 [6], where the strong spin-orbital interaction
leads to effective N = 4 degrees of freedom. The dynamical spin struc-
ture factor can help to verify experimentally if the ground state is a
Dirac spin liquid [7]. To achieve this, we extended to SU(N) models the
dynamical variational Monte Carlo method, previously successfully ap-
plied to the SU(2) case [8, 9]. We tested the method by calculating the
dynamical spin structure factor of the exactly solvable SU(3) Heisen-
berg chain in the fundamental representation. Our calculations showed
excellent agreement with the Bethe Ansatz, exact diagonalization, and
DMRG results.

Next, we explored whether the ground state of the SU(6) Heisenberg
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model on the kagome lattice could also be a Dirac spin liquid, inspired
by earlier studies on the SU(2) case [10]. This model can be realized
in optical lattices of ultracold 173Yb isotopes. In the SU(2) case, the
dynamical spin structure factor can be measured in optical lattices by
Bragg scattering experiments [11]. In the hope that such measurements
can be generalized to the SU(6) case, we calculated the dynamical spin
structure factor using the dynamical variational Monte Carlo method.

Methods
I implemented a numerical variational Monte Carlo method—originally

introduced in Refs. [8, 9] for computing the dynamical spin struc-
ture factor of the SU(2) Heisenberg model—and extended it to the
SU(N) case. In this method, the ground state is approximated by the
Gutzwiller projected Fermi sea, where the Fermi sea is the mean-field
ground state, which is optimized to minimize the variational energy of
the Heisenberg Hamiltonian.

To approximate the lowest-energy excited states, we first project
the Heisenberg Hamiltonian to the subspace of Gutzwiller projected
particle-hole excitations of the Fermi sea. Solving the generalized eigen-
value problem in this subspace provides the energies and eigenstates,
which allows us to calculate the spectral weights in the dynamical spin
structure factor.

The Gutzwiller projector enforces single occupancy on every lat-
tice site, which is necessary to restore the Hilbert space of the Heisen-
berg model, which was enlarged in the mean-field approximation. For
comparison, we also computed the dynamical spin structure factor in
the mean-field approximation without applying the Gutzwiller projec-
tor—neither on the Fermi sea nor on its particle-hole excitations. As
shown in Ref. [12] for the SU(2) Heisenberg model on the triangular lat-
tice, the Gutzwiller projection can create gapless excitations that are
absent in the mean-field calculations. The gapless excitations of the
mean-field spectrum also appear after Gutzwiller projection, though
the spectral weights are shifted to lower energies.

The results of this variational method are expected to provide a
good approximation of the dynamical spin structure factor of the Heisen-
berg model if the fluctuations beyond the mean-field approximation are
weak. The fluctuations are often not weak enough in SU(2) symmetric
Heisenberg models. However, in Sp(2N) symmetric Heisenberg mod-
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els, the fluctuations were shown to vanish in the large N -limit [5]. Our
calculations suggest that the enhanced SU(N) symmetry of the Heisen-
berg Hamiltonian in the fundamental representation has a similar effect
on the fluctuations.

Thesis statements
1. I computed the dynamical spin structure factor S(k, ω) of the

SU(3) Heisenberg chain variationally using Gutzwiller projected
particle-hole excitations of the Fermi sea. I showed that the
low energy spectrum and the distribution of the spectral weights
of the SU(3) Heisenberg chain can be well reproduced by this
method, by comparing the S(k, ω) to exact diagonalization results
for 18 sites, the two-soliton continuum of the Bethe Ansatz, and
the DMRG results for 72 sites. Detailed analysis of the finite-size
effects shows that the method captures the critical Wess-Zumino-
Witten SU(3)1 behavior and reproduces the correct exponent,
except for the size dependence of the spectral weight in the bot-
tom of the conformal tower. The extracted velocity of excitations
and the central charge are very close to the exact results. These
results are published in Ref. [I.].

2. I computed the dynamical spin structure factor S(k, ω) of the
SU(4) Heisenberg model on the honeycomb lattice variationally,
approximating the ground state by the Gutziller projected π-
flux Fermi sea (motivated by Ref. [7]), called a Dirac spin liq-
uid. I compared these results with non-interacting mean-field
calculations. The two approaches produce qualitatively similar
results, suggesting that the energy spectrum of the Gutzwiller
projected excitations may also be a gapless continuum of frac-
tionalized excitations. Quantitatively, the Gutzwiller projection
shifts the spectral weight from higher to lower energies, thus em-
phasizing the lower edge of the continuum. The ratio of the sums(∑

k∈eBZ S33
MF(k)

)
/
(∑

k∈eBZ S33(k)
)
= 1 − 1/N shows that the

correlations are reduced in the mean-field case, since the charge
fluctuations reduce the value of the quadratic Casimir opera-
tor, appearing in the sum rules. These results are published in
Ref. [II.].

3. I proposed the Gutzwiller projected π-flux Fermi sea (another
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Dirac spin liquid) as the ground state of the SU(6) Heisenberg
model on the Kagome lattice. To reach this conclusion, I in-
vestigated the energetical stability of the Dirac spin liquid (DSL)
against perturbations of the mean-field ansatz and confirmed that
the DSL remained the lowest energy singlet state. Furthermore,
I found that finite values of the second-neighbor (J2) and ring
(K) exchange are necessary to destabilize the DSL, highlighting
its resilience to further interactions. These results are published
in Ref. [III.].

4. To characterize the DSL on the SU(6) kagome lattice, I calcu-
lated the dynamical spin structure factor S(k, ω) variationally
using Gutzwiller projected particle-hole excitations of the π-flux
Fermi sea, and compared these results with the non-interacting
mean-field calculations. In the SU(6) case, the distribution of the
spectral weights in the S(k, ω) shows a much better agreement
between the variational and the mean-field calculations than in
the SU(4) or SU(2) cases. I attribute the decreasing difference
between the two approaches to the weakening of the fluctuations
beyond the mean-field approximation as the SU(N) symmetry
increases. Based on this similarity, I have studied the S(k, ω) in
the mean-field approach for an extensive system with 3888 sites
and found that the spectrum is a gapless continuum, where the
gapless towers are centered at the Γ, Γ′, M and M′ points in the
extended Brillouin zone. The static spin structure factor S(k)
shows increased spectral weights in the form of triangular-shaped
plateaus around the K′ points in the extended Brillouin zone.
The static mean-field and the variational results differ in the sum
rules and in the form of barely noticeable humps appearing in
the variational calculations around the M′ points. The real space
spin-spin correlations seem to decay algebraically with the dis-
tance, with a power between 3 and 4, similarly as in the SU(4)
case (see Ref. [7]). These results are published in Ref. [III.].
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